he weights of a large group of college football players is approximately normally distributed. it was determined that 10% of theplayers weigh less than 154 pounds and 5% weigh more than 213pounds. what are the mean and standard deviation of the distribu tion of weights of football players?

Answers

Answer 1

The standard deviation of the weight distribution is approximately 20.31 pounds.

Let's denote the mean of the distribution as μ (mu) and the standard deviation as σ (sigma).

From the given information, we can calculate the z-scores corresponding to the weights of 154 pounds and 213 pounds.

For the weight of 154 pounds:

The proportion of players weighing less than 154 pounds is 10%, which corresponds to a cumulative probability of 0.10. To find the z-score, we can use a standard normal distribution table or a calculator:

z = invNorm(0.10) ≈ -1.28

For the weight of 213 pounds:

The proportion of players weighing more than 213 pounds is 5%, which corresponds to a cumulative probability of 0.95 (1 - 0.05). To find the z-score, we can again use a standard normal distribution table or a calculator:

z = invNorm(0.95) ≈ 1.64

In a standard normal distribution, the z-scores represent the number of standard deviations away from the mean.

Now, we can set up two equations using the z-scores:

1.28 = (154 - μ) / σ --> (1)

-1.64 = (213 - μ) / σ --> (2)

Solving these equations simultaneously will give us the mean (μ) and the standard deviation (σ) of the weight distribution.

Let's solve these equations:

From equation (1):

1.28σ = 154 - μ

From equation (2):

-1.64σ = 213 - μ

Adding equation (1) and equation (2):

1.28σ - 1.64σ = 154 - μ + 213 - μ

-0.36σ = 367 - 2μ

Simplifying:

-0.36σ = 367 - 2μ

0.36σ = 2μ - 367

Dividing by 0.36:

σ = (2μ - 367) / 0.36

Substituting this value of σ in equation (1):

1.28σ = 154 - μ

1.28[(2μ - 367) / 0.36] = 154 - μ

Simplifying:

1.28(2μ - 367) = 0.36(154 - μ)

2.56μ - 470.16 = 55.44 - 0.36μ

Combining like terms:

2.56μ + 0.36μ = 470.16 + 55.44

2.92μ = 525.6

Dividing by 2.92:

μ = 525.6 / 2.92

μ ≈ 180.00

Now that we have the value of μ, we can substitute it into equation (1) to find σ:

1.28σ = 154 - μ

1.28σ = 154 - 180

1.28σ = -26

Dividing by 1.28:

σ = -26 / 1.28

σ ≈ -20.31

Since standard deviation cannot be negative, we can disregard the negative sign. The standard deviation of the weight distribution is approximately 20.31 pounds.

To summarize:

Mean (μ) ≈ 180 pounds

Standard Deviation (σ) ≈ 20.31 pounds

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11


Related Questions

(2) Find the equation of the tangent plane to the surface given by ²²+ - y² - xz = -12 at the point (1,-1,3). xy

Answers

The position of the particle can be found using the given data of the particle's acceleration and initial conditions. The equation for the position of the particle is s(t) = -13 cos(t) + 3 sin(t) + 14t.

To find the position of the particle, we need to integrate the acceleration function with respect to time twice. Integrating a(t) = 13 sin(t) + 3 cos(t) once gives us the velocity function v(t) = -13 cos(t) + 3 sin(t) + C₁, where C₁ is a constant of integration. Next, we integrate v(t) with respect to time to obtain the position function s(t).

Integrating v(t) = -13 cos(t) + 3 sin(t) + C₁ gives us s(t) = -13 sin(t) - 3 cos(t) + C₁t + C₂, where C₂ is another constant of integration. We can determine the values of C₁ and C₂ using the initial conditions provided.

Since s(0) = 0, we substitute t = 0 into the equation and find that C₂ = 0. To determine C₁, we use the condition s(2π) = 14.

Substituting t = 2π into the equation gives us 14 = -13 sin(2π) - 3 cos(2π) + C₁(2π). Since sin(2π) = 0 and cos(2π) = 1, we have 14 = -3 + C₁(2π). Solving for C₁, we find C₁ = (14 + 3) / (2π).

Substituting the values of C₁ and C₂ back into the equation for s(t), we get the final position function: s(t) = -13 cos(t) + 3 sin(t) + (14 + 3) / (2π) * t.

Learn more about a particle's  acceleration :

https://brainly.com/question/31869422

#SPJ11

use the laplace transform to solve the initial-value problem y′−y= 2 sin(t) y(0) = 0

Answers

Using the Laplace transform, the initial-value problem y′−y=2sin(t), y(0) = 0 can be solved. The solution is given by the inverse Laplace transform of Y(s) = (2s)/(s^2 + 1).

To solve the initial-value problem using the Laplace transform, we first take the Laplace transform of both sides of the given equation. The Laplace transform of the derivative of y, denoted by Y'(s), is sY(s) - y(0), where Y(s) is the Laplace transform of y(t). Applying the Laplace transform to the equation y′−y=2sin(t) yields sY(s) - y(0) - Y(s) = 2/s^2 + 1.

Next, we substitute the initial condition y(0) = 0 into the equation. This gives us sY(s) - 0 - Y(s) = 2/s^2 + 1. Simplifying further, we have (s-1)Y(s) = 2/s^2 + 1. Rearranging the equation to solve for Y(s), we get Y(s) = (2s)/(s^2 + 1).

Finally, we find the inverse Laplace transform of Y(s) to obtain the solution y(t). Using the inverse Laplace transform table or a symbolic calculator, the inverse Laplace transform of (2s)/(s^2 + 1) is y(t) = 2cos(t). Therefore, the solution to the initial-value problem is y(t) = 2cos(t), where y(0) = 0.

Learn more about Laplace transform here:

https://brainly.com/question/30759963

#SPJ11

please help the image is below

Answers

here’s the polynomial graph

Write the resulting matrix after the stated row operation is applied to the given matrix. Replace R₂ with R2 + (4) R3. ​

Answers

The resulting matrix after the stated row operation is applied to the given matrix is [3      0    6      5]

                         [20   -3    2    16]

                         [4      0    0     5]

What is the resultant of the matrix?

The resulting matrix after the stated row operation is applied to the given matrix is calculated as follows;

The given matrix expression;

[3   0    6    5]

[4   -3   2    -4]

[4    0   0     5]

The row operation of 4R₃ is determined as follows;

4R₃ = 4[4   0   0    5]

= [16   0     0      20]

Add row 2 to the product of 4 and row 3 as follows;

R₂ + 4R₃ = [4     -3       2      -4] + [16     0    0    20]

= [20    -3     2      16]

The resulting matrix is determined as follows;

= [3      0    6      5]

  [20   -3    2    16]

  [4      0    0     5]

Learn more about row operation here: https://brainly.com/question/17490035

#SPJ1

Use partial fraction decomposition to find the power series representation of (x-3)(x + 1) 00 The power series representation for f(x) is n=0 help (formulas)

Answers

To find the power series representation of the function f(x) = (x - 3)(x + 1), we can use partial fraction decomposition. The first step is to factor the quadratic expression, which gives us f(x) = (x - 3)(x + 1). Next, we decompose the rational function into partial fractions: f(x) = A/(x - 3) + B/(x + 1).

To determine the values of A and B, we can equate the numerators of the fractions. Expanding and collecting like terms, we get x^2 - 2x - 3 = Ax + A + Bx - 3B.

To solve for A and B, we can equate the numerators of the fractions: x^2 - 2x - 3 = A(x - (-1)) + B(x - 3). Expanding and collecting like terms: x^2 - 2x - 3 = Ax + A + Bx - 3B

Comparing the coefficients of like terms, we have:  x^2: 1 = A + B . x: -2 = A + B

Constant term: -3 = -A - 3B. Solving this system of equations, we find A = 1 and B = -3.

By comparing the coefficients of like terms, we can solve the system of equations to find A = 1 and B = -3. Substituting these values back into the partial fraction decomposition, we obtain f(x) = 1/(x - 3) - 3/(x + 1). This representation can be expanded as a power series by using the formulas for the geometric series and the binomial theorem.

To know more about fractions, refer here :

https://brainly.com/question/10354322#

#SPJ11


write clearly please
T2 6. Extra Credit, write code in sage to evaluate the double sum and verify cach of values of Bo to B12. k Show that k+ k=0;=0 1. Bo = 1 2. B2 = 5 Let B, be defined as Br = LE () 4 12.3" 3. B4 30 4.

Answers

In Sage, the code to evaluate the double sum and verify the values of Bo to B12 would look like this:

```python

B = [0] * 13

B[0] = 1

B[2] = 5

for r in range(1, 13):

   for k in range(r):

       B[r] += B[k] * B[r-k-1]

print(B[1:13])

```

The given code uses a nested loop to compute the values of B0 to B12 using the recurrence relation Br = Σ(Bk * B(r-k-1)), where the outer loop iterates from 1 to 12 and the inner loop iterates from 0 to r-1. The initial values of B0 and B2 are set to 1 and 5, respectively. The computed values are stored in the list B. Finally, the code prints the values of B1 to B12. This approach efficiently evaluates the double sum and verifies the cache of values for B0 to B12.

Learn more about sum  here:

https://brainly.com/question/30577446

#SPJ11

The power series for the exponential function centered at 0 is ex = Σ k=0 the following function. Give the interval of convergence for the resulting series. 9x f(x) = e Which of the following is the power series representation for f(x)? [infinity] (9x)k [infinity] Ο Α. Σ Β. Σ k! k=0 k=0 [infinity] 9xk [infinity] OC. Σ D. Σ k! k=0 The interval of convergence is (Simplify your answer. Type your answer in interval notation.) k=0 for -[infinity]

Answers

The power series representation for the function f(x) = e^x is given by the series Σ (x^k) / k!, where k ranges from 0 to infinity. The interval of convergence for this series is (-∞, ∞).

The power series representation for the exponential function e^x is derived from its Taylor series expansion. The general form of the Taylor series for e^x is Σ (x^k) / k!, where k ranges from 0 to infinity. This series represents the terms of the function f(x) = e^x as an infinite sum of powers of x divided by the factorial of k.

In the given options, the correct representation for f(x) is Σ (9x)^k, where k ranges from 0 to infinity. This is because the base of the exponent is 9x, and we are considering all powers of 9x starting from 0.

The interval of convergence for this series is (-∞, ∞), which means the series converges for all values of x. Since the exponential function e^x is defined for all real numbers, its power series representation also converges for all real numbers.

Therefore, the power series representation for f(x) = e^x is Σ (9x)^k, where k ranges from 0 to infinity, and the interval of convergence is (-∞, ∞).

Learn more about Taylor series expansion here:

https://brainly.com/question/31726905

#SPJ11

Given h=2.5 cos (1–5)| +13.5,120, determine the minimum value and when it = occurs in the first period.

Answers

The given expression is h = 2.5 cos(1–5θ) + 13.5,120, where θ represents an angle. To find the minimum value and when it occurs in the first period, we need to determine the values of θ that correspond to the minimum value of h.

The minimum value of the cosine function occurs at θ = π, where the cosine function reaches its maximum value of 1. However, in this case, we have a negative sign in front of the cosine function, which means the minimum value occurs when the cosine function reaches its minimum value of -1.

Since the expression inside the cosine function is 1–5θ, we can set it equal to π and solve for θ:

1–5θ = π

Rearranging the equation, we have:

θ = (1–π)/5

Substituting this value of θ back into the expression for h, we can find the minimum value of h:

h = 2.5 cos(1–5((1–π)/5)) + 13.5

Simplifying further, we get:

h = 2.5 cos(π–1+π) + 13.5

h = 2.5 cos(2π–1) + 13.5

h = 2.5 cos(π–1) + 13.5

h = 2.5 cos(-1) + 13.5

h = 2.5 (-0.5403) + 13.5

h ≈ 11.6493

Therefore, the minimum value of h in the first period is approximately 11.6493, and it occurs at θ = (1–π)/5.

Learn more about cosine function here: brainly.com/question/3876065

#SPJ11

Use Lagrange multipliers to find the minimum value of the function
f(x,y,z) = x^2 - 4x + y^2 - 6y + z^2 – 2z +5, subject to the constraint x+y+z= 3.

Answers

the minimum value of the function [tex]\(f(x, y, z)\)[/tex] subject to the constraint [tex]\(x + y + z = 3\)[/tex] is [tex]\(\frac{29}{6}\)[/tex].

To find the minimum value of the function [tex]\(f(x, y, z) = x^2 - 4x + y^2 - 6y + z^2 - 2z + 5\)[/tex] subject to the constraint [tex]\(x + y + z = 3\)[/tex], we can use the method of Lagrange multipliers.

First, we define a new function called the Lagrangian:

[tex]\(L(x, y, z, \lambda) = f(x, y, z) - \lambda(g(x, y, z) - c)\),[/tex]

where,

[tex]\(g(x, y, z) = x + y + z\)[/tex]is the constraint equation and [tex]\(\lambda\)[/tex] is the Lagrange multiplier.

To find the minimum, we need to find the critical points of the Lagrangian. We take partial derivatives of [tex]\(L\)[/tex] with respect to [tex]\(x\), \(y\), \(z\)[/tex], and [tex]\(\lambda\)[/tex] and set them equal to zero:

[tex]\(\frac{\partial L}{\partial x} = 2x - 4 - \lambda = 0\),\\\(\frac{\partial L}{\partial y} = 2y - 6 - \lambda = 0\),\\\(\frac{\partial L}{\partial z} = 2z - 2 - \lambda = 0\),\\\(\frac{\partial L}{\partial \lambda} = x + y + z - 3 = 0\).[/tex]

Solving these equations simultaneously, we get:

[tex]\(x = \frac{11}{6}\),\(y = \frac{7}{6}\),\(z = \frac{1}{6}\),\(\lambda = \frac{19}{6}\).[/tex]

Now we substitute these values back into the original function [tex]\(f(x, y, z)\)[/tex] to find the minimum value:

[tex]\(f\left(\frac{11}{6}, \frac{7}{6}, \frac{1}{6}\right) = \left(\frac{11}{6}\right)^2 - 4\left(\frac{11}{6}\right) + \left(\frac{7}{6}\right)^2 - 6\left(\frac{7}{6}\right) + \left(\frac{1}{6}\right)^2 - 2\left(\frac{1}{6}\right) + 5 = \frac{29}{6}\).[/tex]

Therefore, the minimum value of the function [tex]\(f(x, y, z)\)[/tex] subject to the constraint [tex]\(x + y + z = 3\)[/tex] is [tex]\(\frac{29}{6}\)[/tex].

To know more about Lagranges multipliers, click here:

https://brainly.com/question/30776684

#SPJ11

Use the properties of limits to help decide whether the limit exists. If the limit exists, find its value. x² + 2x-3 X-1 X-1 O A. Does not exist B. 4 oc. 2 OD. 0

Answers

The correct answer is B. 4.To determine whether the limit of the function f(x) = (x² + 2x - 3)/(x - 1) exists, we can analyze the behavior of the function as x approaches 1. By evaluating the limit from both the left and the right of x = 1 and comparing the results, we can determine whether the limit exists and find its value.

Let's consider the limit as x approaches 1 of the function f(x) = (x² + 2x - 3)/(x - 1). We can start by plugging in x = 1 into the function, which gives us an indeterminate form of 0/0. This suggests that further analysis is needed to determine the limit. To investigate further, we can simplify the function by factoring the numerator: f(x) = [(x - 1)(x + 3)]/(x - 1). Notice that (x - 1) appears both in the numerator and the denominator. We can cancel out the common factor, resulting in f(x) = x + 3.

Now, as x approaches 1 from the left (x < 1), the function f(x) approaches 1 + 3 = 4. Similarly, as x approaches 1 from the right (x > 1), f(x) also approaches 1 + 3 = 4. Since the limits from both sides are equal, we can conclude that the limit of f(x) as x approaches 1 exists and its value is 4. Therefore,

Learn more about  function here: https://brainly.com/question/29120892

#SPJ11

Two boats leave a port traveling on paths that are 48 acant. After some time the boath has gone 52 min and the second boat has gone 79 mi. How far aport are the boats?

Answers

Two boats leave a port traveling on paths that are 48 acant. After some time the boath has gone 52 min and the second boat has gone 79 mi., by using the Pythagorean theorem, we determined that the distance between the two boats is approximately 92.52 miles.

To determine the distance between the two boats, we can consider the paths they have traveled and use the concept of Pythagorean theorem.

Let’s assume that the two boats have traveled along perpendicular paths, forming a right triangle. The first boat has traveled a distance of 48 miles, and the second boat has traveled a distance of 79 miles. We want to find the distance between the boats, which corresponds to the hypotenuse of the triangle.

By applying the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides, we can find the distance between the boats.

Let’s denote the distance between the boats as d. According to the Pythagorean theorem:

D^2 = (48 miles)^2 + (79 miles)^2

D^2 = 2304 miles^2 + 6241 miles^2

D^2 = 8545 miles^2

Taking the square root of both sides, we find:

D ≈ 92.52 miles

Therefore, the boats are approximately 92.52 miles apart.

In conclusion, by using the Pythagorean theorem, we determined that the distance between the two boats is approximately 92.52 miles.

Learn more about Pythagorean theorem here:

https://brainly.com/question/14930619

#SPJ11

For the following composite function, find an inner function u = g(x) and an outer function y=f(u) such that y=f(g(x)). Then calculate dy dx y = tan (23)

Answers

To find an inner function[tex]u = g(x)[/tex] and an outer function[tex]y = f(u)[/tex]such that[tex]y = f(g(x)), let u = 23x and y = tan(u)[/tex]. Then, calculate [tex]dy/dx.[/tex]

[tex]Let u = g(x) = 23x.[/tex] This means the inner function is [tex]u = 23x.[/tex]

[tex]Let y = f(u) = tan(u).[/tex] This represents the outer function where y is a function of u.

Combining the inner and outer functions, we have[tex]y = tan(g(x)) = tan(23x).[/tex]

To calculate[tex]dy/dx[/tex], we differentiate[tex]y = tan(23x)[/tex]with respect to x using the chain rule.

Applying the chain rule, we have[tex]dy/dx = dy/du * du/dx.[/tex]

The derivative of [tex]y = tan(u)[/tex] with respect to u is[tex]dy/du = sec^2(u).[/tex]

The derivative of[tex]u = 23x[/tex] with respect to [tex]x is du/dx = 23.[/tex]

Multiplying the derivatives, we have dy/dx = (dy/du) * (du/dx) = sec^2(u) * 23.

Substituting [tex]u = 23x,[/tex] we have [tex]dy/dx = sec^2(23x) * 23.[/tex]

learn more about:- composite function here

https://brainly.com/question/30660139

#SPJ11

f(x)= x+ - 4x +11 (1) Find the intervals of increase and decrease; (2) Find the critical points and classify them; (3) Find the inflection point(s), intervals of concave up and concave down; (4) Find the y-intercept and sketch a possible graph of f(x), label all the important points on the graph.

Answers

The function f(x) is increasing on the intervals (-∞, -√(4/3)) and (√(4/3), +∞), and it is decreasing on the interval (-√(4/3), √(4/3)).

To analyze the given function f(x) = x^3 - 4x + 11, we will follow the steps outlined below: (1) Intervals of Increase and Decrease:

To find the intervals of increase and decrease, we need to determine where the function is increasing or decreasing. This can be done by analyzing the sign of the derivative.

First, let's find the derivative of f(x):

f'(x) = 3x^2 - 4

To find the critical points, we set f'(x) equal to zero and solve for x:

3x^2 - 4 = 0

3x^2 = 4

x^2 = 4/3

x = ±√(4/3)

Now, we can create a number line and test the sign of f'(x) in different intervals:

Number Line: (-∞, -√(4/3)), (-√(4/3), √(4/3)), (√(4/3), +∞)

Test Interval (-∞, -√(4/3)):

Pick x = -2

f'(-2) = 3(-2)^2 - 4 = 8 > 0

Therefore, f(x) is increasing on the interval (-∞, -√(4/3)).

Test Interval (-√(4/3), √(4/3)):

Pick x = 0

f'(0) = 3(0)^2 - 4 = -4 < 0

Therefore, f(x) is decreasing on the interval (-√(4/3), √(4/3)).

Test Interval (√(4/3), +∞):

Pick x = 2

f'(2) = 3(2)^2 - 4 = 8 > 0

Therefore, f(x) is increasing on the interval (√(4/3), +∞).

(2) Critical Points:

The critical points are the values of x where f'(x) is equal to zero or undefined. From earlier, we found x = ±√(4/3) as the critical points.

To classify the critical points, we can analyze the sign of the second derivative f''(x). However, since we were not given the second derivative, we cannot determine the nature of the critical points without additional information.

(3) Inflection Points, Intervals of Concavity:

To find the inflection point(s) and intervals of concavity, we need to analyze the sign of the second derivative, f''(x).

Taking the derivative of f'(x), we find:

f''(x) = 6x

Since f''(x) = 6x is a linear function, it does not change sign. Therefore, there are no inflection points, and the entire x-axis is an interval of concavity.(4) Y-intercept and Sketch of the Graph:

To find the y-intercept, we substitute x = 0 into the original function:

f(0) = (0)^3 - 4(0) + 11 = 11

So, the y-intercept is (0, 11).

Learn more about intervals here:

https://brainly.com/question/32512692

#SPJ11

Use the Divergence Theorem to compute the net outward flux of the following field across the given surface S F = (-9y -x - 4x - 2y. -7y - x) -X Sis the sphere f(xyz) x² + y2 +2+ = 9} The net outward flux across the surface is (Type an exact answer using x as needed)

Answers

Using the Divergence Theorem to compute the net outward flux of the following field across the given surface  the net outward flux of the vector field F across the surface S is -36π.

To compute the net outward flux across the given surface S using the Divergence Theorem, we need to evaluate the surface integral of the dot product between the vector field F and the outward unit normal vector dS over the surface S. The Divergence Theorem relates this surface integral to the volume integral of the divergence of the vector field over the region enclosed by the surface.

Let's denote the surface S as the sphere with equation x² + y² + z² = 9. The outward unit normal vector dS for a sphere can be expressed as (x, y, z)/r, where r is the radius of the sphere.

First, we need to compute the divergence of the vector field F. Taking the divergence of F yields:

div(F) = ∂(−9y - x)/∂x + ∂(−4x - 2y)/∂y + ∂(−7y - x)/∂z

      = -1 - 2 - 0

      = -3.

According to the Divergence Theorem, the net outward flux across the surface S is equal to the volume integral of the divergence of F over the region enclosed by the sphere. Since the sphere completely encloses the region, the volume integral reduces to a simple computation over the sphere.

Using the divergence -3 and the surface area of a sphere 4πr², where r is the radius, which is 3 in this case, we can calculate the net outward flux:

Net outward flux = ∫∫∫V div(F) dV

               = -3 * ∫∫∫V dV

               = -3 * (4/3)π(3^3)

               = -3 * (4/3)π * 27

               = -36π.

Therefore, the net outward flux across the surface S is -36π.

Learn more about Divergence Theorem here:

https://brainly.com/question/28155645

#SPJ11

In a study of cell phone usage and brain hemispheric​ dominance, an Internet survey was​ e-mailed to 6956 subjects randomly selected from an online group involved with ears. There were 1340 surveys returned. Use a 0.01 significance level to test the claim that the return rate is less than​ 20%. Use the​ P-value method and use the normal distribution as an approximation to the binomial distribution. Identify the null hypothesis and alternative hypothesis.
A. H0​: p≠0.2
H1​: p=0.2
B. H0​: p>0.2
H1​: p=0.2
C. H0​: p=0.2
H1​: p≠0.2
D. H0​: p=0.2
H1​: p>0.2
E. H0​: p=0.2
H1​: p<0.2

Answers

The null hypothesis for this study is that the return rate of surveys is not less than 20%, and the alternative hypothesis is that the return rate is less than 20%.

Using the​ P-value method and the normal distribution as an approximation to the binomial distribution, we can calculate the P-value. The sample proportion of returned surveys is 1340/6956 = 0.193, and the standard error of the sample proportion is sqrt((0.2*0.8)/6956) = 0.006. We can calculate the z-score as (0.193 - 0.2)/0.006 = -1.17.
Looking up the P-value in a standard normal distribution table for a one-tailed test with a critical value of -2.33 (corresponding to a significance level of 0.01), we find the P-value to be approximately 0.121. Since the P-value is greater than the significance level, we fail to reject the null hypothesis.
Therefore, we do not have enough evidence to support the claim that the return rate is less than​ 20%.

To learn more about null hypothesis refer:-

https://brainly.com/question/28920252

#SPJ11

in AMBC (not shown), ACI BCand cos ZABC= 12/13 What is the
value of tan ZABC?
5/13

Answers

The value of tan ZABC in AMBC (not shown) is 5/12. In trigonometry, the tangent (tan) of an angle is defined as the ratio of the length of the opposite side to the length of the adjacent side in a right triangle.

The Pythagorean identity states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides. So, we have (AC)^2 = (BC)^2 + (AB)^2.

Given that cos ZABC = 12/13, we know that the adjacent side (BC) is 12, and the hypotenuse (AC) is 13. By using the Pythagorean identity, we can find the length of the opposite side (AB).

(AB)^2 = (AC)^2 - (BC)^2

(AB)^2 = 13^2 - 12^2

(AB)^2 = 169 - 144

(AB)^2 = 25

Taking the square root of both sides, we find that AB = 5. Therefore, the ratio of the opposite side (AB) to the adjacent side (BC) is 5/12, which is equal to the value of tan ZABC.

LEARN MORE ABOUT hypotenuse here: brainly.com/question/16893462

#SPJ11

Use the ratio test to determine whether 9 n(-9)" converges or diverges. n! n=8 (a) Find the ratio of successive terms. Write your answer as a fully simplified fraction. For n > 8, , n!(n+(-9)^(n+1)) An+1 lim an (-9n)^(n+2)*-9n^n

Answers

We will use the ratio test to determine the convergence or divergence of the series given by 9^n / (n!) for n ≥ 8. The ratio of successive terms is found by taking the limit as n approaches infinity, or if the limit is less than 1, the series converges. Otherwise,  greater than 1 or infinite, series diverges.

To apply the ratio test, we compute the ratio of successive terms by taking the limit as n approaches infinity of the absolute value of the ratio of (n+1)-th term to the nth term. In this case, the (n+1)-th term is given by[tex](9^(n+1)) / ((n+1)!)[/tex].

We can express the ratio of successive terms as: [tex]lim (n→∞) |(9^(n+1) / ((n+1)!)| / |(9^n / (n!)|[/tex].

Simplifying this expression, we have: [tex]lim (n→∞) |(9^(n+1) / ((n+1)!)| * |(n!) / 9^n|[/tex].

[tex]lim (n→∞) |(9 / (n+1))|.[/tex]

Since the denominator (n+1) approaches infinity as n approaches infinity, the limit simplifies to:[tex]|9 / ∞| = 0[/tex].

Since the limit is less than 1, according to the ratio test, the series 9^n / (n!) converges.

Learn more about ratio test here;
https://brainly.com/question/30396381


#SPJ11

solve 16
7) im Sin 0 MBX D) ANSWER FIVE QUESTIONS FROM 8-15 Find f 8) ((x)=4-10x (0)-8, (0)-2 2³². 10) √ 4√x dx. 11) (2x²+x+7) dx -1 12) (7x².375 x dx 13) f sin t (5+ cost)6 14) x²√x3 +8dx 15) sin² x cos x dx

Answers

We are given five different functions to evaluate. In questions 10 to 15, we are asked to integrate various functions with respect to x, and each question requires a different approach to solve.

10)To integrate √(4√x) dx, we can simplify it as √(2√x) * √2 dx. Then, using the substitution u = 2√x, we can rewrite the integral as (1/4) ∫ √u du. By applying the power rule for integration, the result is (1/4) * (2/3) u^(3/2) + C, where C is the constant of integration. Finally, substituting u back as 2√x, we get the final answer.

11) To integrate (2x² + x + 7) dx over the range from -1, we apply the power rule for integration. We obtain (2/3)x³ + (1/2)x² + 7x evaluated from -1 to the upper limit of integration.

12) Integrating (7x² - 3x^0.375) dx involves applying the power rule. The integral evaluates to (7/3)x³ - (3/0.375)x^(0.375 + 1), which simplifies to (7/3)x³ - 8x^(0.375 + 1).

13) Integrating f(t) = sin(t)(5 + cos(t))^6 with respect to t requires applying a trigonometric substitution. We substitute u = 5 + cos(t), du = -sin(t) dt, and rewrite the integral in terms of u. The resulting integral involves powers of u, which can be integrated using the power rule.

14) To integrate x²√(x^3 + 8) dx, we can simplify it as x² * (x^3 + 8)^(1/2) dx. Using the substitution u = x^3 + 8, we rewrite the integral as (1/3) ∫ u^(1/2) du. Applying the power rule, we obtain (1/3) * (2/3) u^(3/2) + C, where C is the constant of integration. Substituting u back as x^3 + 8, we get the final answer.

15) Integrating sin²(x) cos(x) dx requires using the double-angle identity for sine. We rewrite sin²(x) as (1/2)(1 - cos(2x)) and substitute it into the integral. The resulting integral involves the product of cosine functions, which can be integrated using standard trigonometric identities.

For each of the questions, the specific ranges of integration (if provided) should be taken into account while evaluating the integrals.

Learn more about integration here:

https://brainly.com/question/31059545

#SPJ11

in a research study aimed to measure the most effective way to study, students are given a test on the material they reviewed. A group of ne15 was asked to take an exam after they read lecture summaries and after they watched and listened to lecture summaries. The researcher noticed that once a student took the test the first time, they were able to get through the exam faster the second time. What should the researcher have done to avoid this problem? a. Give the test at different hours of the day b. Create different test for the students c. Give the test in different languages d. Switch the order of study methods for the participants before the test

Answers

The researcher should have chosen option D: Switch the order of study methods for the participants before the test.

What is familiarity bias?

People frequently choose familiar options over novel ones, even when the latter may be superior, a phenomenon known as the familiarity bias.

To avoid the problem of students getting through the exam faster the second time due to familiarity, the researcher should have chosen option D: Switch the order of study methods for the participants before the test.

By switching the order of study methods, the researcher can control for the potential bias caused by familiarity or memory effects. This ensures that the effect observed is truly due to the difference in study methods rather than the order in which they were encountered.

If the same group of students always starts with the lecture summaries and then moves on to watching and listening to lecture summaries, they may perform better on the second test simply because they are more familiar with the material, test format, or timing. Switching the order of study methods helps eliminate this potential bias and provides a fair comparison between the two methods.

Options A, B, and C are not relevant to addressing the issue of familiarity bias in this scenario.

Learn more about familiarity bias on:

https://brainly.com/question/17157189

#SPJ4

ments: Do it in matlab, write the program code!! Obtain the approximate solutions of the following differential equation by FEM with 5, 10 and 15 ele- + cu(x) = f, (0

Answers

To obtain the approximate solutions of a differential equation using the Finite Element Method (FEM) in MATLAB, you can follow these general steps:

1. Define the problem: Specify the differential equation, the domain, boundary conditions, and any additional parameters such as the number of elements and degree of approximation.

2. Discretize the domain: Divide the domain into a set of elements. For this particular problem, you can use a mesh with 5, 10, or 15 elements depending on the desired level of accuracy.

3. Formulate the element equations: Construct the element stiffness matrix and load vector for each element using the chosen basis functions and numerical integration techniques.

4. Assemble the global system: Assemble the element equations into the global stiffness matrix and load vector by considering the continuity and boundary conditions.

5. Apply boundary conditions: Modify the global system to incorporate the prescribed boundary conditions.

6. Solve the system: Solve the resulting system of equations to obtain the approximate solution.

7. Post-process the results: Analyze and visualize the computed solution, compute any desired quantities or errors, and refine the mesh if necessary.

Please note that due to the limitations of this text-based interface, I'm unable to provide a complete MATLAB code implementation for the given problem. However, I hope the general steps provided above give you a good starting point to develop your own code using the Finite Element Method in MATLAB.

To learn more about Finite Element Method : brainly.com/question/30003273

#SPJ11








Find the values of c such that the area of the region bounded by the parabolas y 16x2-c² and y-²-16x is 144. (Enter your answers as a comma-separated list.) C.= Submit Answer

Answers

To find the values of c such that the area of the region bounded by the parabolas y = 16x^2 - c^2 and y = -x^2 - 16x is 144, we can set up the integral and solve for c. The area of the region can be found by integrating the difference between the upper and lower curves with respect to x over the interval where they intersect.

First, we need to find the x-values where the two parabolas intersect:

16x^2 - c^2 = -x^2 - 16x

Combining like terms:

17x^2 + 15x + c^2 = 0

We can use the quadratic formula to solve for x:

x = (-15 ± √(15^2 - 4(17)(c^2))) / (2(17))

Simplifying further:

x = (-15 ± √(225 - 68c^2)) / 34

Next, we set up the integral to find the area:

A = ∫[x₁, x₂] [(16x^2 - c^2) - (-x^2 - 16x)] dx

where x₁ and x₂ are the x-values of intersection.

A = ∫[x₁, x₂] (17x^2 + 15x + c^2) dx

By evaluating the integral and equating it to 144, we can solve for the values of c.

Learn more about the interval here: brainly.com/question/11056677

#SPJ11

Alexis opens a money market account at Lone Star Bank. The account compounds interest continuously at a rate of 7. 85%. If she initially invests $5,000, how much money will be in her account after 12 years?

Answers

The amount of money that will be in Alexis 's account after 12 years, given the initial deposit would be $ 12, 821. 84.

How to find the amount the investment grew to?

The formula for continuous compound interest is [tex]A = P * e^ {(rt)}[/tex]

In this case, P = $ 5, 000 , r = 7.85% or 0. 0785 ( as a decimal ), and t = 12 years.

The total amount after 12 years is therefore :

[tex]A = 5000 * e^ { (0.0785 * 12) }[/tex]

A = 5, 000 x [tex]e^ {(0.942)}[/tex]

[tex]e^ {(0.942)}[/tex] = 2. 56436843

A = 5, 000 x 2.56436843

= $ 12, 821. 84

In conclusion, after 12 years, Alexis will have about $ 12, 821. 84 in her money market account at Lone Star Bank.

Find out more on continuous compounding at https://brainly.com/question/14303868

#SPJ1

Algebra 2 For what values of...

Answers

The values of  θ for the given inequality be ⇒ 3π/4 < θ < π

To determine the values of θ for which

cosθ < sinθ  for 0 ≤ x < π,

Now use the trigonometric identity,

sin²(θ) + cos²(θ) = 1

Rearranging this equation:

sin²θ = 1 - cos²θ

Then,

Substitute this in the original inequality, we get

⇒ cosθ < sinθ

⇒ cosθ < √(1 - cos²θ)

Squaring both sides:

⇒ cos²θ< 1 - cosθ

⇒ 2cos²θ < 1

Taking the square root:

cosθ < √(1/2)

cosθ < √(2)/2

So, the solution is:

0 ≤θ < π/4   or   3π/4 < θ < π

Hence,

3π/4 < θ < π is the solution.

To learn more about inequality visit:

https://brainly.com/question/30231190

#SPJ1

5. A swimming pool is 40 feet long, 20 feet wide, 8 feet deep at the deep end and 3 feet deep at the shallow end. The bottom is rectangular. If the pool is filled by pumping water into it at a rate of

Answers

The water level in the rectangular swimming pool is rising at a rate of approximately 0.5 feet per minute when it is 3 feet deep at the deep end.

To calculate the rate at which the water level is rising, we can use the concept of similar triangles. The triangle formed by the water level and the shallow and deep ends of the pool is similar to the triangle formed by the entire pool.

By setting up a proportion, we can relate the rate at which the water level is rising (dw/dt) to the rate at which the depth of the pool is changing (dh/dt):

[tex]dw/dt = (dw/dh) * (dh/dt)[/tex]

Given that the pool is being filled at a rate of 40 cubic feet per minute ([tex]dw/dt = 40 ft^3/min[/tex]), we need to find the value of dw/dh when the water level is 3 feet deep at the deep end.

To find dw/dh, we can use the ratio of corresponding sides of the similar triangles. The ratio of the change in water depth (dw) to the change in pool depth (dh) is constant. Since the pool is 8 feet deep at the deep end and 3 feet deep at the shallow end, the ratio is:

[tex](dw/dh) = (8 - 3) / (20 - 3) = 5 / 17[/tex]

Substituting this value into the proportion, we have:

[tex]40 = (5/17) * (dh/dt)[/tex]

Solving for dh/dt, we get:

[tex]dh/dt = (40 * 17) / 5 = 136 ft^3/min[/tex]

Therefore, the water level is rising at a rate of approximately 0.5 feet per minute when it is 3 feet deep at the deep end.

Learn more about similar triangles here:

https://brainly.com/question/29731302

#SPJ11

The complete question is :

A rectangular swimming pool is 40 feet long, 20 feet wide, 8 feet deep at the deep end, and 3 feet deep at the shallow end (see Figure 10 ). If the pool is filled by pumping water into it at the rate of 40 cubic feet per minute, how fast is the water level rising when it is 3 feet deep at the deep end?

please show all work
Evaluate the integral. Show your work for full credit. A. . La x sin x cos x dx B. 2x3 + x2 - 21x + 24 dac 22 + 2x - 8

Answers

The value of the integral is [tex](1/2) x sin^2(x) - (1/4) x + (1/8) sin(2x) + C.[/tex]

The value of the integral is[tex](1/2)x^4 + (1/3)x^3 - (21/2)x^2 + 24x + C.[/tex]

A. To evaluate the integral ∫x sin(x) cos(x) dx, we can use integration by parts.

Let u = x

And dv = sin(x) cos(x) dx

Taking the derivatives and integrals, we have:

du = dx

And v = ∫sin(x) cos(x) dx = (1/2) [tex]sin^2(x)[/tex]

Now, applying the integration by parts formula:

∫x sin(x) cos(x) dx = uv - ∫v du

= x × (1/2) [tex]sin^2(x)[/tex] - ∫(1/2) [tex]sin^2(x)[/tex]dx

= (1/2) x [tex]sin^2(x)[/tex] - (1/2) ∫[tex]sin^2(x)[/tex] dx

To evaluate the remaining integral, we can use the identity [tex]sin^2(x)[/tex]= (1/2) - (1/2) cos(2x):

∫[tex]sin^2(x)[/tex] dx = ∫(1/2) - (1/2) cos(2x) dx

= (1/2) x - (1/4) sin(2x) + C

Substituting back into the original integral, we have:

∫x sin(x) cos(x) dx = (1/2) x [tex]sin^2(x)[/tex] - (1/2) [(1/2) x - (1/4) sin(2x)] + C

= (1/2) x [tex]sin^2(x)[/tex] - (1/4) x + (1/8) sin(2x) + C

Therefore, the value of the integral is (1/2) x [tex]sin^2(x)[/tex] - (1/4) x + (1/8) sin(2x) + C.

B. To evaluate the integral ∫[tex](2x^3 + x^2 - 21x + 24)[/tex] dx, we can simply integrate each term separately:

∫[tex](2x^3 + x^2 - 21x + 24) dx = (2/4)x^4 + (1/3)x^3 - (21/2)x^2 + 24x + C[/tex]

[tex]= (1/2)x^4 + (1/3)x^3 - (21/2)x^2 + 24x + C[/tex]

Therefore, the value of the integral is [tex](1/2)x^4 + (1/3)x^3 - (21/2)x^2 + 24x + C.[/tex]

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11

8. [-/1 Points] DETAILS SCALCET8 5.2.022. Use the form of the definition of the integral given in the theorem to evaluate the integral. 5 1³ ₁x² (x² - 4x + 7) dx Need Help? Read It

Answers

To evaluate the integral ∫[1 to 5] x² (x² - 4x + 7) dx using the form of the definition of the integral given in the theorem, we need to follow these steps:

Step 1: Expand the integrand:

x² (x² - 4x + 7) = x⁴ - 4x³ + 7x²

Step 2: Apply the power rule of integration:

∫x⁴ dx - ∫4x³ dx + ∫7x² dx

Step 3: Evaluate each integral separately:

∫x⁴ dx = (1/5) x⁵ + C₁

∫4x³ dx = 4(1/4) x⁴ + C₂ = x⁴ + C₂

∫7x² dx = 7(1/3) x³ + C₃ = (7/3) x³ + C₃

Step 4: Substitute the limits of integration:

Now, evaluate each integral at the upper limit (5) and subtract the value at the lower limit (1).

For ∫x⁴ dx:

[(1/5) x⁵ + C₁] evaluated from 1 to 5:

(1/5)(5⁵) + C₁ - (1/5)(1⁵) - C₁ = (1/5)(3125 - 1) = 624/5

For ∫4x³ dx:

[x⁴ + C₂] evaluated from 1 to 5:

(5⁴) + C₂ - (1⁴) - C₂ = 625 - 1 = 624

For ∫7x² dx:

[(7/3) x³ + C₃] evaluated from 1 to 5:

(7/3)(5³) + C₃ - (7/3)(1³) - C₃ = (7/3)(125 - 1) = 434/3

Step 5: Combine the results:

The value of the integral is the sum of the evaluated integrals:

(624/5) - 624 + (434/3) =  124.8 - 624 + 144.67 ≈ -354.53

Therefore, the value of the integral ∫[1 to 5] x² (x² - 4x + 7) dx is approximately -354.53.

Learn more about integral here:

https://brainly.com/question/31829511

#SPJ11

Solve the differential equation: = 10xy dx such that y = 70 when x = 0. Show all work. dy

Answers

The solution for the differential equation is y = x^2 (5/2) + 70

Let's have stepwise solution:

1.Consider, dy/dx = 10xy

2.multiply both sides by dx

dy = 10xy dx

3. integrate both sides

∫ dy = ∫ 10xy dx

y = x^2 (5/2) + c

4. Substitute the given conditions x = 0, y = 70

70 = 0^2 (5/2) + c

C = 70

Therefore,

y = x^2 (5/2) + 70

To know more about differential equation refer here:

https://brainly.com/question/31492438#

#SPJ11

DETAILS SULLIVANCALC2HS 8.5.008. Use the Alternating Series Test to determine whether the alternating series converges or diverges. Σ- Σ(-1)* + 1. 7 5vk k=1 Identify an Evaluate the following limit. liman 00 Since lima 20 and a 2a, for all ni Select---

Answers

The alternating series Σ(-1)^(k+1)/k converges by the Alternating Series Test.

To apply the Alternating Series Test, we consider the series Σ(-1)^(k+1)/k. This series alternates in sign and has the terms decreasing in magnitude. The numerator (-1)^(k+1) alternates between positive and negative values, while the denominator k increases as k goes from 1 to infinity.

The Alternating Series Test states that if an alternating series has terms decreasing in magnitude and eventually approaching zero, then the series converges. In this case, the terms (-1)^(k+1)/k meet these conditions as they decrease in magnitude and tend to zero as k approaches infinity.

Therefore, based on the Alternating Series Test, we can conclude that the series Σ(-1)^(k+1)/k converges. The convergence of this series implies that the series has a finite sum or converges to a specific value.

learn more about magnitude here:

https://brainly.com/question/31616548

#SPJ11

please do number 25. show work and explain in detail!
sin e Using lim = 1 0+ 0 Find the limits in Exercises 23–46. sin Vze 23. lim 0-0 V20 24 sin 3y 2 25. lim y=0 4yon →

Answers

By first simplifying the expression and then evaluating the limit, we may determine the 4y*sin(3/y2) limit as y gets closer to 0.

First, let's condense the phrase to: 4y*sin(3/y2).

We can see that 3/y2 infinity as y approaches 0 since the limit is as y approaches 0. Therefore, sin(3/y2) rapidly oscillates between -1 and 1.Let's now think about the result of 4y and sin(3/y2). 4y also gets closer to zero as y does. Between -4y and 4y, the product 4y*sin(3/y2) oscillates. As we approach the limit as y gets closer to 0, the oscillations get closeto 0 and the values of 4y*sin(3/y2) get closer to 0.

learn more about simplifying here :

https://brainly.com/question/1436683

#SPJ11

Let f(x)={−xfor 0
∙ Compute the Fourier sine coefficients for
f(x).
Bn=
∙ Give values for the Fourier sine series
S(x)=∑n=1[infinity]Bnsin⁡(nπ8x).
S(6)=
S(−3)=
S(15)=

Answers

The Fourier sine coefficients Bn for n > 1 are zero

S(6) = 0

S(-3) = 0

S(15) = 0

To compute the Fourier sine coefficients for the function f(x) = -x for 0 < x < 8, we can use the formula:

Bn = 2/8 ∫[0 to 8] f(x) sin(nπx/8) dx

where Bn represents the Fourier sine coefficient for the sine term with frequency nπ/8.

Let's calculate the Fourier sine coefficients:

For n = 1:

B1 = 2/8 ∫[0 to 8] (-x) sin(πx/8) dx

= -1/4 [8 cos(πx/8) - πx sin(πx/8)] evaluated from 0 to 8

= -1/4 [8 cos(π) - π(8) sin(π) - (8 cos(0) - π(0) sin(0))]

= -1/4 [-8 + 0 - (8 - 0)]

= -1/4 [-8 + 8]

= 0

For n > 1:

Bn = 2/8 ∫[0 to 8] (-x) sin(nπx/8) dx

= -1/4 [8 cos(nπx/8) - nπx sin(nπx/8)] evaluated from 0 to 8

= -1/4 [8 cos(nπ) - nπ(8) sin(nπ) - (8 cos(0) - nπ(0) sin(0))]

= -1/4 [-8 + 0 - (8 - 0)]

= -1/4 [-8 + 8]

= 0

Since all the Fourier sine coefficients Bn for n > 1 are zero, the Fourier sine series S(x) simplifies to:

S(x) = B1 sin(πx/8) = 0

Therefore, for any value of x, S(x) will be zero.

Hence, S(6) = 0, S(-3) = 0, and S(15) = 0.

To know more about Fourier series, visit the link : https://brainly.com/question/32354860

#SPJ11

Other Questions
In 2018, Kimberly-Clark reported inventory of $1.79 billion and annual sales of $18.486 billion. Assume 365 days per year and round your answer to one decimal place. What were the days of supply for Kimberly-Clark? daysPrevious question 1. The length of a simple pendulum is 0.760 m, the pendulum bob has a mass of 365 grams, and it is released at an angle of 12-degree to the verticle. (a) With what frequency does it vibrate? Assume SHM. b) What is the pendulum bob's speed when it passes through the lowest point of the swing? c) What is the total energy stored in this oscillation, assuming no losses? the housewife.....(say)the thief had stolen the house the last night a probability model include P yellow = 2/9 and P black = 5/18 select all probabilities that could complete the modelP white = 2/9 P orange = 5/9 P white = 1/6 P orange = 1/3P white = 2/7 P orange = 2/7P white = 1/10 P orange = 2/5P white = 2/9 P orange = 1/9 (ii) Prove the identity (2 2 cos 0) (sin + sin 20 + sin 30) = -(cos 40 - 1) sin + sin 40 (cos - 1). (iii)Find the roots of f(x) = x3 15x 4 using the trigonometric formula. = Problem 1: Use the appropriate commands in maple to find the upper, lower and middle sum of the following function over the given interval. a) y = x interval [0, 1], n=10 b) y = bud interval [4,6], n= transurethral cystoscopy with fragmentation of bladder calculus Narrative therapists attempt to do all of the following except:a. engage people in deconstructing problem-saturated stories.b. discover preferred directions and new possibilities.c. create new stories.d. encourage free association. A disruptive market change due to freer international trade, just like with new technology, creates tradeoffs in society. Select the two correct examples of this below. a)imports and exports are disrupted by a hurricane on the East Coast b)new jobs are created in an innovative product niche, whereas jobs are lost in outdated areas c)jobs are lost due to US companies relocating abroad to lower costs of production d)foreign companies are dumping low-priced goods on the US markets write me an introduction of what are the advantages and disadvantages of following orwell estate rules? Find the present value of an ordinary annuity with deposits of $8,701 quarterly for 3 years at 4.4% compounded quarterly. What is the present value? (Round to the nearest cent.) what is the clearest statement of the nation-centered focus of the u.s. constitution? question 22 options: a) tenth amendment b) electoral college c) supremacy clause d) reserved powers clause 3. Given = (2,x, -3) and 5 = (5, -10,y), for what values of x and y are the vectors collinear? ly According to the textbook, which of the following statements are true about the typical relationships between corporations and attorneys in the United States? a.Working closely with a business attorney results in opportunities and reduced business costs. b.The majority of companies rely upon i house counsel for their legal needs. c.It is almost unheard of for more than one attorney's advice to be needed on a legal matter, as consulting more than one attorney leads to confusion and conflicting counsel. d.All of the answer choices are correct. DETAILS PREVIOUS ANSWERS LARCALCET7 9.5.034. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Approximate the sum of the series by using the first six terms. (See Example 4. Round your answer to four decimal places.) (-1)^+ 4" n=1 56 X SSS 0.1597 X Need Help? Read It Sunset Corporation will pay a dividend of $3.99 per share next year. The company pledges to increase its dividend by 5% per year, indefinitely. If you require a return of 8% on your investment, how much will you pay for the companys stock today? Round your answer to two decimal places. (1 point) Compute the double integral slo 4xy dx dy ' over the region D bounded by = 1, 2g = 9, g" = 1, y = 36 = - -> in the first quadrant of the cy-plane. Hint: make a change of variables T :R2 + draw a simple undirected graph g that has 12 vertices, 18 edges, and 3 connected components. why would it be impossible to draw g with 3 connected components if g had 66 edges? as the cell operates the mass of the mg decreases explain in terms of particles why this decrease occurs Question 3 Two ropes are pulling a box of weight 70 Newtons by exerting the following forces: Fq= and F2= Newtons, then: 1-The net force acting on this box is= < 2- The magnitude of the net force is (Round your answer to 2 decimal places and do not type the unit) Steam Workshop Downloader