greater than: The electric potential energy of a proton at point A is _____ the electric potential energy of an proton at point B.

Answers

Answer 1

Answer:

[similar to]

Explanation:

it is the missing word


Related Questions

Uses of pressure and the uses of density​

Answers

Answer:

Pressure is  a scalar quantity defined as per unit area.

Density is the objects ,times its  the acceleration due to gravity.

Explanation:

Pressure is the alternative object increases the area of contact decrease .

Pressure is the force component  to the surface used to calculate pressure.

pressure is that collisions of the gas to container as the per unit time .

pressure is an physical important quantity to play the solid and  fluid .

Pressure is the expressed in a number of units depend the context use, pressure exerted by the liquid alone.

Density is the  objects, times, volume of the object that times acceleration objects.

Density is the used to the system complex objects and materials.

Density  force is the weight of a region or objects static fluid.

two resistors of resistance 10 ohm's and 20 ohm's are connected in parallel to a batery of e.m.f 12V. Calculate the current passing through the 20hm's resister​

Answers

Current through 20 ohm resistor is 0.6 A

Sally who weighs 450 N, stands on a skate board while roger pushes it forward 13.0 m at constant velocity on a level straight street. He applies a constant 100 N force.


Work done on the skateboard


a. Rodger Work= 0J


b. Rodger work= 1300J


c. sally work= 1300J


d. sally work= 5850J


e. rodger work= 5850J

Answers

Answer:

b. Rodger work = 1300 J

Explanation:

Work done: This can be defined as the product of force and distance along the direction of the force.

From the question,

Work is done by Rodger using a force of 100 N  in pushing the skateboard through a distance of 13.0 m.

W = F×d............. Equation 1

Where W = work done, F = force, d = distance.

Given: F = 100 N, d = 13 m

Substitute these values into equation 1

W = 100(13)

W = 1300 J.

Hence the right option is b. Rodger work = 1300 J

An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the new acceleration would be _____ m/s/s.

Answers

Hahahahaha. Okay.

So basically , force is equal to mass into acceleration.

F=ma

so when F=ma , we get acceleration=6m/s/s

Force is doubled.

Mass is 1/3 times original.

2F=1/3ma

Now , we rearrange , and we get 6F=ma

So , now for 6 times the original force , we get 6 times the initial acceleration.

So new acceleration = 6*6= 36m/s/s

Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter your answer to at least one decimal place.)

Answers

Answer:

Power=50.17dioptre

Power=50.17D

Explanation:

P=1/f = 1/d₀ + 1/d₁

Where d₀ = the eye's lens and the object distance= 5.70m=

d₁= the eye's lens and the image distance= 0.02m

f= focal length of the lense of the eye

We know that the object can be viewed clearly by the person ,then image and lens of the eye's distance needs to be equal with the retinal and the eye lens distance and this distance is given as 0.02m

Therefore, we can calculate the power using above formula

P= 1/5.70 + 1/0.02

Power=50.17dioptre

Therefore, the power the eye's is using to see the object from distance is 5.70D

Someone help find centripetal acceleration plus centripetal force!

Answers

Answer:Centripetal force that acts an object keep it along a moving circular path.

Explanation:Centripetal force along a path circular of radius(r) with velocity(V) acceleration the center of the path.

a=v/r

object will along moving continue a straight path unless by the external force.External force is the centripetal force.

Centripetal force is to moving in horizontal circle,Centripetal force is not a fundamental force.Gravitational force satellite and orbit of centripetal force.

Centripetal acceleration and centripetal force are used to calculate the motion of objects in circular motion. The main answer to the question is given below:The centripetal force is given by:F = mv²/rwhere m is the mass of the object, v is the speed of the object and r is the radius of the circle. The unit of centripetal force is Newtons (N).The centripetal acceleration is given by:a = v²/rThe unit of centripetal acceleration is meters per second squared

(m/s²).Explanation:When an object moves in a circular motion, there is a force that acts upon it. This force is called the centripetal force. This force always points towards the center of the circle. It is responsible for keeping the object moving in a circular motion.The centripetal force is related to the centripetal acceleration.

The centripetal acceleration is the acceleration of an object moving in a circle. It is always directed towards the center of the circle.The magnitude of the centripetal force is given by:F = mv²/rwhere F is the force, m is the mass of the object, v is the speed of the object and r is the radius of the circle.The magnitude of the centripetal acceleration is given by:a = v²/rwhere a is the acceleration, v is the speed of the object and r is the radius of the circle.

To know more about thatNewtons  visit :

https://brainly.com/question/4128948

#SPJ11

In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum

Answers

Complete  Question

In a double-slit arrangement the slits are separated by a distance equal to 150 times the wavelength of the light passing through the slits. (a) What is the angular separation between the central maximum and an adjacent maximum? (b) What is the distance between these maxima on a screen 57.9 cm from the slits?

Answer:

a

  [tex]\theta = 0.3819^o[/tex]

b

  [tex]y = 0.00386 \ m[/tex]

Explanation:

From the question we are told that

    The slit separation is  [tex]d = 150 \lambda[/tex]

    The  distance from the screen is  [tex]D = 57.9 \ cm = 0.579 \ m[/tex]

 

Generally the condition for constructive interference is mathematically represented as

            [tex]dsin (\theta ) = n * \lambda[/tex]

=>        [tex]\theta = sin ^{-1} [\frac{n * \lambda }{ d } ][/tex]

where  n is the order of the maxima  and value is 1 because we are considering the central maximum and an adjacent maximum

     and  [tex]\lambda[/tex] is the wavelength of the light

So

       [tex]\theta = sin ^{-1} [\frac{ 1 * \lambda }{ 150 \lambda } ][/tex]

       [tex]\theta = 0.3819^o[/tex]

Generally the distance between the maxima is mathematically represented as

       [tex]y = D tan (\theta )[/tex]

=>    [tex]y = 0.579 tan (0.3819 )[/tex]

=>    [tex]y = 0.00386 \ m[/tex]

A piece of electronic equipment that is surrounded by packing material is dropped so that it hits the ground with a speed of 4 m/s. After impact, the equipment experiences an acceleration of a = 2kx, where k is a constant and x is the compression of the packing material. If the packing material experiences a maximum compression of 20 mm, determine the maximum acceleration of the equipment.

Answers

Answer:

Maximum acceleration is 800m/s^2

Explanation:

See attached file

A person is nearsighted with a far point of 75.0 cm. a. What focal length contact lens is needed to give him normal vision

Answers

Complete Question

The  complete question is  shown on the first uploaded image  

Answer:

a

  [tex]f= -75 \ cm = - 0.75 \ m[/tex]

b

  [tex]P = -1.33 \ diopters[/tex]

Explanation:

From the question we are told that

    The  image distance is  [tex]d_i = -75 cm[/tex]

The value of the image is negative because it is on the same side with the corrective glasses

    The  object distance is  [tex]d_o = \infty[/tex]

The  reason object distance  is because the object father than it being picture by the eye

General focal length is mathematically represented as

              [tex]\frac{1}{f} = \frac{1}{d_i} - \frac{1}{d_o}[/tex]

substituting values

             [tex]\frac{1}{f} = \frac{1}{-75} - \frac{1}{\infty}[/tex]

=>         [tex]f= -75 \ cm = - 0.75 \ m[/tex]

Generally the power of the corrective lens is  mathematically represented as

        [tex]P = \frac{1}{f}[/tex]

substituting values

       [tex]P = \frac{1}{-0.75}[/tex]

        [tex]P = -1.33 \ diopters[/tex]

"A power of 200 kW is delivered by power lines with 48,000 V difference between them. Calculate the current, in amps, in these lines."

Answers

Answer:

9.6×10⁹ A

Explanation:

From the question above,

P = VI.................... Equation 1

Where P = Electric power, V = Voltage, I = current.

make I the subject of the equation

I = P/V............. Equation 2

Given: P = 200 kW = 200×10³ W, V = 48000 V.

Substitute these vales into equation 2

I = 200×10³×48000

I = 9.6×10⁹ A.

Hence the current in the line is 9.6×10⁹ A.

How much heat is needed to melt 2.5 KG of water at its melting point? Use Q= mass x latent heat of fusion.

Answers

Answer:

Q = 832 kJ

Explanation:

It is given that,

Mass of the water, m = 2.5 kg

The latent heat of fusion, L = 333 kJ/kg

We need to find the heat needed to melt water at its melting point. The formula of heat needed to melt is given by :

Q = mL

[tex]Q=2.5\ kg\times 333\ kJ/kg\\\\Q=832.5\ kJ[/tex]

or

Q = 832 kJ

So, the heat needed to melt the water is 832 kJ.

3. According to Hund's rule, what's the expected magnetic behavior of vanadium (V)?
O A. Ferromagnetic
O B. Non-magnetic
C. Diamagnetic
O D. Paramagnetic​

Answers

Answer:

Diamagnetic

Explanation:

Hunds rule states that electrons occupy each orbital singly first before pairing takes place in degenerate orbitals. This implies that the most stable arrangement of electrons in an orbital is one in which there is the greatest number of parallel spins(unpaired electrons).

For vanadium V ion, there are 18 electrons which will be arranged as follows;

1s2 2s2 2p6 3s2 3p6.

All the electrons present are spin paired hence the ion is expected to be diamagnetic.

Answer:

its paramagnetic

Explanation:

i took this quiz

Four 50-g point masses are at the corners of a square with 20-cm sides. What is the moment of inertia of this system about an axis perpendicular to the plane of the square and passing through its center

Answers

Answer:

moment of inertia I ≈ 4.0 x 10⁻³ kg.m²

Explanation:

given

point masses = 50g = 0.050kg

note: m₁=m₂=m₃=m₄=50g = 0.050kg

distance, r, from masses to eachother = 20cm = 0.20m

the distance, d, of each mass point from the centre of the mass, using pythagoras theorem is given by

= (20√2)/ 2 = 10√2 cm =14.12 x 10⁻² m  

moment of inertia is a proportion of the opposition of a body to angular acceleration about a given pivot that is equivalent to the entirety of the products of every component of mass in the body and the square of the component's distance from the center

mathematically,

I = ∑m×d²

remember, a square will have 4 equal points

I = ∑m×d² = 4(m×d²)

I = 4 × 0.050 × (14.12 x 10⁻² m)²

I = 0.20 × 1.96 × 10⁻²

I =  3.92 x 10⁻³ kg.m²

I ≈ 4.0 x 10⁻³ kg.m²

attached is the diagram of the equation

Suppose you have two point charges of opposite sign. As you move them farther and farther apart, the potential energy of this system relative to infinity:_____________.
(a) stays the same.
(b) Increases.
(c) Decreases.
(d) The answer would depend on the path of motion

Answers

Answer:

(b) Increases

Explanation:

The potential energy between two point charges is given as;

[tex]U = F*r = \frac{kq_1q_2}{r}[/tex]

Where;

k is the coulomb's constant

q₁  ans q₂ are the two point charges

r is the distance between the two point charges

Since the two charges have opposite sign;

let q₁ be negative and q₂ be positive

Substitute in these charges we will have

[tex]U = \frac{k(-q_1)(q_2)}{r} \\\\U = - \frac{kq_1q_2}{r}[/tex]

The negative sign in the above equation shows that as the distance between the two charges increases, the potential energy increases as well.

Therefore, as you move the point charges farther and farther apart, the potential energy of this system relative to infinity Increases.

g a conductor consists of an infinite number of adjacent wires, each infinitely long. If there are n wires per unit length, what is the magnitude of B~

Answers

Answer:

B=uonI/2

Explanation:

See attached file

4. The Richter scale describes how much energy an earthquake releases. With every increase of 1.0 on the scale, 32 times more energy is released. How many times more energy would be released by a quake measuring 2.0 more units on the Richter scale?

Answers

Answer:

64 times

Explanation:

if increase of 1 gives you 32

then increase of 2 will give you its double

64

If you increase one, you get 32 then multiplying by 2 will give you 64, which is its double.

What is Earthquake?

An earthquake is a sudden energy released in the Earth's lithosphere that causes shock wave, which cause the Earth's surface to shake. Earthquakes can range in strength from ones that are so small that no one can feel them to quakes that are so powerful that they uproot entire cities, launch individuals and objects into the air, and harm vital infrastructure.

The frequency, kind, and intensity of earthquakes observed over a specific time period are considered to be the seismic activity of an area.

The average rate of earthquake energy output per unit volume determines the basicity of a certain area of the Earth. The non-earthquake seismic rumbling is also alluded to as a tremor.

To know more about Earthquake:

https://brainly.com/question/1296104

#SPJ5

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.
Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?
Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?
Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar.

Answers

Answer:

a) 6738.27 J

b) 61.908 J

c)  [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex]

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

[tex]I[/tex] =  [tex]\frac{1}{2}[/tex][tex]*11*1.1^{2}[/tex] = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = [tex]Iw^{2}[/tex] = 6.655 x [tex]31.82^{2}[/tex] = 6738.27 J

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

[tex]I[/tex] = [tex]\frac{1}{2}[/tex][tex]mr^{2}[/tex] =  [tex]\frac{1}{2}[/tex][tex]*16*2.8^{2}[/tex] = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = [tex]Iw[/tex] = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

[tex](I_{1} +I_{2} )w[/tex]

where the subscripts 1 and 2 indicates the values first and second  flywheels

[tex](I_{1} +I_{2} )w[/tex] = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = [tex]Iw^{2}[/tex] = 6.655 x [tex]3.05^{2}[/tex] = 61.908 J

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = [tex]\frac{1}{2}mv_{car} ^{2}[/tex]

where m is the mass of the car

[tex]v_{car}[/tex] is the velocity of the car

Equating the energy

2246.09 =  [tex]\frac{1}{2}mv_{car} ^{2}[/tex]

making m the subject of the formula

mass of the car m = [tex]\frac{4492.18}{v_{car} ^{2} }[/tex]

An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.14 mT. If the speed of the electron is 1.48 107 m/s, determine the following.
(a) the radius of the circular path ............ cm
(b) the time interval required to complete one revolution ............ s

Answers

Answer:

(a) 3.9cm

(b) 1.66 x 10⁻⁸s

Explanation:

Since the electron is moving in a circular path, the centripetal acceleration needed to keep it from slipping off is provided by the magnetic force. This force (F), according to Newton's second law of motion is given by,

F = m x a          --------------(i)

Where;

m = mass of the particle

a = acceleration of the mass

The centripetal acceleration is given by;

a = v² / r          [v = linear velocity of particle, r = radius of circular path]

Therefore, equation (i) becomes;

F = m v²/ r             --------------------(ii)

The magnitude of the magnetic force on a moving charge in a magnetic field as stated by Lorentz's law is given by;

F = qvBsinθ          -------------(iii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = angle between the velocity and the magnetic field

Combine equations (ii) and (iii) as follows;

m (v² / r) = qvBsinθ         [divide both side by v]

m v / r = qBsinθ              [make r subject of the formula]

r = (m v) / (qBsinθ)              ---------(iv)

(a) From the question;

v = 1.48 x 10⁷m/s

B = 2.14mT = 2.14 x 10⁻³T

θ = 90°          [since the direction of velocity is perpendicular to magnetic field]

m = mass of electron = 9.11 x 10⁻³¹kg

q = charge of electron = 1.6 x 10⁻¹⁹C

Substitute these values into equation (iv) as follows;

r = (9.11 x 10⁻³¹ x 1.48 x 10⁷) / (1.6 x 10⁻¹⁹ x 2.14 x 10⁻³ sin 90°)

r = 3.9 x 10⁻²m

r = 3.9cm

Therefore, the radius of the circular path is 3.9cm

(b) The time interval required to complete one revolution is the period (T) of the motion of the electron and it is given by

T = d / v          --------------(*)

Where;

d = distance traveled in the circular path in one complete turn = 2πr

v = velocity of the motion = 1.48 x 10⁷m/s

d = 2 π (3.9 x 10⁻²)            [Take π = 22/7 = 3.142]

d = 2(3.142)(3.9 x 10⁻²) = 0.245m

Substitute the values of d and v into equation (*) as follows;

T = 0.245 / 1.48 x 10⁷

T = 0.166 x 10⁻⁷s

T = 1.66 x 10⁻⁸s

Therefore, the time interval is 1.66 x 10⁻⁸s

A typical home uses approximately 1600 kWh of energy per month. If the energy came from a nuclear reaction, what mass would have to be converted to energy per year to meet the energy needs of the home

Answers

Answer:

7.68×10^25kg

Explanation:

The formula for energy used per year is calculated as

Energy used per year =12 x Energy used per month

By substituting Energy used per month in the above formula, we get

Energy used per year =12 x 1600kWh

= 19200kWh

Conversion:

From kWh to J:

1 kWh=3.6 x 10^6 J

Therefore, it is converted to J as

19200 kWh =19200 x 3.6 x 10^6 J

= 6.912×10^10 J

Hence, energy used per year is 6.912×10^10 J

To find the mass that is converted to energy per year.

E = MC^2 ............1

E is the energy used per year

C is the speed of light = 3.0× 10^8m/s

Where E= 6.912×10^10 J

Substituting the values into equation 1

6.912×10^10 J = M × 3.0× 10^8m/s

M = 6.912×10^10 J / (3.0× 10^8m/s)^2

M = 6.912×10^10 J/9×10^16

M = 7.68×10^25kg

Hence the mass to be converted is

7.68×10^25kg

Solve 3* +5-220t = 0​

Answers

Answer:

t = 27.5

Explanation:

[tex]3 + 5 -220t = 0[/tex]

Well to solve for t we need to combine like terms and seperate t.

So 3+5= 8

8 - 220t = 0

We do +220 to both sides

8 = 220t

And now we divide 220 by 8 which is 27.5

Hence, t = 27.5

A scooter is traveling at a constant speed v when it encounters a circular hill of radius r = 480 m. The driver and scooter together have mass m = 159 kg.
(a) What speed in m/s does the scooter have if the driver feels weightlessness (i.e., has an apparent weight of zero) at the top of the hill?
(b) If the driver is traveling at the speed above and encounters a hill with a radius 2r,

Answers

Answer:

68.585m/sec , 779.1 N

Explanation:

To feel weightless, centripetal acceleration must equal g (9.8m/sec^2). The accelerations then cancel.

From centripetal motion.

F =( mv^2)/2

But since we are dealing with weightlessness

r = 480m

g = 9.8m/s^2

M also cancels, so forget M.

V^2 = Fr

V = √ Fr

V =√ (9.8 x 480) = 4704

= 68.585m/sec.

b) Centripetal acceleration = (v^2/2r) = (68.585^2/960) = 4704/960

= 4.9m/sec^2.

Weight (force) = (mass x acceleration) = 159kg x (g - 4.9)

159kg × ( 9.8-4.9)

159kg × 4.9

= 779.1N

A) The speed of the scooter at which the driver will feel weightlessness is;

v = 68.586 m/s

B) The apparent weight of both the driver and the scooter at the top of the hill is;

F_net = 779.1 N

We are given;

Mass; m = 159 kg

Radius; r = 480 m

A) Since it's motion about a circular hill, it means we are dealing with centripetal force.

Formula for centripetal force is given as;

F = mv²/r

Now, we want to find the speed of the scooter if the driver feels weightlessness.

This means that the centripetal force would be equal to the gravitational force.

Thus;

mg = mv²/r

m will cancel out to give;

v²/r = g

v² = gr

v = √(gr)

v = √(9.8 × 480)

v = √4704

v = 68.586 m/s

B) Now, he is travelling with speed of;

v = 68.586 m/s

And the radius is 2r

Let's first find the centripetal acceleration from the formula; α = v²/r

Thus; α = 4704/(2 × 480)

α = 4.9 m/s²

Now, since he has encountered a hill with a radius of 2r up the slope, it means that the apparent weight will now be;

F_app = m(g - α)

F_net = 159(9.8 - 4.9)

F_net = 779.1 N

Read more at; https://brainly.com/question/9017432

Suppose that a 117.5 kg football player running at 6.5 m/s catches a 0.43 kg ball moving at a speed of 26.5 m/s with his feet off the ground, while both of them are moving horizontally.
(a) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in the same direction.
(b) Calculate the change in kinetic energy of the system, in joules, after the player catches the ball.
(c) Calculate the final speed of the player, in meters per second, if the ball and player are initially moving in opposite directions.
(d) Calculate the change in kinetic energy of the system, in joules, in this case.

Answers

Answer:

a) 6.57 m/s

b) 53.75 J

c) 6.37 m/s

d) -98.297 J

Explanation:

mass of player = [tex]m_{p}[/tex] = 117.5 kg

speed of player = [tex]v_{p}[/tex] = 6.5 m/s

mass of ball = [tex]m_{b}[/tex] = 0.43 kg

velocity of ball = [tex]v_{b}[/tex] = 26.5 m/s

Recall that momentum of a body = mass x velocity = mv

initial momentum of the player = mv = 117.5 x 6.5 = 763.75 kg-m/s

initial momentum of the ball = mv = 0.43 x 26.5 = 11.395 kg-m/s

initial kinetic energy of the player = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.5^{2}[/tex] =  2482.187 J

a) according to conservation of momentum, the initial momentum of the system before collision must equate the final momentum of the system.

for this first case that they travel in the same direction, their momenta carry the same sign

[tex]m_{p}[/tex][tex]v_{p}[/tex] + [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

where v is the final velocity of the player.

inserting calculated momenta of ball and player from above, we have

763.75 + 11.395 = (117.5 + 0.43)v

775.145 = 117.93v

v = 775.145/117.93 = 6.57 m/s

b) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.57^{2}[/tex] = 2535.94 J

change in kinetic energy = 2535.94 - 2482.187 = 53.75 J  gained

c) if they travel in opposite direction, equation becomes

[tex]m_{p}[/tex][tex]v_{p}[/tex] - [tex]m_{b}[/tex][tex]v_{b}[/tex] = ([tex]m_{p}[/tex] +[tex]m_{b}[/tex])v

763.75 - 11.395 = (117.5 + 0.43)v

752.355 = 117.93v

v = 752.355/117.93 = 6.37 m/s

d) the player's new kinetic energy = [tex]\frac{1}{2} mv^{2}[/tex] = [tex]\frac{1}{2}[/tex] x 117.5 x [tex]6.37^{2}[/tex]  = 2383.89 J

change in kinetic energy = 2383.89 - 2482.187 = -98.297 J

that is 98.297 J  lost

Before you start taking measurements though, we’ll first make sure you understand the underlying concepts involved. By what method is each of the spheres charged?

Answers

Answer:

If they are metallic spheres  they are connected to earth and a charged body approaches

non- metallic (insulating) spheres in this case are charged by rubbing

Explanation:

For fillers, there are two fundamental methods, depending on the type of material.

If they are metallic spheres, they are connected to earth and a charged body approaches, this induces a charge of opposite sign and of equal magnitude, then it removes the contact to earth and the sphere is charged.

If the non- metallic (insulating) spheres in this case are charged by rubbing with some material or touching with another charged material, in this case the sphere takes half the charge and when separated each sphere has half the charge and with equal sign.

the efficiency of a carnot cycle is 1/6.If on reducing the temperature of the sink 75 degrees celcius ,the efficiency becomes 1/3,determine he initial and final temperatures between which the cycle is working.

Answers

Answer:

450°C

Explanation: Given that the efficiency of Carnot engine if T₁ and T₂ temperature are initial and final temperature .

η = 1 - T2 / T1

η = 1/6 initially

when T2 is reduced by 65°C then η becomes 1/3

Solution

η = 1/6

1 - T2 / T1 = 1/6 [ using the Formula ]........................(1)

When η = 1/3 :

η = 1 - ( T2 - 75 ) / T1

1/3 = 1 - (T2 - 75)/T1.........................(2)

T2 - T1 = -75 [ because T2 is reduced by 75°C ]

T2 = T1 - 75...........................(3)

Put this in (2) :

> 1/3 = 1 - ( T1 - 75 - 75 ) / T1

> 1/3 = 1 - (T1 - 150 ) /T1

> (T1 - 150) / T1 = 1 - 1/3

> ( T1 -150 ) / T1 = 2/3

> 3 ( T1 - 150 ) = 2 T1

> 3 T1 - 450 = 2 T1

Collecting the like terms

3 T1- 2 T1 = 450

T1 = 450

The temperature initially was 450°C

1.5 kg of air within a piston-cylinder assembly executes a Carnot power cycle with maximum and minimum temperatures of 800 K and 300 K, respectively. The heat transfer from the air during the isothermal compression is 80 kJ. At the end of the isothermal compression, the volume is 0.2 m3. Determine the volume at the beginning of the isothermal compression, in m3. Assume the ideal gas model for air and neglect kinetic and potential energy effects.

Answers

Answer:

Explanation:

Carton cycle consists of four thermodynamic processes . The first is isothermal expansion at higher temperature , then adiabatic expansion which lowers the temperature of gas . The third process is isothermal compression at lower temperature and the last process is adiabatic compression which increases the temperature of the gas to its original temperature .

So the given process of isothermal compression must have been done at the temperature of 300K  , keeping the temperature constant .

Work done on gas at isothermal compression is equal to heat transfer .

work done on gas = 80 x 10³ J

work done on gas = n RT ln v₁ / v₂

n is number of moles v₁ and v₂ are initial and final volume

molecular weight of gas = 28.97 g

1.5 kg = 1500 / 28.97 moles

= 51.77 moles

work done on gas = n RT ln v₁ / v₂

Putting the values in the equation above

80 x 10³ = 51.78 x 8.31 x 300 x ln v₁ / .2

ln v₁ / .2 = .62

v₁ / .2 = 1.8589

v₁ = 0.37 m³

A solenoid used to produce magnetic fields for research purposes is 2.2 mm long, with an inner radius of 30 cmcm and 1200 turns of wire. When running, the solenoid produced a field of 1.4 TT in the center. Given this, how large a current does it carry?

Answers

Answer:

The current is  [tex]I = 2042\ A[/tex]

Explanation:

From the question we are told that

    The length of the solenoid is  [tex]l = 2.2 \ m[/tex]

    The  radius is  [tex]r_i = 30 \ cm = 0.30 \ m[/tex]

    The number of turn is [tex]N = 1200 \ turns[/tex]

    The  magnetic field is  [tex]B = 1.4 \ T[/tex]

The  magnetic field produced  is mathematically represented as

         [tex]B = \frac{\mu_o * N * I }{l }[/tex]

making [tex]I[/tex] the subject

       [tex]I = \frac{B * l}{\mu_o * N }[/tex]

Where  [tex]\mu_o[/tex] is the permeability of free space with values [tex]\mu_o = 4\pi *10^{-7} N/A^2[/tex]

 substituting values

        [tex]I = \frac{1.4 * 2.2 }{4\pi *10^{-7} * 1200 }[/tex]

        [tex]I = 2042\ A[/tex]

How many electrons circulate each second through the cross section of a conductor, which has a current intensity of 4A.

Answers

Answer:

2.5×10¹⁹

Explanation:

4 C/s × (1 electron / 1.60×10⁻¹⁹ C) = 2.5×10¹⁹ electrons/second

Suppose a 185 kg motorcycle is heading toward a hill at a speed of 29 m/s. The two wheels weigh 12 kg each and are each annular rings with an inner radius of 0.280 m and an outer radius of 0.330 m.
Randomized Variables
m = 185 kg
v = 29 m/s
h = 32 m
A. How high can it coast up the hill. if you neglect friction in m?
B. How much energy is lost to friction if the motorcycle only gains an altitude of 33 m before coming to rest?

Answers

Answer:

a) Height reached before coming to rest is 42.86 m

b) Energy lost to friction is 17902.45 J

Explanation:

mass of the motorcycle = 185 kg

speed of the towards the hill = 29 m/s

The wheels weigh 12 kg each

Wheels are annular rings with an inner radius of 0.280 m and outer radius of 0.330 m

a) To go up the hill, the kinetic energy of motion of the motorcycle will be converted to the potential energy it will gain in going up a given height

the kinetic energy of the motorcycle is given as

[tex]KE[/tex] = [tex]\frac{1}{2}mv^{2}[/tex]

where m is the mass of the motorcycle

v is the velocity of the motorcycle

[tex]KE[/tex]  = [tex]\frac{1}{2}*185*29^{2}[/tex] = 77792.5 J

This will be converted to potential energy

The potential energy up the hill will be

[tex]PE[/tex] = mgh

where m is the mass

g is acceleration due to gravity 9.81 m/s^2

h is the height reached before coming to rest

[tex]PE[/tex] = 185 x 9.81 x m = 1814.85h

equating the  kinetic energy to the potential energy for energy conservation, we'll have

77792.5 = 1814.85h

height reached before coming to rest  = 77792.5/1814.85 = 42.86 m

b) if an altitude of 33 m was reached before coming to rest, then the potential energy at this height is

[tex]PE[/tex] = mgh

[tex]PE[/tex]  = 185 x 9.81 x 33 = 59890.05 J

The energy lost to friction will be the kinetic energy minus this potential energy.

energy lost = 77792.5 - 59890.05 = 17902.45 J

A) The motorcycle can coast up the hill by ; 42.86m  

B) The amount of energy lost to friction :  17902.45 J

A) Determine how high the motorcycle can coast up the hill when friction is neglected

apply the formula for kinetic and potential energies

K.E = 1/2 mv²  ---- ( 1 )

P.E = mgH  ---- ( 2 )

As the motorcycle goes uphiLl the kinetic energy is converted to potential energy.

∴ K.E = P.E

1/2 * mv² = mgH

∴ H = ( 1/2 * mv² ) / mg  ---- ( 3 )

where ; m = 185 kg ,  v = 29 m/s ,  g = 9.81

Insert values into equation ( 3 )

H ( height travelled by motorcycle neglecting friction ) =  42.86m  

B) Determine how much energy is lost to friction if the motorcycle attains 33m before coming to rest  

P.E = mgh = 185 * 9.81 * 33  = 59890.05 J

where : h = 33 m , g = 9.81

K.E = 1/2 * mv² = 77792.5 J   ( question A )

∴ Energy lost ( ΔE ) =  ( 77792.5  - 59890.05 ) = 17902.45 J

Hence we can conclude that The motorcycle can coast up the hill by ; 42.86m , The amount of energy lost to friction :  17902.45 J.

Learn more : https://brainly.com/question/3586510

A student builds a rocket-propelled cart for a science project. Its acceleration is not quite high enough to win a prize, so he uses a larger rocket engine that provides 39% more thrust, although doing so increases the mass of the cart by 13%. By what percentage does the cart's acceleration increase?

Answers

Answer:

Explanation:

a = F / m

where a is acceleration , F is thrust and m is mass

taking log and differentiating

da / a = dF / F - dm / m

(da / a)x 100 = (dF / F)x100 - (dm / m) x100

percentage increase in a = percentage increase in F - percentage increase in m

= percentage increase in acceleration a   = 39 - 13 = 26 %

required increase = 26 %.

A 4g bullet, travelling at 589m/s embeds itself in a 2.3kg block of wood that is initially at rest, and together they travel at the same velocity. Calculate the percentage of the kinetic energy that is left in the system after collision to that before.

Answers

Answer:

The  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

Explanation:

Given;

mass of bullet, m₁ = 4g = 0.004kg

initial velocity of bullet, u₁ = 589 m/s

mass of block of wood, m₂ = 2.3 kg

initial velocity of the block of wood, u₂ = 0

let the final velocity of the system after collision = v

Apply the principle of conservation of linear momentum

m₁u₁ + m₂u₂ = v(m₁+m₂)

0.004(589) + 2.3(0) = v(0.004 + 2.3)

2.356 = 2.304v

v = 2.356 / 2.304

v = 1.0226 m/s

Initial kinetic energy of the system

K.E₁ = ¹/₂m₁u₁² + ¹/₂m₂u₂²

K.E₁ = ¹/₂(0.004)(589)² = 693.842 J

Final kinetic energy of the system

K.E₂ = ¹/₂v²(m₁ + m₂)

K.E₂ = ¹/₂ x 1.0226² x (0.004 + 2.3)

K.E₂ = 1.209 J

The kinetic energy left in the system = final kinetic energy of the system

The percentage of the kinetic energy that is left in the system after collision to that before = (K.E₂ / K.E₁) x 100%

                       = (1.209 / 693.842) x 100%

                        = 0.174 %

Therefore, the  percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %

Other Questions
A student accidentally let some of the vapor escape the beaker. As a result of this error, will the mass of naphthalene you record be too high, too low, or unaffected? Why? Summary In this graded assignment, you will write Python programs that use loops to implement various algorithms. Learning Outcomes In completing this assignment, you will: Gain more experience converting an algorithm expressed using flowchart to one implemented in a Python program. Write a Python program using loops Description In a previous assignment in this course, you were asked to draw a flowchart for an algorithm that finds the two smallest items in a list, and then another assignment asked you to convert that flowchart to pseudocode.Here is a pseudocode implementation of that algorithm: 1. min1- list 2. min2 - list, 3. for each item in list 4. if item 5. then if min1 6. then min2 7. else mint 8. else if item 9. then min2 10. output: min1, min2 item item item Now, implement the algorithm in Python so that it correctly sets the values of min1 and min2 which should hold the two smallest values in the list, though not necessarily in that order. In the code below, we have provided a list called "list" and initialized min 1 and min2 to hold the first two elements. Write your code starting at line 5 (you can remove the comments starting at line 6, and may need more space than what is provided), and be sure that the values of min1 and min2 are correctly set before the code reaches the "return (min1, min2)" statement on line 11. As in the previous assignment, we will be using the Coursera automatic grading utility to test your code once you submit this quiz for grading, and this requires it to be within a function. So be sure that all of the code after line 1 is indented, and that you do not have any code after the "return (min 1, min2)" statement. Keep in mind that the goal here is to write a program that would find the two smallest values of any list, not just the one provided on line 2. That is, don't simply set min 1 and min2 to-2 and -5, which are the two smallest values, but rather write a program that implements the algorithm from the flowchart and correctly sets min1 and min2 before reaching the return (min1, min2)" statement.As before, you can test your program by clicking the "Run" button to the right of the code to see the results of any "print" statements, such as the one on line 10 which prints min1 and min2 before ending the function. However, please be sure that you do not modify the last two lines of the code block 1. def test(): # do not change this line! 2. list = [4, 5, 1, 9, -2, 0, 3, -5] # do not change this line! 3. min1 = list[0] 4. min2 = list[1] 5.6. #write your code here so that it sets 7. #min1 and min2 to the two smallest numbers 8. # be sure to indent your code! 9.10. print(min1, min2) 11. return (min1, min2) # do not change this line! 12. # do not write any code below here 13.14. test() # do not change this line! 15. # do not remove this line! Hints: The Python code for this algorithm is very similar to the pseudocode! Just be sure you are using the correct syntax. As in previous activities, don't forget that you can use the "print" function to print out intermediate values as your code is performing operations so that you can see what is happening linear regression model describing the relationship between the carat weight and price of very high quality diamonds is summarized below.A diamond seller lists a very high quality diamond weighing 0.8 carats at a price of $10,999. Does this model over- or under-predict the price of this diamond? Select the option below that best summarizes the answer.A. The model under-predicts the price of this diamond because the residual is positive.B. The model over-predicts the price of this diamond because the residual is positive.C. The model over-predicts the price of this diamond because the residual is negative.D. We do not have enough information to answer this question.E. The model under-predicts the price of this diamond because the residual is negative. HELP ME PLSSSSSSSSSSS ALL MY POINTS The American Red Cross and the American Medical Association are nonprofit businesses. This is because they: A. plan to make a profit by selling services to other countries. B. exist to benefit a cause but not to make a profit. C. share profits with top management but not with workers. D. sell services directly to customers to make a higher profit. HELP ME PLLEEEEASE I BEG If your introduction is not ___________, it will distract the audience and you may lose goodwill and credibility. Open up your database administraton GUI, and use the appropriate SQL Query Tool to write the SQL CREATE statement for your BOOK_TAGS table. You can either write the script manually and execute it through pgAdmin or you can create the table by using pgAdmin's wizard.Afterwards, insert one row of dummy data that adds a tag to the sample book in the BOOKS table. Select the correct answer from each drop-down menu. Economic globalization refers to the economic of nations resulting from mutual . Please answer this correctly without making mistakes Compare 6 108 to 3 106. Which best describes what happens if two waves meet and build on each other?A. constructive interferenceB. destructive interferenceC. reflectionD. absorption Exercise 10-6 Direct Materials and Direct Labor Variances [LO10-1, LO10-2] Huron Company produces a commercial cleaning compound known as Zoom. The direct materials and direct labor standards for one unit of Zoom are given below: Standard Quantity or Hours Standard Price or Rate Standard Cost Direct materials 7.40 pounds $ 2.60 per pound $ 19.24 Direct labor 0.45 hours $ 8.00 per hour $ 3.60 During the most recent month, the following activity was recorded: 12,100.00 pounds of material were purchased at a cost of $2.50 per pound. All of the material purchased was used to produce 1,500 units of Zoom. 575 hours of direct labor time were recorded at a total labor cost of $5,750. Required: 1. Compute the materials price and quantity variances for the month. 2. Compute the labor rate and efficiency variances for the month. Please answer this correctly without making mistakes Simplify the correct answer Humans developed this because it helped them stay alive by restricting the amount of information processed by the brain and scanning the scene before them quickly, looking for movement or physical threats. Group of answer choices Stereoscopic Visiion Binocular Vision Selective Vision Linear Perspective Given: F(x) = 2x - 4; GX) = 3x + 2; Hpx)=x2Find FG H(2)0 12127071 Below are 5 sets of potential solutes for you to compare. Both members of each pair are very soluble in water. If you had equal molar concentrations of each solution, which member of each pair would theoretically be the better conductor of electricity?A. CsCl, CaCl2.B. CaS, Li2S.C. KBr, AlCl3.D. AlCl3, MgC2.E. KI, K2S. During the current month, Grey Company transferred 60,000 units of finished production out of the Mixing Department at a cost of $6 each. They were transferred to finished goods. The journal entry to record the transfer would be which of the following?a. Finished Goods 360,000Work in Process 360,000b. Finished Goods 360,000Cost of Goods Sold 360,000c. Work in Process 600,000Finished Goods 600,000d. Work in Process 600,000Cost of Goods Sold 600,000 Winona's Fudge Shoppe is maximizing profits by producing 1,000 pounds of fudge per day. If Winona's fixed costs unexpectedly increase and the market price remains constant, then the short run profit-maximizing level of outputa. is less than 1,000 pounds. b. is still 1,000 pounds. c. is more than 1,000 pounds d. becomes zero. Garcia Company issues 10%, 15-year bonds with a par value of $230,000 and semiannual interest payments. On the issue date, the annual market rate for these bonds is 8%, which implies a selling price of 117 1/4. The effective interest method is used to allocate interest expense. 1. Using the implied selling price of 117 1/4, what are the issuer's cash proceeds from issuance of these bonds. 2. What total amount of bond interest expense will be recognized over the life of these bonds? 3. What amount of bond interest expense is recorded on the first interest payment date?