Gravitational potential energy is greatest at the highest point of a roller coaster and least at the lowest point.

Answers

Answer 1

Answer:

because gravitational potential enegry is directly proportional to the height so more the height more the gravitational potential enegry. therefore gravitational potential enegry is greatest at high point than lower points.


Related Questions

If, the limits of the visible spectrum are approximately 3000 A.U. and 5000 A.U. respectively. Determine the angular breadth of the first order visible spectrum produced by a plane diffraction grating having 12000 lines per inch when light is incident normally on the grating.

Answers

Answer:

 θ₁ = 0.04º , θ₂ = 0.00118º

Explanation:

The equation that describes the diffraction pattern of a network is

             d sin θ = m λ

where the diffraction order is, in this case they indicate that the order

m = 1

           θ = sin⁻¹ (λ / d)

Trfuvsmod ls inrsd fr ll red s SI units

           d = 12000 line / inc (1 inc / 2.54cm) = 4724 line / cm

the distance between two lines we can look for it with a direct proportions rule

If there are 4724 lines in a centimeter, the distance for two hundred is

            d = 2 lines (1 cm / 4724 line) = 4.2337 10⁻⁴ cm

let's calculate the angles

λ = 300 10-9 m

            θ₁ = sin⁻¹ (300 10-9 / 4,2337 10-4)

            θ₁ = sin⁻¹ (7.08 10-4)

            θ₁ = 0.04º

λ = 5000

          θ₂ = sin-1 (500 10-9 / 4,2337 10-4)

          θ₂ = 0.00118º

A force of 44 N will stretch a rubber band 88 cm ​(0.080.08 ​m). Assuming that​ Hooke's law​ applies, how far will aa 11​-N force stretch the rubber​ band? How much work does it take to stretch the rubber band this​ far?

Answers

Answer:

The rubber band will be stretched 0.02 m.

The work done in stretching is 0.11 J.

Explanation:

Force 1 = 44 N

extension of rubber band = 0.080 m

Force 2 = 11 N

extension = ?

According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.

F = ke

where k = constant of elasticity

e = extension of the material

F = force applied.

For the first case,

44 = 0.080K

K = 44/0.080 = 550 N/m

For the second situation involving the same rubber band

Force = 11 N

e = 550 N/m

11 = 550e

extension e = 11/550 = 0.02 m

The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch. This is in line with energy conservation.

potential energy stored = [tex]\frac{1}{2}ke^{2}[/tex]

==> [tex]\frac{1}{2}* 550* 0.02^{2}[/tex] = 0.11 J

how do a proton and neutron compare?

Answers

Answer:

c.they have opposite charges.

Explanation:

because the protons have a positive charge and the neutrons have no charge.

A ball is thrown directly downward with an initial speed of 7.95 m/s, from a height of 29.0 m. After what time interval does it strike the ground?

Answers

Answer: after 1.75 seconds

Explanation:

The only force acting on the ball is the gravitational force, so the acceleration will be:

a = -9.8 m/s^2

the velocity can be obtained by integrating over time:

v = -9.8m/s^2*t + v0

where v0 is the initial velocity; v0 = -7.95 m/s.

v = -9.8m/s^2*t - 7.95 m/s.

For the position we integrate again:

p = -4.9m/s^2*t^2 - 7.95 m/s*t + p0

where p0 is the initial position: p0 = 29m

p =  -4.9m/s^2*t^2 - 7.95 m/s*t + 29m

Now we want to find the time such that the position is equal to zero:

0 = -4.9m/s^2*t^2 - 7.95 m/s*t + 29m

Then we solve the Bhaskara's equation:

[tex]t = \frac{7.95 +- \sqrt{7.95^2 +4*4.9*29} }{-2*4.9} = \frac{7.95 +- 25.1}{9.8}[/tex]

Then the solutions are:

t = (7.95 + 25.1)/(-9.8) = -3.37s

t = (7.95 - 25.1)/(-9.8) = 1.75s

We need the positive time, then the correct answer is 1.75s

A uniform crate C with mass mC is being transported to the left by a forklift with a constant speed v1. What is the magnitude of the angular momentum of the crate about point A, that is, the point of contact between the front tire of the forklift and the ground

Answers

Answer:

The angular momentum of the crate is [tex]M_{C} V_{1} d[/tex]

Explanation:

mass of the crate = [tex]M_{C}[/tex]

speed of forklift = [tex]V_{1}[/tex]

The distance between the center of the mass and the point A = d

Recall that the angular moment is the moment of the momentum.

[tex]L = P*d[/tex]    ..... equ 1

where L is the angular momentum,

P is the momentum of the system,

d is the perpendicular distance between the crate and the point on the axis about which the momentum acts. It is equal to d from the image

Also, we know that the momentum P is the product of mass and velocity

P = mv      ....equ 2

in this case, the mass = [tex]M_{C}[/tex]

the velocity = [tex]V_{1}[/tex]

therefore, the momentum P = [tex]M_{C}[/tex][tex]V_{1}[/tex]

we substitute equation 2 into equation 1 to give

[tex]L = M_{C} V_{1} d[/tex]

Observe the process by which the grey and the red spheres are charged using the electrophorus. After each sphere is first charged, what are their charges

Answers

Answer:

The gray spheres is negatively charged while the red is positively charged

Explanation:

This is because theelectrophorus becomes less positive once it pulls some electrons away from the red sphere, but, the electrophorus is replaced on the slab and recharged by grounding it before it proceeds to charge the grey sphere, thereby giving it electrons and making it negatively charged

Answer:

The gray sphere has a positive charge and the red sphere has a positive charge.

Two objects attract each other with a gravitational force of magnitude 1.02 10-8 N when separated by 19.7 cm. If the total mass of the two objects is 5.14 kg, what is the mass of each

Answers

Answer:

The two masses are 3.39 Kg and 1.75 Kg

Explanation:

The gravitational force of attraction between two bodies is given by the formula;

F = Gm₁m₂/d²

where G is the gravitational force constant = 6.67 * 10⁻¹¹ Nm²Kg⁻²

m₁ = mass of first object; m₂ = mass of second object; d = distance of separation between the objects

Further calculations are provided in the attachment below

A skater on ice with arms extended and one leg out spins at 3 rev/s. After he draws his arms and the leg in, his moment of inertia is reduced to 1/2. What is his new angular speed

Answers

Answer:

The new angular speed is [tex]w = 6 \ rev/s[/tex]

Explanation:

From the  question we are told that

      The angular velocity of the spin is  [tex]w_o = 3 \ rev/s[/tex]

       The  original moment of inertia is  [tex]I_o[/tex]

        The new moment of inertia is  [tex]I =\frac{I_o}{2}[/tex]    

Generally angular momentum is mathematically represented as

      [tex]L = I * w[/tex]

Now according to the law of conservation of momentum, the initial momentum is equal to the final momentum hence the angular momentum is constant so

         [tex]I * w = constant[/tex]

=>       [tex]I_o * w _o = I * w[/tex]

where w is the new angular speed  

  So  

          [tex]I_o * 3 = \frac{I_o}{2} * w[/tex]

=>        [tex]w = \frac{3 * I_o}{\frac{I_o}{2} }[/tex]

=>         [tex]w = 6 \ rev/s[/tex]

the density of gold is 19 300kg/m^3. what is the mass of gold cube with the length 0.2015m?

Answers

Answer:

The mass is [tex]157.87m^3[/tex]

Explanation:

Given data

length of cube= 0.2015 m

density = 19300 kg/m^3.

But the volume of cube is given as [tex]l*l*l= l^3[/tex]

[tex]volume -of- cube= 0.2015*0.2015*0.2015= 0.00818 m^3[/tex]

The density is expressed as = mass/volume

[tex]mass=19300*0.00818= 157.87m^3[/tex]

A skydiver falls toward the ground at a constant velocity. Which statement best applies Newton’s laws of motion to explain the skydiver’s motion?

Answers

Answer:

A: An upward force balances the downward force of gravity on the skydiver.

Explanation:

on edge! hope this helps!!~ (⌒▽⌒)☆

can I get help please?​

Answers

Answer shown on photo

A player is positioned 35 m[40 degrees W of S] of the net. He shoot the puck 25 m [E] to a teammate. What second displacement does the puck have to travel in order to make it to the net?

Answers

Answer:

x=22.57 m

Explanation:

Given that

35 m in W of S

angle = 40 degrees

25 m in east

From the diagram

The angle

[tex]\theta=90-40=50^o[/tex]

From the triangle OAB

[tex]cos40^o=\frac{35^2+25^2-x^2}{2\times 35\times 25}[/tex]

[tex]1340.57=35^2+25^2-x^2[/tex]

x=22.57 m

Therefore the answer of the above problem will be 22.57 m

A "laser cannon" of a spacecraft has a beam of cross-sectional area A. The maximum electric field in the beam is 2E. The beam is aimed at an asteroid that is initially moving in the direction of the spacecraft. What is the acceleration of the asteroid relative to the spacecraft if the laser beam strikes the asteroid perpendicularly to its surface, and the surface is not reflecting

Answers

Answer:

Acceleration of the asteroid relative to the spacecraft = 2ε[tex]E^{2}[/tex]A/m

Explanation:

The maximum electric field in the beam = 2E

cross-sectional area of beam = A

The intensity of an electromagnetic wave with electric field is

I = cε[tex]E_{0} ^{2}[/tex]/2

for [tex]E_{0}[/tex] = 2E

I = 2cε[tex]E^{2}[/tex]    ....equ 1

where

I is the intensity

c is the speed of light

ε is the permeability of free space

[tex]E_{0}[/tex]  is electric field

Radiation pressure of an electromagnetic wave on an absorbing surface is given as

P = I/c

substituting for I from above equ 1. we have

P = 2cε[tex]E^{2}[/tex]/c = 2ε[tex]E^{2}[/tex]    ....equ 2

Also, pressure P = F/A

therefore,

F = PA    ....equ 3

where

F is the force

P is pressure

A is cross-sectional area

substitute equ 2 into equ 3, we have

F = 2ε[tex]E^{2}[/tex]A

force on a body = mass x acceleration.

that is

F = ma

therefore,

a = F/m

acceleration of the asteroid will then be

a = 2ε[tex]E^{2}[/tex]A/m

where m is the mass of the asteroid.

Newton’s first law says that if motion changes, then a force is exerted. Describe a collision in terms of the forces exerted on both objects.

Answers

Answer:

In collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.

Explanation:

In a collision two objects, there is a force exerted on both objects that causes an acceleration of both objects. These forces that act on both objects are equal in magnitude and opposite in direction.

Thus, in collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.

An isolated capacitor with capacitance C = 1 µF has a charge Q = 45 µC on its plates.a) What is the energy stored in the capacitor?Now a conductor is inserted into the capacitor. The thickness of the conductor is 1/3 the distance between the plates of the capacitor and is centered inbetween the plates of the capacitor.b) What is the charge on the plates of the capacitor?c) What is the capacitance of the capacitor with the conductor in place?d) What is the energy stored in the capacitor with the conductor in place?

Answers

Answer:

a) Energy stored in the capacitor, [tex]E = 1.0125 *10^{-3} J[/tex]

b) Q = 45 µC

c) C' = 1.5 μF

d)  [tex]E = 6.75 *10^{-4} J[/tex]

Explanation:

Capacitance, C = 1 µF

Charge on the plates, Q = 45 µC

a) Energy stored in the capacitor is given by the formula:

[tex]E = \frac{Q^2}{2C} \\\\E = \frac{(45 * 10^{-6})^2}{2* 1* 10^{-6}}\\\\E = \frac{2025 * 10^{-6}}{2}\\\\E = 1012.5 *10^{-6}\\\\E = 1.0125 *10^{-3} J[/tex]

b) The charge on the plates of the capacitor will  not change

It will still remains, Q = 45 µC

c)  Electric field is non zero over (1-1/3) = 2/3 of d

From the relation V = Ed,

The voltage has changed by a factor of 2/3

Since the capacitance is given as C = Q/V  

The new capacitance with the conductor in place, C' = (3/2) C

C' = (3/2) * 1μF

C' = 1.5 μF

d) Energy stored in the capacitor with the conductor in place

[tex]E = \frac{Q^2}{2C} \\\\E = \frac{(45 * 10^{-6})^2}{2* 1.5* 10^{-6}}\\\\E = \frac{2025 * 10^{-6}}{3}\\\\E = 675 *10^{-6}\\\\E = 6.75 *10^{-4} J[/tex]

The rock and meterstick balance at the 25-cm mark, as shown in the sketch. The meterstick has a mass of 1 kg. What must be the mass of the rock? (Show work).

Answers

Answer:

1 kg

Explanation:

Check the diagram attached below for the diagram.

Let the weight of the rock be W and the mass of the meter stick be M. Note that the mass of the meter stick will be placed at the middle of the meter stick i.e at the 50cm mark

Using the principle of moment to calculate the weight of the rock. It states that the sum of clockwise moments is equal to the sum of anti clockwise moment.

Moment = Force * perpendicular distance

The meterstick acts in the clockwise direction while the rock acys in the anti clockwise direction

Clockwise moment = 1kg * 25 = 25kg/cm

Anticlockwise moment = W * 25cm = 25W kg/cm

Equating both moments of forces

25W = 25

W = 25/23

W = 1 kg

The mass of the rock is also 1 kg

A 10 gauge copper wire carries a current of 23 A. Assuming one free electron per copper atom, calculate the magnitude of the drift velocity of the electrons.

Answers

Question:

A 10 gauge copper wire carries a current of 15 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm².)

Answer:

3.22 x 10⁻⁴ m/s

Explanation:

The drift velocity (v) of the electrons in a wire (copper wire in this case) carrying current (I) is given by;

v = [tex]\frac{I}{nqA}[/tex]

Where;

n = number of free electrons per cubic meter

q =  electron charge

A =  cross-sectional area of the wire

First let's calculate the number of free electrons per cubic meter (n)

Known constants:

density of copper, ρ = 8.95 x 10³kg/m³

molar mass of copper, M = 63.5 x 10⁻³kg/mol

Avogadro's number, Nₐ = 6.02 x 10²³ particles/mol

But;

The number of copper atoms, N, per cubic meter is given by;

N = (Nₐ x ρ / M)          -------------(ii)

Substitute the values of Nₐ, ρ and M into equation (ii) as follows;

N = (6.02 x 10²³ x 8.95 x 10³) / 63.5 x 10⁻³

N = 8.49 x 10²⁸ atom/m³

Since there is one free electron per copper atom, the number of free electrons per cubic meter is simply;

n = 8.49 x 10²⁸ electrons/m³

Now let's calculate the drift electron

Known values from question:

A = 5.261 mm² = 5.261 x 10⁻⁶m²

I = 23A

q = 1.6 x 10⁻¹⁹C

Substitute these values into equation (i) as follows;

v = [tex]\frac{I}{nqA}[/tex]

v = [tex]\frac{23}{8.49*10^{28} * 1.6 *10^{-19} * 5.261*10^{-6}}[/tex]

v = 3.22 x 10⁻⁴ m/s

Therefore, the drift electron is 3.22 x 10⁻⁴ m/s

A dipole moment is placed in a uniform electric field oriented along an unknown direction. The maximum torque applied to the dipole is equal to 0.1 N.m. When the dipole reaches equilibrium its potential energy is equal to -0.2 J. What was the initial angle between the direction of the dipole moment and the direction of the electric field?

Answers

Answer:

 θ  = 180

Explanation:

When an electric dipole is placed in an electric field, there is a torque due to the electric force

           τ = p x E

by rotating the dipole there is a change in potential energy

        ΔU = ∫ τ dθ

        ΔU = p E (cos θ₂ - cos θ₁)

         

when the dipole starts from an angle to the equilibrium position for θ = 0

          ΔU = pE (cos θ  - cos 0)

           cos θ  = 1 + DU / pE)

       

let's apply this expression to our case, the change in potential energy is ΔU = -0.2J

           

let's calculate

          cos θ  = 1 -0.2 / 0.1

          cos θ  = -1

           θ  = 180

Two spaceships are observed from earth to be approaching each other along a straight line. Ship A moves at 0.40c relative to the earth observer, while ship B moves at 0.60c relative to the same observer. What speed does the captain of ship A report for the speed of ship B

Answers

Answer:

0.80 c

Explanation:

The computation of speed is shown below:-

Here, The speed of the captain ship A report for speed of the ship B which is

[tex]S = \frac{S_A + S_B}{1 + \frac{(S_AS_B)}{c^2} }[/tex]

where

[tex]S_A[/tex] indicates the speed of the ship A

[tex]S_B[/tex] indicates the speed of the ship B

and

C indicates the velocity of life

now we will Substitute 0.40c for A and 0.60 for B in the equation which is

[tex]S = \frac{0.40c + 0.60c}{1 + \frac{(0.40c)(0.60c)}{c^2} }[/tex]

after solving the above equation we will get

0.80 c

So, The correct answer is 0.80c

A 0.500-kg mass suspended from a spring oscillates with a period of 1.50 s. How much mass must be added to the object to change the period to 2.00 s

Answers

Answer:

389 kg

Explanation:

The computation of mass is shown below:-

[tex]T = 2\pi \sqrt{\frac{m}{k} }[/tex]

Where K indicates spring constant

m indicates mass

For the new time period

[tex]T^' = 2\pi \sqrt{\frac{m'}{k} }[/tex]

Now, we will take 2 ratios of the time period

[tex]\frac{T}{T'} = \sqrt{\frac{m}{m'} }[/tex]

[tex]\frac{1.50}{2.00} = \sqrt{\frac{0.500}{m'} }[/tex]

[tex]0.5625 = \sqrt{\frac{0.500}{m'} }[/tex]

[tex]m' = \frac{0.500}{0.5625}[/tex]

= 0.889 kg

Since mass to be sum that is

= 0.889 - 0.500

0.389 kg

or

= 389 kg

Therefore for computing the mass we simply applied the above formula.

The mass added to the object to change the period to 2.00 s is 0.389 kg and this can be determined by using the formula of the time period.

Given :

A 0.500-kg mass suspended from a spring oscillates with a period of 1.50 s.

The formula of the time period is given by:

[tex]\rm T = 2\pi\sqrt{\dfrac{m}{K}}[/tex]   ---- (1)

where m is the mass and K is the spring constant.

The new time period is given by:

[tex]\rm T'=2\pi\sqrt{\dfrac{m'}{K}}[/tex]   ---- (2)

where m' is the total mass after the addition and K is the spring constant.

Now, divide equation (1) by equation (2).

[tex]\rm \dfrac{T}{T'}=\sqrt{\dfrac{m}{m'}}[/tex]

Now, substitute the known terms in the above expression.

[tex]\rm \dfrac{1.50}{2}=\sqrt{\dfrac{0.5}{m'}}[/tex]

Simplify the above expression in order to determine the value of m'.

[tex]\rm m'=\dfrac{0.5}{0.5625}[/tex]

m' = 0.889 Kg

Now, the mass added to the object to change the period to 2.00 s is given by:

m" = 0.889 - 0.500

m" = 0.389 Kg

For more information, refer to the link given below:

https://brainly.com/question/2144584

Use Coulomb’s law to derive the dimension for the permittivity of free space.



Answers

Answer:

Coulomb's law is:

[tex]F = \frac{1}{4*pi*e0} *(q1*q2)/r^2[/tex]

First, force has units of Newtons, the charges have units of Coulombs, and r, the distance, has units of meters, then, working only with the units we have:

N = (1/{e0})*C^2/m^2

then we have:

{e0} = C^2/(m^2*N)

And we know that N = kg*m/s^2

then the dimensions of e0 are:

{e0} = C^2*s^2/(m^3)

(current square per time square over cubed distance)

And knowing that a Faraday is:

F = C^2*S^2/m^2

The units of e0 are:

{e0} = F/m.

Consider a race between the following three objects: object 1, a disk; object 2, a solid sphere; and object 3, a hollow spherical shell. All objects have the same mass and radius.

Required:
a. Rank the three objects in the order in which they finish the race. To rank objects that tie, overlap them.
b. Rank the objects in order of increasing kinetic energy at the bottom of the ramp. Rank objects from largest to smallest. To rank items as equivalent, overlap them.

Answers

Answer:

Since the angular acceleration of the objects will be proportional to the torque (due to gravity) acting on them and they will all experience the same torque their accelerations will be inversely proportional to their moments of inertia:

I disk = 1/2 M R^2

I sphere = 2/5 M R^2

I shell = 2/3 M R^2

Thus the sphere will experience the greatest angular acceleration and reach the bottom first, and then be followed by the disk and the shell.

By conservation of energy they will all have the same kinetic energy when they reach the bottom of the ramp.

(a) The ranking of the objects in order of how they will finish the race is

solid sphere > disk > hollow spherical shell

(b) The ranking of the objects in order of kinetic energy is

solid sphere > disk > hollow spherical shell

The moment of inertia of each object is calculated as follows;

disk: [tex]I = \frac{1} {2} MR^2[/tex]solid sphere: I = [tex]\frac{2}{5} MR^2[/tex]hollow spherical shell: I =  [tex]\frac{2}{3} MR^2[/tex]

The angular momentum of the objects is calculated as follows;

[tex]L =I \omega \\\\\omega = \frac{L}{I}[/tex]

The object with the least moment of inertia is will have the highest speed.

The ranking of the objects in order of how they will finish the race;

solid sphere > disk > hollow

The kinetic energy of the objects is calculated as follows;

[tex]K.E = \frac{1}{2} I \omega ^2[/tex]

The ranking of the objects in order of kinetic energy;

solid sphere > disk > hollow

Learn more here:https://brainly.com/question/15076457

Two carts are connected by a loaded spring on a horizontal, frictionless surface. The spring is released and the carts push away from each other. Cart 1 has mass M and Cart 2 has mass M/3.

a) Is the momentum of Cart 1 conserved?

Yes

No

It depends on M

b) Is the momentum of Cart 2 conserved?

Yes

No

It depends on M

c) Is the total momentum of Carts 1 and 2 conserved?

Yes

No

It depends on M

d) Which cart ends up moving faster?

Cart 1

Cart 2

They move at the same speed

e) If M = 6 kg and Cart 1 moves with a speed of 16 m/s, what is the speed of Cart 2?

0 m/s

4.0 m/s

5.3 m/s

16 m/s

48 m/s

64 m/s

Answers

Answer:

a) yes

b) no

c) yes

d)Cart 2 with mass [tex]\frac{M}{3}[/tex]   is expected to be more faster

e) u₂ = 48 m/s

Explanation:

a) the all out linear momentum of an arrangement of particles of Cart 1 not followed up on by external forces is constant.

b) the linear momentum of Cart 2 will be acted upon by external force by Cart 1 with mass M, thereby it's variable and the momentum is not conserved

c) yes, the momentum is conserved because no external force acted upon it and both Carts share the same velocity after the reaction

note: m₁u₁ + m₂u₂ = (m₁ + m₂)v

d) Cart 2 with mass [tex]\frac{M}{3}[/tex] will be faster than Cart 1 because Cart 2 is three times lighter than Cart 1.

e) Given

m₁=  M

u₁ = 16m/s

m₂ =[tex]\frac{M}{3}[/tex]

u₂ = ?

from law of conservation of momentum

m₁u₁= m₂u₂

M× 16 = [tex]\frac{M}{3}[/tex] × u₂(multiply both sides by 3)

therefore, u₂ = [tex]\frac{3(M .16)}{M}[/tex] ("." means multiplication)

∴u₂ = 3×16 = 48 m/s

When a particular wire is vibrating with a frequency of 6.3 Hz, a transverse wave of wavelength 53.3 cm is produced. Determine the speed of wave pulses along the wire.

Answers

Answer:

335.79cm/s

Explanation:

When a transverse wave of wavelength λ is produced during the vibration of a wire, the frequency(f), and the speed(v) of the wave pulses are related to the wavelength as follows;

v = fλ        ------------------(ii)

From the question;

f = 6.3Hz

λ = 53.3cm

Substitute these values into equation (i) as follows;

v = 6.3 x 53.3

v = 335.79cm/s

Therefore, the speed of the wave pulses along the wire is 335.79cm/s

A 1.0-kg ball is attached to the end of a 2.5-m string to form a pendulum. This pendulum is released from rest with the string horizontal. At the lowest point in its swing when it is moving horizontally, the ball collides elastically with a 2.0-kg block initially at rest on a horizontal frictionless surface. What is the speed of the block just after the collision

Answers

Answer:

[tex]v_{2}=3.5 m/s[/tex]

Explanation:

Using the conservation of energy we have:

[tex]\frac{1}{2}mv^{2}=mgh[/tex]

Let's solve it for v:

[tex]v=\sqrt{2gh}[/tex]

So the speed at the lowest point is [tex]v=7 m/s[/tex]

Now, using the conservation of momentum we have:

[tex]m_{1}v_{1}=m_{2}v_{2}[/tex]

[tex]v_{2}=\frac{1*7}{2}[/tex]

Therefore the speed of the block after the collision is [tex]v_{2}=3.5 m/s[/tex]

I hope it helps you!

       

The Law of Biot-Savart shows that the magnetic field of an infinitesimal current element decreases as 1/r2. Is there anyway you could put together a complete circuit (any closed path of current-carrying wire) whose field exhibits this same 1/r^2 decrease in magnetic field strength? Explain your reasoning.

Answers

Answer and Explanation:

There is no probability of obtaining such a circuit of closed track current carrying wire whose field of magnitude displays i.e.  [tex]B \alpha \frac{1}{r^2}[/tex]

The magnetic field is a volume of vectors

And [tex]\phi\ bds = 0[/tex]. This ensures isolated magnetic poles or magnetic charges would not exit

Therefore for a closed path,  we never received magnetic field that followed the [tex]B \alpha \frac{1}{r^2}[/tex] it is only for the simple current-carrying wire for both finite or infinite length.

A 150m race is run on a 300m circular track of circumference. Runners start running from the north and turn west until reaching the south. What is the magnitude of the displacement made by the runners?

Answers

Answer:

95.5 m

Explanation:

The displacement is the position of the ending point relative to the starting point.

In this case, the magnitude of the displacement is the diameter of the circular track.

d = 300 m / π

d ≈ 95.5 m

An aging coyote cannot run fast enough to catch a roadrunner. He purchases on eBay a set of jet-powered roller skates, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts at rest 70.0 m from the edge of a cliff at the instant the roadrunner zips past in the direction of the cliff.

Required:
a. Determine the minimum constant speed the roadrunner must have to reach the cliff before the coyote. At the edge of the cliff, the roadrunner escapes by making a sudden turn, while the coyote continues straight ahead. The coyote’s skates remain horizontal and continue to operate while he is in flight.
b. The cliff is 100 m above the flat floor of the desert. Determine how far from the base of the cliff the coyote lands.
c. Determine the components of the coyote’s impact velocity

Answers

Answer:

a)  v_correcaminos = 22.95 m / s ,  b)  x = 512.4 m ,

c) v = (45.83 i ^ -109.56 j ^) m / s

Explanation:

We can solve this exercise using the kinematics equations

a) Let's find the time or the coyote takes to reach the cliff, let's start by finding the speed on the cliff

         v² = v₀² + 2 a x

they tell us that the coyote starts from rest v₀ = 0 and its acceleration is a=15 m / s²

         v = √ (2 15 70)

         v = 45.83 m / s

with this value calculate the time it takes to arrive

        v = v₀ + a t

        t = v / a

        t = 45.83 / 15

        t = 3.05 s

having the distance to the cliff and the time, we can find the constant speed of the roadrunner

         v_ roadrunner = x / t

         v_correcaminos = 70 / 3,05

         v_correcaminos = 22.95 m / s

b) if the coyote leaves the cliff with the horizontal velocity v₀ₓ = 45.83 m / s, they ask how far it reaches.

Let's start by looking for the time to reach the cliff floor

            y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²

             

in this case y = 0 and the height of the cliff is y₀ = 100 m

          0 = 100 + 45.83 t - ½ 9.8 t²

          t² - 9,353 t - 20,408 = 0

we solve the quadratic equation

         t = [9,353 ±√ (9,353² + 4 20,408)] / 2

         t = [9,353 ± 13] / 2

         t₁ = 11.18 s

        t₂ = -1.8 s

Since time must be a positive quantity, the answer is t = 11.18 s

we calculate the horizontal distance traveled

        x = v₀ₓ t

        x = 45.83 11.18

        x = 512.4 m

c) speed when it hits the ground

         vₓ = v₀ₓ = 45.83 m / s

we look for vertical speed

         v_{y} = [tex]v_{oy}[/tex] - gt

         v_{y} = 0 - 9.8 11.18

         v_{y} = - 109.56 m / s

   

         v = (45.83 i ^ -109.56 j ^) m / s

If, instead, the ball is revolved so that its speed is 3.7 m/s, what angle does the cord make with the vertical?

Answers

Complete Question:

A 0.50-kg ball that is tied to the end of a 1.5-m light cord is revolved in a horizontal plane, with the cord making a 30° angle with the vertical.

(a) Determine the ball’s speed. (b) If, instead, the ball is revolved so that its

speed is 3.7 m/s, what angle does the cord make with the vertical?

(Check attached image for the diagram.)

Answer:

(a) The ball’s speed, v = 2.06 m/s

(b) The angle the cord makes with the vertical is 50.40⁰

Explanation:

If the ball is revolved in a horizontal plane, it will form a circular trajectory,

the radius of the circle, R = Lsinθ

where;

L is length of the string

The force acting on the ball is given as;

F = mgtanθ

This above is also equal to centripetal force;

[tex]mgTan \theta = \frac{mv^2}{R} \\\\Recall, R = Lsin \theta\\\\mgTan \theta = \frac{mv^2}{Lsin \theta}\\\\v^2 = glTan \theta sin \theta\\\\v = \sqrt{glTan \theta sin \theta} \\\\v = \sqrt{(9.8)(1.5)(Tan30)(sin30)} \\\\v = 2.06 \ m/s[/tex]

(b) when the speed is 3.7 m/s

[tex]v = \sqrt{glTan \theta sin \theta} \ \ \ ;square \ both \ sides\\\\v^2 = glTan \theta sin \theta\\\\v^2 = gl(\frac{sin \theta}{cos \theta}) sin \theta\\\\v^2 = \frac{gl*sin^2 \theta}{cos \theta} \\\\v^2 = \frac{gl*(1- cos^2 \theta)}{cos \theta}\\\\gl*(1- cos^2 \theta) = v^2cos \theta\\\\(9.8*1.5)(1- cos^2 \theta) = (3.7^2)cos \theta\\\\14.7 - 14.7cos^2 \theta = 13.69cos \theta\\\\14.7cos^2 \theta + 13.69cos \theta - 14.7 = 0 \ \ \ ; this \ is \ quadratic \ equation\\\\[/tex]

[tex]Cos\theta = \frac{13.69\sqrt{13.69^2 -(-4*14.7*14.7)} }{14.7} \\\\Cos \theta = 0.6374\\\\\theta = Cos^{-1}(0.6374)\\\\\theta = 50.40 ^o[/tex]

Therefore, the angle the cord makes with the vertical is 50.40⁰

g A change in the initial _____ of a projectile changes the range and maximum height of the projectile.​

Answers

Answer:

Velocity.

Explanation:

Projectile motion is characterized as the motion that an object undergoes when it is thrown into the air and it is only exposed to acceleration due to gravity.

As per the question, 'any change in the initial velocity of the projectile(object having gravity as the only force) would lead to a change in the range as well as the maximum height of the projectile.' To illustrate numerically:

Horizontal range: As per expression:

R= ([tex]u^{2}[/tex]*sin2θ)/g

the range depending on the square of the initial velocity.

Maximum height: As per expression:

H= ([tex]u^{2}[/tex] * [tex]sin^{2}[/tex]θ )/2g

the maximum distance also depends upon square of the initial velocity.

Other Questions
PLEASE HELP!!How has modernization altered the role of religion in many societies?A. It has convinced many societies to integrate government andreligion.B. It has eliminated religious extremism from many societies.C. It has led many societies to increasingly adopt secularism.D. It has led many societies to legally ban atheism. Choose the correct simplification of the expression 4 over y to the power of negative 3. 4y3 4 over y to the 3rd power y to the 3rd power over 4 This expression is already simplified. If George is 33 1/3% richer than Pete, than Pete is what percent poorer than George? a new hockey arena at a cost of $2,500,000. It received a downpayment of $500,000 from local businesses to support the project and now needs to borrow $2,000,000 to complete the project. It therefore decides to issue $2,000,000 of 11%, callable, 10-year bonds. These bonds were issued on January 2018 and pay interest on January 1 and July 1. The bonds yield 10%. Instructions: a. Prepare the journal entry to record the issuance of the bonds on January 1, 2018 b. Prepare a bond amortixation schedule up to and including January 1, 2022 c. Prepare the journal entries to record the interest payments on January 1, 2020 and January 1, 2021. d. Prepare the journal entry to record the bond called on January 2021 at 106 d. An effort of 10 N is applied to lift a load of 50 N. If the effort armis 10 cm, calculate the load arm, input work and output work[Ans: 2 cm, 100 Nm, 100 Nm) how would a bank represent a withdrawal of 19.43 dollars? Which statement accurately describes a developing country? The country's population has a high growth rate. The country has a high standard of living. The country's population has a high life expectancy. The country has a high GDP per capita. States competed with each other for trade advantages as a result of which key weakness in the Articles of Confederation?A.Congress had no power to regulate commerce.B.States were given one vote only, regardless of size.C.There was no system of national courts.D.Congress had no power to levy taxes. as the mass of the cart increases, the acceleration of the cart Find the area of the shaded regions For the triangle show, what are the values of x and y (urgent help needed) Use the substitution method to solve the system of equations. Choose thecorrect ordered pair.x + 3y = 9y = x-5A. (6,3)B. (3,-2)C. (1,-5). D. (6,1) Based on this module, what option would you choose to prepare your taxes? Why? What is one advantage and one disadvantage to using this option to file your tax return? At what rate must a cylindrical spaceship rotate if occupants are to experience simulated gravity of 0.50 gg? Assume the spaceship's diameter is 35 mm , and give your answer as the time needed for one revolut Describe how the end product of digestion of fats and oils is absorbed in humans What were the different choices that people made throughout the time portrayed in the film that allowed for forward momentum in the movement for voting rights Find the value of x and the value of y. A.x = 15, y = 10 B.x = 20, y = 50 C.x = 50, y = 10 D.x = 50, y = 20 Evaluate. Write your answer as a fraction or whole number without exponents. 7^1 = SOMEONE PLEASE HELP ME ASAP PLEASE!!! Truman's liberal reforms included:low-cost loans for veterans.funding for school nutrition programs.making housing more affordable.All of these choices are correct.