Answer:
Step-by-step explanation:
When the equation is in the slope intercept form of y = mx + b, you know that the m is the slope and the b is the y-intercept (0, b)
By looking at the equation y=2x + 2, you can determine that the y-intercept will be at the point (0, 2) and the slope is 2.
To graph, start with the point of (0, 2) then go up 2 units and to the right 1 unit. So the next point will be at (1, 4)
You can also, substitute and number in for the x and calculate the y value. For example, if x is 3, then y=2(3)+2; y = 8 so the point (3, 8) is on the line.
Find the center of the ellipse defined by the equation... 100 points
Answer:
(-4,4)
Step-by-step explanation:
You rewrite the terms:
(x + 4)^2 => [x - (-4)]^2
(y - 4)^2 => [y - (4)]^2
so h = -4 and k = 4
so center of ellipse is (h,k) or (-4,4)
Answer:
Center = (-4, 4)
Step-by-step explanation:
The standard form of the equation of an ellipse with center (h, k) is:
[tex]\boxed{\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1}[/tex]
The given equation is:
[tex]\dfrac{(x+4)^2}{25}+\dfrac{(y-4)^2}{9}=1[/tex]
Comparing the given equation with the standard form, we can see that h = -4 and k = 4. Therefore, the center (h, k) of the ellipse is (-4, 4).
what is the value of f(x)=-1/3x-1/3 when x=-1/2
Answer:
f(-1/2) = -1/6
Step-by-step explanation:
To find the value of f(x) when x = -1/2, we substitute -1/2 for x in the expression for f(x) and simplify:
f(x) = (-1/3)x - 1/3
f(-1/2) = (-1/3)(-1/2) - 1/3
= 1/6 - 1/3
= -1/6
So, f(-1/2) = -1/6.
A parabola can be drawn given a focus of ... 100pts
Answer:
The parabola has a vertex at (3, -4), has a p-value of -6 and it opens downwards.
Step-by-step explanation:
The given directrix of the parabola is y = 2, which is a horizontal line.
This means that the parabola is vertical, with a vertical axis of symmetry.
The focus of a parabola is a fixed point located inside the curve. The y-coordinate of the given focus is y = -10. As this is below the directrix, it means that the parabola opens downwards.
The standard form of a vertical parabola is:
[tex]\boxed{(x-h)^2=4p(y-k)}[/tex]
where:
Vertex = (h, k)Focus = (h, k+p)Directrix: y = (k - p)Axis of symmetry: x = hAs the focus is (3, -10), then:
[tex](h, k+p)=(3,-10)[/tex]
[tex]\implies h = 3[/tex]
[tex]\implies k+p=-10[/tex]
As the directrix is y = 2, then:
[tex]k - p=2[/tex]
To find the value of k, sum the equations involved k and p to eliminate p:
[tex]\begin{array}{crcccr}&k &+& p& =& -10\\+&k& -& p& = &2\\\cline{2-6}&2k&&& =& -8\\\cline{2-6}\\\implies &k&&&=&-4\end{array}[/tex]
To find the value of p, substitute the found value of k into one of the equations:
[tex]-4-p=2[/tex]
[tex]p=-4-2[/tex]
[tex]p=-6[/tex]
Therefore, the values of h, k and p are:
h = 3k = -4p = -6The parabola has a vertex at (3, -4), has a p-value of -6 and it opens downwards.
The parabola has a vertex at (3, -4), has a p-value of -6 and it opens downwards.
How to determine the equation and vertex of a parabola?In Mathematics, the standard form of the equation of the directrix lines for any parabola is given by this mathematical equation:
(x - h)² = 4p(y - k).
Where:
h and k are the vertex.p is a point.Since the directrix is horizontal, the axis of symmetry would be vertical. This ultimately implies that, we would have the following parameters;
directrix is y = 2
Focus, (h, k + p) = (3, -10)
Next, we would determine the value of k as follows;
k + p = -10 .......equation 1
k - p = 2 .......equation 2
By solving the equations simultaneously, we have:
2k = -8
k = -4
For the value of p, we have the following from equation 2:
k - p = 2
-4 - p = 2
p = -4 - 2
p = -6
In conclusion, we can logically deduce that the parabola opens downward because the p-value is negative.
Read more on parabola here: brainly.com/question/27814369
#SPJ1
Let p(x) = a1x^2 + b1x +c1 and q(x) = a2x^2 + b2x + c2 be polynomials in P2. Define an inner product in P2 as follows {p,q} = 5a1a2 + 4b1b2 + 3c1c2.
Given p(x) =5x^2 + (-1)x + (-3) and q(x) = 2x^2 + (4)x +(-3). Evaluate the following expressions
1. p(x) - q(x) = 3x^2 - 5x
2. {p - q, p-q} = 145
3. llp-qll = sqrt({p-q,p-q}) = sqrt(145)
For part 1, I know the answer and how to get it.
For part 2, I know the answer but I'm not sure how to get to it
Answer:
Step-by-step explanation:
To evaluate the expression {p - q, p - q}, which represents the inner product of the polynomial (p - q) with itself, you can follow these steps:
Given p(x) = 5x^2 - x - 3 and q(x) = 2x^2 + 4x - 3.
Subtract q(x) from p(x) to get (p - q):
(p - q)(x) = (5x^2 - x - 3) - (2x^2 + 4x - 3)
= 5x^2 - x - 3 - 2x^2 - 4x + 3
= (5x^2 - 2x^2) + (-x - 4x) + (-3 + 3)
= 3x^2 - 5x
Now, calculate the inner product of (p - q) with itself using the given inner product formula:
{p - q, p - q} = 5(a1)(a2) + 4(b1)(b2) + 3(c1)(c2)
= 5(3)(3) + 4(-5)(-5) + 3(0)(0)
= 45 + 100 + 0
= 145
Therefore, the value of {p - q, p - q} is 145.
please answer i am stuck
Triangle ABC with vertices at A(4, 3), B(3, −2), C(−3, 1) is dilated using a scale factor of 1.5 to create triangle A′B′C′. Determine the vertex of point A′.
The vertex of point A' in the dilated triangle A'B'C' is (6, 4.5).
1. Start by calculating the distance between the vertices of the original triangle ABC:
- Distance between A(4, 3) and B(3, -2):
Δx = 3 - 4 = -1
Δy = -2 - 3 = -5
Distance = √((-[tex]1)^2[/tex] + (-[tex]5)^2[/tex]) = √26
- Distance between B(3, -2) and C(-3, 1):
Δx = -3 - 3 = -6
Δy = 1 - (-2) = 3
Distance = √((-6)² + 3²) = √45 = 3√5
- Distance between C(-3, 1) and A(4, 3):
Δx = 4 - (-3) = 7
Δy = 3 - 1 = 2
Distance = √(7² + 2²) = √53
2. Apply the scale factor of 1.5 to the distances calculated above:
- Distance between A' and B' = 1.5 * √26
- Distance between B' and C' = 1.5 * 3√5
- Distance between C' and A' = 1.5 * √53
3. Determine the coordinates of A' by using the distance formula and the given coordinates of A(4, 3):
- A' is located Δx units horizontally and Δy units vertically from A.
- Δx = 1.5 * (-1) = -1.5
- Δy = 1.5 * (-5) = -7.5
- Coordinates of A':
x-coordinate: 4 + (-1.5) = 2.5
y-coordinate: 3 + (-7.5) = -4.5
4. Thus, the vertex of point A' in the dilated triangle A'B'C' is (2.5, -4.5).
For more such questions on triangle, click on:
https://brainly.com/question/1058720
#SPJ8
Amy bought a new car for $21,000
. She paid a 10%
down payment and financed the remaining balance for 36
months with an APR of 3.5%
. Determine the monthly payment that Amy pays. Round your answer to the nearest cent, if necessary.
Answer:
Step-by-step explanation:
To determine the monthly payment Amy pays, we can use the formula for calculating the monthly payment on a loan. The formula is:
M = (P * r * (1 + r)^n) / ((1 + r)^n - 1)
Where:
M = Monthly payment
P = Principal amount (loan amount)
r = Monthly interest rate
n = Number of monthly payments
Given information:
Principal amount (loan amount) = $21,000
Down payment = 10% of $21,000 = $2,100
Remaining balance = $21,000 - $2,100 = $18,900
APR = 3.5%
Number of monthly payments (n) = 36
To calculate the monthly interest rate (r), we divide the annual interest rate by 12 (number of months in a year):
Monthly interest rate (r) = APR / (12 * 100)
Substituting the values into the formula:
r = 3.5 / (12 * 100) = 0.0029167 (rounded to 7 decimal places)
M = (18,900 * 0.0029167 * (1 + 0.0029167)^36) / ((1 + 0.0029167)^36 - 1)
Using a calculator to evaluate the expression within the formula:
M ≈ $539.26
Therefore, the monthly payment that Amy pays is approximately $539.26.
Find the co-vertices of the hyperbola defined by the equation.. 100pts
Answer:
(-13, -9) and (-5, -9)
Step-by-step explanation:
The given equation of the hyperbola is:
[tex]\dfrac{(y+9)^2}{25}-\dfrac{(x+9)^2}{16}=1[/tex]
As the y²-term of the given equation is positive, the transverse axis is vertical, and so the hyperbola is vertical (opens up and down).
The standard equation for a vertical hyperbola is:
[tex]\boxed{\dfrac{(y-k)^2}{a^2}-\dfrac{(x-h)^2}{b^2}=1}[/tex]
where:
center = (h, k)vertices = (h, k±a)co-vertices = (h±b, k)foci = (h, k±c) where c² = a² + b²Compare the given equation with the standard equation to find the values of h, k, a and b:
h = -9k = -9a² = 25 ⇒ a = 5b² = 16 ⇒ b = 4The formula for the co-vertices of a vertical hyperbola is (h±b, k).
Substitute the values of b, h and k into the formula:
[tex]\begin{aligned}\textsf{Co-vertices}&=(h\pm b,k)\\&=(-9\pm 4, -9)\\&=(-13,-9)\;\;\textsf{and}\;\;(-5, -9)\end{aligned}[/tex]
Therefore, the co-vertices of the given hyperbola are:
(-13, -9) and (-5, -9)The co-vertices of the hyperbola are (-4, -9) and (-14, -9).
What are the co-vertices of the hyperbola?To find the co-vertices of the hyperbola defined by the equation:
[(y + 9)² / 25] - [(x + 9)² / 16] = 1
We can compare the equation to the standard form of a hyperbola:
[(y - h)² / a²] - [(x - k)² / b²] = 1
In this case, we have h = -9 and k = -9.
The co-vertices of a hyperbola lie on the transverse axis, which is the line passing through the center of the hyperbola. The center of the hyperbola is given by (h, k), which in this case is (-9, -9).
For a hyperbola with the equation in this form, the co-vertices are located a units to the right and left of the center. In this case, since the equation is [(y + 9)² / 25] - [(x + 9)² / 16] = 1, we have a = 5.
Therefore, the co-vertices are located at (-9 ± a, -9), which gives us:
(-9 + 5, -9) = (-4, -9)
(-9 - 5, -9) = (-14, -9)
Learn more on co-vertices of hyperbola here;
https://brainly.com/question/15935373
#SPJ1
50 Points! Multiple choice geometry question. Photo attached. Thank you!
Answer:
B. Lenghts of the diagonals
Step-by-step explanation:
The following is a list of shoe sizes for a group of 13 people.
4.5, 9.5, 8, 6.5, 10, 7, 8.5, 6, 7.5, 9, 6, 7, 11
Which of the following box plots best represents the numerical data?
A box plot using a number line from 3 to 12.25 with tick marks every one-fourth unit. The box extends from 6.25 to 9.25 on the number line. A line in the box is at 7.5. The lines outside the box end at 4.5 and 11. The graph is titled Shoe Sizes, and the line is labeled Size of Shoe.
A box plot using a number line from 3 to 11.25 with tick marks every one-fourth unit. The box extends from 6.25 to 8.75 on the number line. A line in the box is at 7.25. The lines outside the box end at 4.5 and 10. The graph is titled Shoe Sizes, and the line is labeled Size of Shoe.
A box plot using a number line from 3 to 13 with tick marks every one-half unit. The box extends from 6.5 to 9 on the number line. A line in the box is at 7.5. The lines outside the box end at 4.5 and 12. The graph is titled Shoe Sizes, and the line is labeled Size of Shoe.
A box plot using a number line from 3 to 12.5 with tick marks every one-fourth unit. The box extends from 6.25 to 8.75 on the number line. A line in the box is at 7.5. The lines outside the box end at 4.5 and 10.5. The graph is titled Shoe Sizes, and the line is labeled Size of Shoe.
The box plot that best represents the numerical data is: A. A box plot using a number line from 3 to 12.25 with tick marks every one-fourth unit. The box extends from 6.25 to 9.25 on the number line. A line in the box is at 7.5. The lines outside the box end at 4.5 and 11. The graph is titled Shoe Sizes, and the line is labeled Size of Shoe.
How to complete the five number summary of a data set?In order to determine the five-number summary for the survey, we would arrange the data set in an ascending order:
4.5,6,6,6.5,7,7,7.5,8,8.5,9,9.5,10,11
Based on the information provided about the list of shoe sizes for a group of 13 people, we would use a graphical method (box plot) to determine the five-number summary for the given data set as follows:
Minimum (Min) = 4.5.
First quartile (Q₁) = 6.25.
Median (Med) = 7.5.
Third quartile (Q₃) = 9.25.
Maximum (Max) = 11.
Read more on boxplot here: brainly.com/question/29648407
#SPJ1
Devaughn's age is three times Sydney's age. The sum of their ages is 80 . What is Sydney's age?
[tex]\qquad\displaystyle \rm \dashrightarrow \: let \: \: Sydney's \: \: age \: \: be \: \: 'y'[/tex]
[tex]\qquad\displaystyle \tt \dashrightarrow \: Devaughn's \: \: age \: \: will \: \: be \: \: 3y[/tex]
Sum up ;
[tex]\qquad\displaystyle \tt \dashrightarrow \: 3y + y = 80[/tex]
[tex]\qquad\displaystyle \tt \dashrightarrow \: 4y = 80[/tex]
[tex]\qquad\displaystyle \tt \dashrightarrow \: y = 80 \div 4[/tex]
[tex]\qquad\displaystyle \tt \dashrightarrow \: y = 20[/tex]
So, Sydney's age is 20 years, n that of Devaughn is 20 × 3 = 60 years
Answer:
Sydney= 20, Devaughn= 60
Step-by-step explanation:
Let Sydney's age be 'x'
Devaughn's age = 3 times x = 3x
We Know That
The sum of their ages is 80.
So,
3x + x = 80
4x = 80
If we shift the 4 to the 80 side
x = 80/4
x = 20
So, Sydney's age is 20
Therefore, Devaughn's age =
3x = 3 times x
= 3 times 20
= 60
Question 4 a) Show that y₁= 1/t is a known solution of -t²y" + 3ty' + 5y = 0, where t > 0, and find the second solution.
y₁ = 1/t is indeed a known solution of the given differential equation.
The second solution can be found using reduction of order or other methods specific to the equation.
Let's find the first and second derivatives of y₁ with respect to t:
y₁ = 1/t
First derivative:
y'₁ = d/dt (1/t) = -1/t²
Second derivative:
y''₁ = d/dt (-1/t²) = 2/t³
Now, let's substitute y₁, y'₁, and y''₁ into the differential equation:
-t²y'' + 3ty' + 5y = 0
Substituting the values:
-t²(2/t³) + 3t(-1/t²) + 5(1/t) = 0
Simplifying the expression:
-2/t + (-3/t) + 5/t = 0
(-2 - 3 + 5)/t = 0
0/t = 0
We can see that the expression simplifies to 0/t, which is equal to 0.
Therefore, y₁ = 1/t is indeed a known solution of the given differential equation.
To find the second solution, we can use the method of reduction of order. Let's assume the second solution is of the form y₂ = v(t)y₁, where v(t) is a function to be determined.
Substituting this into the differential equation, we have:
-t²(y₂'' + v'y₁' + v''y₁) + 3t(y₂' + vy₁') + 5y₂ = 0
Expanding and rearranging the terms, we get:
-t²(v''y₁ + v'y₁' + v'y₁ + vy₁'') + 3t(vy₁' - v'y₁) + 5vy₁ = 0
Simplifying further:
(-t²v''y₁ - 2t²v'y₁' + 3tvy₁' + 5vy₁) + (-t²v'y₁ + 3tvy₁ - 5v'y₁) = 0
Combining like terms:
-t²v''y₁ - 2t²v'y₁' - t²v'y₁ - t²v'y₁ + 3tvy₁' + 3tvy₁ + 5vy₁ - 5v'y₁ = 0
Simplifying:
-t²v''y₁ - 3t²v'y₁' + 6tvy₁' + (5v - 5v')y₁ = 0
Since y₁ = 1/t, we have:
-t²v''(1/t) - 3t²v'(1/t²) + 6tv(1/t²) + (5v - 5v')(1/t) = 0
Simplifying further:
-v'' - 3v' + 6v(1/t) + (5v - 5v')(1/t) = 0
Reducing the equation:
-v'' - 3v' + 6v/t + (5v/t - 5v'/t) = 0
-v'' - 3v' + (6v + 5v - 5v')/t = 0
-v'' - 3v' + (11v - 5v')/t = 0
To simplify the equation, we can multiply through by t:
-tv'' - 3tv' + 11v - 5v' = 0
Now, we have a differential equation in terms of v(t) only. To solve this equation, we can apply appropriate techniques such as separation of variables, integrating factors, or other methods depending on the specific form of the equation. Solving for v(t) will give us the second solution to the original differential equation -t²y" + 3ty' + 5y = 0.
for such more question on differential equation
https://brainly.com/question/25731911
#SPJ8
labor-hours and its standard cost card per unit is as follows:
Direct material: $ pounds at $11.00 per pound
Direct labor: 3 hours at $12 per hour
Variable overhead: 3 hours at $7 per hour
Total standard variable cost per unit
The company also established the following cost formulas for its selling expenses:
sales salaries and commissions
shipping expenses
Fixed Cost per
Month
$ 280,000
$ 260,000
$ 55.00
36.00
$112.00
Variable
Cost per
Unit Sold
$ 20.00
$ 11.00
The planning budget for March was based on producing and selling 21,000 units. However, during March the company
actually produced and sold 26.600 units and incurred the following costs:
a Purchased 154.000 pounds of raw materials at a cost of $9.50 per pound. All of this material was used in production.
b. Direct laborers worked 63,000 hours at a rate of $13.00 per hour
e Total variable manufacturing overhead for the month was $510,930
d Total advertising sales salaries and commissions, and shipping expenses were $286,000, $495,000, and $195,000,
respectively
6 What direct labor cost would be included in the company's flexible budget for March?
The direct labor cost included in the Preble Company's flexible budget for March is $819,000.
How to compute Preble Company's direct labor cost?To find the direct labor cost included in the company's flexible budget for March, we shall estimate the actual direct labor cost incurred during the period.
Given:
Actual production and sales =n26,600 units
Actual direct labor rate = $13.00 per hour
Actual direct labor hours worked = 63,000 hours
Direct labor cost = Actual direct labor rate × Actual direct labor hours worked
Direct labor cost = $13.00/hour × 63,000 hours
Direct labor cost = $819,000
Hence, the direct labor cost included in the company's flexible budget for March would be $819,000.
Learn more about direct labor cost at brainly.com/question/29390449
#SPJ1
B=(3,5,6,9) and C=(2,4,6,8) Find (A). A/B (B). B/C C. A/C (D). C/A
Answer:
The question isn't clear. Can you provide more information or context? What is A? Is it a set or a number? Without this information, I can't provide a meaningful answer.
Find the exact value of cos 105⁰.
a. √√√2-√6
4
b.
√2+√6
4
C.
4
d. √2+√6
4
Answer:
[tex]\dfrac{\sqrt{2}-\sqrt{6} }{4} }[/tex]
Step-by-step explanation:
Find the exact value of cos(105°).
The method I am about to show you will allow you to complete this problem without a calculator. Although, memorizing the trigonometric identities and the unit circle is required.
We have,
[tex]\cos(105\°)[/tex]
Using the angle sum identity for cosine.
[tex]\boxed{\left\begin{array}{ccc}\text{\underline{Angle Sum Identity for Cosine}}\\\\\cos(A+B)=\cos(A)\cos(B)-\sin(A)\sin(B)\end{array}\right}[/tex]
Split the given angle, in degrees, into two angles. Preferably two angles we can recognize on the unit circle.
[tex]105\textdegree=45\textdegree+60\textdegree\\\\\\\therefore \cos(105\textdegree)=\cos(45\textdegree+60\textdegree)[/tex]
Now applying the identity.
[tex]\cos(45\textdegree+60\textdegree)\\\\\\\Longrightarrow \cos(45\textdegree+60\textdegree)=\cos(45\textdegree)\cos(60\textdegree)-\sin(45\textdegree)\sin(60\textdegree)[/tex]
Now utilizing the unit circle.
[tex]\boxed{\left\begin{array}{ccc}\text{\underline{From the Unit Circle:}}\\\\\cos(45\textdegree)=\dfrac{\sqrt{2} }{2}\\\\\cos(60\textdegree)=\dfrac{1}{2}\\\\\sin(45\textdegree)=\dfrac{\sqrt{2} }{2}\\\\\sin(60\textdegree)=\dfrac{\sqrt{3} }{2} \end{array}\right}[/tex]
[tex]\cos(45\textdegree)\cos(60\textdegree)-\sin(45\textdegree)\sin(60\textdegree)\\\\\\\Longrightarrow \Big(\dfrac{\sqrt{2} }{2}\Big)\Big(\dfrac{1 }{2}\Big)-\Big(\dfrac{\sqrt{2} }{2}\Big)(\dfrac{\sqrt{3} }{2}\Big)[/tex]
Now simplifying...
[tex]\Big(\dfrac{\sqrt{2} }{2}\Big)\Big(\dfrac{1 }{2}\Big)-\Big(\dfrac{\sqrt{2} }{2}\Big)(\dfrac{\sqrt{3} }{2}\Big)\\\\\\\Longrightarrow \Big(\dfrac{\sqrt{2} }{4} \Big)-\Big(\dfrac{\sqrt{6} }{4} \Big)\\\\\\\therefore \cos(105\textdegree)= \boxed{\boxed{\frac{\sqrt{2}-\sqrt{6} }{4} }}[/tex]
Last year, Ali biked b miles. This year, he biked 358 miles. Using b, write an expression for the total number of miles he biked
5 In a Survery of 130 people 80 claimed to be CDO partisans and 60 claimed to be Anc partisan. If 30 of them are both ANC and CDO how many people are none of these two parties
Answer: there are 20 people who claimed to be neither CDO partisans nor ANC partisans.
Step-by-step explanation:
To determine the number of people who are none of these two parties, we need to subtract the total number of people who claimed to be CDO partisans, ANC partisans, and those who claimed to be both from the total number of people surveyed.
Total surveyed people = 130
Number claiming to be CDO partisans = 80
Number claiming to be ANC partisans = 60
Number claiming to be both ANC and CDO = 30
To find the number of people who are none of these two parties, we can calculate it as follows:
None of these two parties = Total surveyed people - (CDO partisans + ANC partisans - Both ANC and CDO)
None of these two parties = 130 - (80 + 60 - 30)
None of these two parties = 130 - 110
None of these two parties = 20
what is five times five
Answer:
25
Step-by-step explanation:
5+5+5+5+5=25
Answer:25
Step-by-step explanation:
What is the major difference between Grades 4 and 5 in terms of the teaching of probability?
Answer:
In Grade 4, students are introduced to the concept of chance and the idea that different situations have different probabilities of occurring. They learn that for many situations, there are a finite number of different possible outcomes. However, at this stage, students are not expected to calculate the probability of events occurring. In Grade 5, students continue to build on their understanding of probability and may begin to learn more advanced concepts and techniques for calculating probabilities.
Step-by-step explanation:
Find the volume of the solid obtained by rotating the region
bounded by the graphs y=(x-4)^3,the x-axis, x=0, and x=5
about the y-axis? (Express numbers in exact form. Use symbolic
notation and fractions where needed.)
Answer:
Step-by-step explanation:
To find the volume of the solid obtained by rotating the region bounded by the graphs y = (x - 4)^3, the x-axis, x = 0, and x = 5 about the y-axis, we can use the method of cylindrical shells.
The formula for the volume of a solid obtained by rotating a region bounded by the graph of a function f(x), the x-axis, x = a, and x = b about the y-axis is given by:
V = 2π ∫[a, b] x * f(x) dx
In this case, the function f(x) = (x - 4)^3, and the bounds of integration are a = 0 and b = 5.
Substituting these values into the formula, we have:
V = 2π ∫[0, 5] x * (x - 4)^3 dx
To evaluate this integral, we can expand the cubic term and then integrate:
V = 2π ∫[0, 5] x * (x^3 - 12x^2 + 48x - 64) dx
V = 2π ∫[0, 5] (x^4 - 12x^3 + 48x^2 - 64x) dx
Integrating each term separately:
V = 2π [1/5 x^5 - 3x^4 + 16x^3 - 32x^2] evaluated from 0 to 5
Now we can substitute the bounds of integration:
V = 2π [(1/5 * 5^5 - 3 * 5^4 + 16 * 5^3 - 32 * 5^2) - (1/5 * 0^5 - 3 * 0^4 + 16 * 0^3 - 32 * 0^2)]
Simplifying:
V = 2π [(1/5 * 3125) - 0]
V = 2π * (625/5)
V = 2π * 125
V = 250π
Therefore, the volume of the solid obtained by rotating the region bounded by the graphs y = (x - 4)^3, the x-axis, x = 0, and x = 5 about the y-axis is 250π cubic units.
PLEASE HELP ITS HARD
Answer:
- 8a²
Step-by-step explanation:
using the rule of exponents
[tex]\frac{a^{m} }{a^{n} }[/tex] = [tex]a^{(m - n)}[/tex]
given
[tex]\frac{80a^9}{-10a^7}[/tex]
= [tex]\frac{80}{-10}[/tex] × [tex]a^{(9-7)}[/tex]
= - 8 × a²
= - 8a²
a. Find the slope of x^3+y^3-65xy=0 at the points (4,16) and (16,4).
b. At what point other than the origin does the curve have a horizontal tangent line?
c. Find the coordinates of the point other than the origin where the curve has a vertical tangent line.
a. The slope of the curve at the point (4,16) is approximately 1.165, and at the point (16,4) is approximately -0.496.
b. The curve has a horizontal tangent line at the points(0,0) and (3,27).
c. The curve has a vertical tangent lineat the points (0,0) and (65/2, (65/2)³).
How is this so?a. To find the slope of the curve given by the equation x³ + y³ - 65xy = 0 at the points (4,16) and (16,4),we can differentiate the equation implicitly with respect to x and solve for dy/dx.
Differentiating the equation with respect to x, we have -
3x² + 3y²(dy/dx) - 65y - 65x(dy/dx) = 0
To find the slope at a specific point, substitute the x and y coordinates into the equation and solve for dy/dx.
For the point (4,16) -
3(4)² + 3(16)²(dy/dx) - 65(16) - 65(4)(dy/dx) = 0
48 + 768(dy/dx) - 1040 - 260(dy/dx) = 0
508(dy/dx) = 592
(dy/dx) = 592/508
(dy/dx) ≈ 1.165
For the point (16,4) -
3(16)² + 3(4)²(dy/dx) - 65(4) - 65(16)(dy/dx) = 0
768 + 48(dy/dx) - 260 - 1040(dy/dx) = 0
(-992)(dy/dx) = 492
(dy/dx) = 492/(-992)
(dy/dx) ≈ -0.496
Thus, the slope of the curve at the point (4,16) isapproximately 1.165, and at the point (16,4) is approximately -0.496.
b. To find the point where the curve has a horizontal tangent line, we need to find the x-coordinate(s)where dy/dx equals zero.
This means the slope is zero and the tangent line is horizontal.
From the derivative we obtained earlier -
3x² + 3y²(dy/dx) - 65y - 65x(dy/dx) = 0
Setting dy/dx equal to zero -
3x² - 65y = 0
Substituting y = x³/65 into the equation -
3x² - 65(x³/65) = 0
3x² - x³ = 0
Factoring out an x² -
x²(3 - x) = 0
This equation has two solutions - x = 0 and x = 3.
hence, the curve has a horizontal tangent line at the points(0,0) and (3,27).
c. To find the point where the curve has a vertical tangent line, we need to find the x-coordinate(s) where the derivative is undefinedor approaches infinity.
From the derivative -
3x² + 3y²(dy/dx) - 65y - 65x(dy/dx) = 0
To find the vertical tangent line, dy/dx should be undefined or infinite. This occurs when the denominator of dy/dx is zero.
Setting the denominator equal to zero: -
65x = 65y
x = y
Substituting this condition back into the original equation -
x³ + x³ - 65x² = 0
2x³ - 65x² = 0
x²(2x - 65) = 0
This equation has two solutions - x = 0 and x = 65/2.
Therefore, the curve has a vertical tangent line at the points (0,0)
and(65/2, (65/2)³).
Learn more about slope:
https://brainly.com/question/3493733
#SPJ1
If FE =14 find the length of BC
Please give a very in-depth explanation and I will mark Brainliest!!
HI Your answer is 42
I have calculated it you can trust me
Well you have marked right in the pic
PLEASE MARK AS BRAINLIEST
A graph has time driven (hours) on the x-axis, and Distance Driven (miles) on the y-axis. Points are grouped closely together an increase slightly. Points (2, 225) and (8, 75) are outside of the cluster.
The scatterplot shows the time driven on a trip compared to the distance driven. Inspect the scatterplot to determine if it has outliers.
How many outliers does the data set have?
The point
is an outlier in the data se
The data set has two outliers, namely the points (2, 225) and (8, 75).
Based on the given information about the scatterplot, we can observe that most of the points are grouped closely together and show a slight increase.
There are two points that lie outside of this cluster, specifically (2, 225) and (8, 75).
To determine if these points are outliers, we need to consider their deviation from the general pattern exhibited by the majority of the data points.
If these points deviate significantly from the overall trend, they can be considered outliers.
In this case, since (2, 225) and (8, 75) lie outside of the cluster of closely grouped points and do not follow the general pattern, they can be considered outliers.
These points are noticeably different from the majority of the data points and may have influenced the overall trend of the scatterplot.
The data set has two outliers, namely the points (2, 225) and (8, 75).
For more such questions on data set
https://brainly.com/question/27358262
#SPJ8
Suppose that an object is thrown upward from ground level with an initial velocity of 160ft/sec. Its height after t seconds is a function h given by h(t)=-16t^2 +160t.
a) Find an equivalent expression for h(t) by factoring out a common factor with a negative coefficient.
b) Check your factoring by evaluating both expressions for h(t) at t=1.
The factored expression is
a) The factored expression for h(t) is -16t(t - 10), obtained by factoring out a common factor of -16 and a common factor of t from the original expression -16t^2 + 160t.
b) Both the original expression -16t^2 + 160t and the factored expression -16t(t - 10) yield the same result of 144 when evaluated at t = 1, confirming the correctness of the factoring.
a) To factor out a common factor with a negative coefficient from the expression h(t) = [tex]-16t^2 + 160t[/tex], we can rewrite it as:
h(t) = [tex]-16(t^2 - 10t)[/tex]
Now, let's focus on factoring the quadratic expression inside the parentheses. We can factor out a common factor of t:
h(t) = -16t(t - 10)
Therefore, the factored expression for h(t) is -16t(t - 10).
b) To check the factoring by evaluating both expressions for h(t) at t = 1, we substitute t = 1 into the original expression and the factored expression and compare the results.
Using the original expression:
h(1) = [tex]-16(1)^2 + 160(1)[/tex]
h(1) = -16 + 160
h(1) = 144
Using the factored expression:
h(1) = -16(1)(1 - 10)
h(1) = -16(1)(-9)
h(1) = 144
Both expressions yield the same result of 144 when evaluated at t = 1. Therefore, the factoring is correct.
For more such information on: factored expression
https://brainly.com/question/29877882
#SPJ8
omari's monthly taxable income is ksh 24200. calculate the tax charged on omari's monthly earning
The tax charged on Omari's monthly earning of Ksh 24,200 is Ksh 3,340.
To calculate the tax charged on Omari's monthly earning, we need to consider the tax brackets and rates applicable in the specific tax system or country. Since you haven't specified a particular tax system, I will provide a general explanation.
Assuming we have a simplified progressive tax system with three tax brackets:
For the first tax bracket, let's say income up to Ksh 10,000 is taxed at a rate of 10%.
For the second tax bracket, income between Ksh 10,001 and Ksh 20,000 is taxed at a rate of 15%.
For the third tax bracket, income above Ksh 20,000 is taxed at a rate of 20%.
To calculate the tax charged on Omari's monthly earning of Ksh 24,200, we can divide it into the respective tax brackets:
Ksh 10,000 falls in the first tax bracket. So, the tax for this portion is 10% of Ksh 10,000, which is Ksh 1,000.
Ksh 20,000 - Ksh 10,000 = Ksh 10,000 falls in the second tax bracket. The tax for this portion is 15% of Ksh 10,000, which is Ksh 1,500.
The remaining amount, Ksh 24,200 - Ksh 20,000 = Ksh 4,200, falls in the third tax bracket. The tax for this portion is 20% of Ksh 4,200, which is Ksh 840.
Now, we can sum up the taxes for each bracket:
Total Tax = Tax in the first bracket + Tax in the second bracket + Tax in the third bracket
Total Tax = Ksh 1,000 + Ksh 1,500 + Ksh 840
Total Tax = Ksh 3,340
For more such questions on tax charged visit:
https://brainly.com/question/1592982
#SPJ8
Given that p(x)=2(5−x)2+1 , what is the value of p(-4)? Responses
Answer:
37
Step-by-step explanation:
x=-4
=2(5-(-4)2+1
=2(5+4)2+1
=2(9)2+1
=18(2)+1
=36+1
=37
PLEASE HELPP: 2.11.2 Project: Performance Task: The Parallax Problem (For San Francisco)
The Scenario: You’re looking for a sponsor to pay for you to participate in a sailboat race. Now that you’ve solved the parallax problem, use the same skills you used there to write a proposal that shows that you can win the race.
The Project: Use the information provided in the performance task to estimate your travel costs and to calculate your average speed and the speed of last year’s winner. Use the questions below to help you gather information to write your proposal
3. What is the distance between buoy A and B? (5 points)
4. What are the lengths of the other two triangle legs? (4 points: 2 points each)
Remember what you know about the shape of the Race Course.
5. What is the total length of the race course? (4 points: 3 for calculation, 1 for answer)
Part VIII: Calculate the winner’s speed. (10 points)
1. What was the winner’s speed during last year’s race? (5 points: 3 points for speed. 2 points for conversion to knots).
2. How does the winner’s speed compare with your average speed? How much faster or slower are you? (5 points)
Part IX: Write your proposal. (8 points)
Now it’s time to make your proposal to the sponsor. Your sponsor will have their logo on your boat, so they want to be sure it’s likely to do well. The sponsor also needs to know what the expenses and risks are, so they know how much their investment in you will cost.
1. Complete the table to summarize the results of your study. (4 points)
Category:
Race:
Risk Analysis:
Itemized Travel Cost
Safety hazards
Competitive Analysis:
My time and speed
Last year's winning time and speed
Reward Analysis:
My chances of winning
2. Write a summary paragraph explaining why the sponsor should accept your proposal. (4 points)
The proposal is as follows
Part III - The distance between buoys A and B is 12.8 kilometers.
Part IV - The length of the other two triangle legs are 10.2 kilometers and 8.4 kilometers.
Part V - The total length of the race course is 31.4 kilometers.
Part VIII - The winner's speed during last year's race was 10.8 knots.
See the proposal attached.
Why the sponsor should accept your proposalDear Sponsor,
I'm seeking sponsorship for the San Francisco sailboat race.
With a proven track record and the determination to win, your investment of $5,500 covers travel costs and potential hazards.
By associating your brand with a winning sailor, you'll gain significant exposure to thousands of spectators. Join me in this thrilling race for success.
Sincerely,
[Your Name]
Learn more about proposal at:
https://brainly.com/question/29307495
#SPJ1
Which expression is equivalent to 10f - 5f + 8 +6g +4?
The given expression, 10f - 5f + 8 + 6g + 4, simplifies to 5f + 12 + 6g when like terms are combined.
To simplify the expression 10f - 5f + 8 + 6g + 4, we can combine like terms by adding or subtracting coefficients that have the same variables:
10f - 5f + 8 + 6g + 4
Combining the terms with 'f', we have:
(10f - 5f) + 8 + 6g + 4
This simplifies to:
5f + 8 + 6g + 4
Next, we can combine the constant terms:
8 + 4 = 12
Thus, the simplified expression is:
5f + 12 + 6g
This expression is equivalent to 10f - 5f + 8 + 6g + 4.
In summary, the expression 10f - 5f + 8 + 6g + 4 simplifies to 5f + 12 + 6g after combining like terms.
For more question on expression visit:
https://brainly.com/question/1859113
#SPJ8
If � 1 = 4 a 1 =4 and � � = � � � − 1 + 4 a n =na n−1 +4 then find the value of � 5 a 5 .
The value of `a5 = λ5 = 824`.Therefore, the value of `a5` is 824.
Given the following values; `λ1 = 4` and `λn = na(n-1) + 4`.
We are required to calculate the value of `λ5` which is `a5`.
Solution We are given that;`λ1 = 4` which can also be expressed as `a1 = 4`. We are also given that `λn = na(n-1) + 4`. For `n=2`, `λ2 = 2a1 + 4 = 2(4) + 4 = 12`.
For `n=3`, `λ3 = 3a2 + 4 = 3(12) + 4 = 40`. For `n=4`, `λ4 = 4a3 + 4 = 4(40) + 4 = 164`. For `n=5`, `λ5 = 5a4 + 4 = 5(164) + 4 = 824`.
Hence, the value of `a5 = λ5 = 824`.Therefore, the value of `a5` is 824.
For more such questions on expressed
https://brainly.com/question/12269818
#SPJ8