Given that there are 2.2 lbs per 1kg and 16 ounces per 1 pound, how many oz are there in 13g? Enter just the numerical value (without units) using 2 significant figures.

Answers

Answer 1

There is 0.46 oz in 13g

To find out how many ounces there are in 13 grams, first, we need to convert grams to pounds and then pounds to ounces. Here are the steps:

1. Convert grams to pounds: Since there are 2.2 lbs per 1 kg, and 1 kg equals 1000 grams, we first need to convert 13 grams to kg and then to lbs.

  13 g * (1 kg / 1000 g) * (2.2 lbs / 1 kg) = 0.0286 lbs

2. Convert pounds to ounces: Now that we have the weight in pounds, we can convert it to ounces using the conversion factor of 16 ounces per 1 pound.

  0.0286 lbs * (16 oz / 1 lb) = 0.4576 oz

3. Round to 2 significant figures: Finally, we round the result to 2 significant figures.

  0.4576 oz ≈ 0.46 oz

Therefore, there is 0.46 oz in 13g.

Learn more about numerical value here,

https://brainly.com/question/31613508

#SPJ11


Related Questions

32 g sample of gas occupies 22.4 l at stp. what is the identity of the gas ?

Answers

When we say STP, we are referring to standard temperature and pressure, which is defined as 0°C (273 K) and 1 atm (101.3 kPa).

The fact that a 32 g sample of gas occupies 22.4 L at STP means that the gas has a molar volume of 22.4 L/mol.



We can use the ideal gas law to find the number of moles of gas present in the sample. The ideal gas law is PV=nRT, where P is the pressure,

V is the volume, n is the number of moles, R is the gas constant, and T is the temperature. At STP, we know that the pressure is 1 atm and the temperature is 273 K.

Rearranging the ideal gas law, we get n = PV/RT. Substituting the given values, we get n = (1 atm)(22.4 L) / (0.08206 L·atm/mol·K)(273 K) = 1 mol.

So we have 1 mole of gas in the sample, which weighs 32 g. The molar mass of the gas can be found by dividing the mass by the number of moles: molar mass = 32 g / 1 mol = 32 g/mol.

Now, we can use the periodic table to find the identity of the gas that has a molar mass of 32 g/mol. The closest match is O2, which has a molar mass of 32 g/mol. Therefore, the gas in the sample is most likely oxygen.

In summary, a 32 g sample of gas that occupies 22.4 L at STP is most likely oxygen, based on the ideal gas law and the molar mass of the gas.

To know more about temperature refer here

https://brainly.com/question/11464844#

#SPJ11

compute the mass of kcl needed to prepare 1000 ml of a 1.50 m solution.

Answers

The mass of KCl needed to prepare 1000 ml of a 1.50 M solution is 173.65 grams.

To compute the mass of KCl needed, we need to use the formula:
mass (in grams) = moles x molar mass
First, we need to calculate the number of moles of KCl required for a 1.50 M solution:
1.50 mol/L x 1 L = 1.50 moles
The molar mass of KCl is 74.55 g/mol.

Using this information, we can calculate the mass of KCl needed:
mass = 1.50 moles x 74.55 g/mol = 173.65 grams
Therefore, 173.65 grams of KCl is required to prepare 1000 ml of a 1.50 M solution.

Learn more about moles here:

https://brainly.com/question/31597231

#SPJ11

The non-metal element selenium, Se, has six

electrons in its outer orbit. Will atoms of this element

form positively charged or negatively charged ions?

What will their ionic charge be?

Answers

Atoms of selenium (Se) with six electrons in its outer orbit will tend to form negatively charged ions. The ionic charge of the ions formed by selenium will be -2.

Selenium belongs to Group 16 of the periodic table, also known as the oxygen family or chalcogens. Elements in this group typically have six valence electrons. Valence electrons are the electrons in the outermost energy level of an atom, and they play a significant role in determining the reactivity and chemical behavior of an element.

To achieve a stable electron configuration, atoms of selenium will gain two electrons to fill their outer orbit and achieve a full valence shell of eight electrons. By gaining two electrons, selenium will form negatively charged ions. The ionic charge of these ions will be -2, indicating an excess of two electrons compared to the number of protons in the nucleus.

It is important to note that the tendency to form ions and the resulting ionic charge depend on the number of valence electrons and the octet rule, which states that atoms tend to gain, lose, or share electrons to achieve a stable electron configuration with eight valence electrons (except for hydrogen and helium, which follow the duet rule).

Learn more about chalcogens here: https://brainly.com/question/29220016

#SPJ11

what mass of sodium hydroxide (naoh, molar mass = 40.0 g∙mol–1) is needed to make 100.0 ml of a 0.125 m naoh solution? data sheet and periodic table 0.0500 g 0.500 g 3.13 g 5.00 g

Answers

The mass of sodium hydroxide needed to make 100.0 ml of a 0.125 M NaOH solution is 0.500 g.

To calculate the mass of NaOH needed, we use the formula:

mass (g) = molarity (mol/L) x volume (L) x molar mass (g/mol)

First, we convert the volume from ml to L by dividing by 1000:

100.0 ml ÷ 1000 ml/L = 0.100 L

Then we substitute the given values into the formula and solve for mass:

mass (g) = 0.125 mol/L x 0.100 L x 40.0 g/mol = 0.500 g

Therefore, 0.500 g of NaOH is needed to make 100.0 ml of a 0.125 M NaOH solution.

To learn more about molarity here

https://brainly.com/question/16587536

#SPJ4

how many mol of a gas of molar mass 29.0 g/mol and rms speed 811 m/s does it take to have a total average translational kinetic energy of 15300 j

Answers

0.061 mol of a gas of molar mass 29.0 g/mol and rms speed 811 m/s does it take to have a total average translational kinetic energy of 15300 J.

To answer this question, we need to use the formula for the average translational kinetic energy of a gas:
[tex]E=(\frac{3}{2} )kT[/tex]
where E is the average translational kinetic energy, k is the Boltzmann constant (1.38 x 10⁻²³ J/K), and T is the temperature in Kelvin. We can solve for T:
T = (2/3)(E/k)
Now we need to find the temperature that corresponds to an average translational kinetic energy of 15300 J. Plugging this into the equation above, we get:
T = (2/3)(15300 J / 1.38 x 10⁻²³ J/K) = 1.4 x 10²⁶ K
Next, we can use the formula for rms speed of a gas:
[tex]V_rms=\sqrt{3kT/m}[/tex]
where m is the molar mass of the gas. We can solve for the number of moles of gas (n) that has an rms speed of 811 m/s:
n = m / M
where M is the molar mass in kg/mol. Plugging in the given values, we get:
v_rms = √(3kT/m) = √(3(1.38 x 10^⁻²³J/K)(1.4 x 10²⁶ K) / (29.0 g/mol)(0.001 kg/g)) = 1434 m/s
n = m / M = 29.0 g / (0.001 kg/mol) = 0.029 mol
Finally, we can use the formula for the rms speed to solve for the number of moles of gas that has an average translational kinetic energy of 15300 J:
E = (3/2)kT = (3/2)(1.38 x 10⁻²³J/K)(1.4 x 10²⁶ K) = 2.44 x 10⁻¹⁷ J
n = (2E / (3kT)) ₓ (M / m) = (2(15300 J) / (3(1.38 x 10⁻²³ J/K)(1.4 x 10²⁶ K))) ₓ (0.001 kg/mol / 29.0 g/mol) = 0.061 mol
Therefore, it takes 0.061 mol of the gas to have a total average translational kinetic energy of 15300 J.

Learn more about kinetic energy here

https://brainly.com/question/26472013

#SPJ11

Select the types for all the isomers of [Pt(en)Cl2] Check all that apply.
__mer isomer
__optical isomers
__cis isomer
__trans isomer
__fac isomer
__none of the above

Answers

The types of isomers for [[tex]Pt(en)Cl_2[/tex]] are:

cis isomer

trans isomer

[[tex]Pt(en)Cl_2[/tex]] refers to a complex ion of platinum(II) with ethylenediamine (en) and two chloride ions ([tex]Cl^-[/tex]). The complex has two possible isomers based on the relative orientation of the ligands around the central metal ion.

The two isomers are:

cis-[[tex]Pt(en)Cl_2[/tex]]: In this isomer, the two ethylenediamine ligands are adjacent to each other, and the two chloride ligands are opposite to each other.

trans-[[tex]Pt(en)Cl_2[/tex]]: In this isomer, the two ethylenediamine ligands are opposite to each other, and the two chloride ligands are adjacent to each other.

Both of these isomers are examples of geometrical isomers. They are not optical isomers since they are not mirror images of each other. They are also not fac or mer isomers since those terms are used to describe coordination compounds with more than two ligands.

For more question on isomers click on

https://brainly.com/question/26298707

#SPJ11

The normal boiling point of ethanol is 78.4 C, and the heat of vaporization is Delta H vap = 38.6 kJ / mol.
What is the boiling point of ethanol in C on top of Mt. Everest, where P = 260 mmHg.

Answers

The boiling point of ethanol on top of Mt. Everest, where the pressure is 260 mmHg, is approximately 68.5°C.

At higher altitudes, the atmospheric pressure is lower, and therefore the boiling point of liquids decreases. This is because the lower pressure reduces the vapor pressure required for boiling to occur. To calculate the boiling point of ethanol at 260 mmHg, we can use the Clausius-Clapeyron equation, which relates the vapor pressure of a substance to its temperature and heat of vaporization. By plugging in the given values for the normal boiling point, heat of vaporization, and pressure on Mt. Everest, we can solve for the new boiling point. Learn more about the Clausius-Clapeyron equation and its applications at #SPJ11.

learn more about heat of vaporization

https://brainly.com/question/13372553

#SPJ11

a solution containing 15.0ml of 4.00mhno3 is diluted to a volume of 1.00l. what is the ph of the solution? round your answer to two decimal places.

Answers

The pH of the solution is approximately 1.22 when rounded to two decimal places.

To find the pH of the solution, we need to use the concentration of the HNO3 and the volume of the solution. First, we need to calculate the new concentration of the solution after it has been diluted. We can use the equation: C1V1 = C2V2
Where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume.

To calculate the pH of the diluted solution, first determine the moles of HNO3 present, then calculate the concentration of HNO3 in the diluted solution, and finally use the pH formula.
1. Moles of HNO3 = (Volume × Concentration)
Moles of HNO3 = (15.0 mL × 4.00 M HNO3) × (1 L / 1000 mL) = 0.060 moles HNO3
2. Concentration of HNO3 in the diluted solution:
New concentration = Moles of HNO3 / New volume
New concentration = 0.060 moles / 1.00 L = 0.060 M
3. Calculate pH using the formula: pH = -log[H+]
Since HNO3 is a strong acid, it dissociates completely in water, so [H+] = [HNO3]. Therefore:
pH = -log(0.060)

To know more about solution visit :-

https://brainly.com/question/30665317

#SPJ11

If the original population trapped in the lake thousands of years ago had full armor, does the data collected in the last century suggest natural selection has occurred? Explain your reasoning using data from the chart and your knowledge of stickleback fish.

Answers

Yes, the data suggests natural selection in stickleback fish, as the chart shows a decrease in full armor frequency.

The stickleback fish is well known for its adaptability and is often studied in the context of natural selection. In this case, if the original population trapped in the lake thousands of years ago had full armor, it suggests that they were better equipped to defend against predators.

However, over time, environmental conditions might have changed, leading to different selection pressures. The chart indicates a decrease in the frequency of stickleback fish with full armor, which implies that individuals with reduced or no armor had a higher survival or reproductive advantage.

This change in the population's armor characteristics suggests that natural selection has occurred. Individuals with reduced armor were likely more successful in their environment, allowing their traits to become more prevalent over generations.

To learn more about  stickleback fish click here

brainly.com/question/30513832

#SPJ11

3. For the following balanced redox reaction answer the following questions 4NaOH(aq)+Ca(OH) 2

(aq)+C(s)+4ClO 2

( g)→4NaClO 2

(aq)+CaCO 3

( s)+3H 2

O(l) a. What is the oxidation state of Cl in ClO 2

( g) ? b. What is the oxidation state of C in C(s) ? c. What is the element that is oxidized? d. What is the element that is reduced? e. What is the oxidizing agent? f. What is the reducing agent? g. How many electrons are transferred in the reaction as it is balanced?

Answers

a. The oxidation state of Cl in ClO₂(g) is +3.

b. The oxidation state of C in C(s) is 0.

c. The element that is oxidized is Cl.

d. The element that is reduced is C.

e. The oxidizing agent is ClO₂.

f. The reducing agent is C.

g. To balance the equation, 3 electrons are transferred in each of the 4 half-reactions. Therefore, a total of 12 electrons are transferred in the reaction.

Oxidation and reduction are chemical processes that involve the transfer of electrons between reactant species. Oxidation refers to the loss of electrons by a reactant species, resulting in an increase in its oxidation state. Reduction, on the other hand, refers to the gain of electrons by a reactant species, resulting in a decrease in its oxidation state.

An easy way to remember these processes is through the mnemonic "OIL RIG", which stands for "Oxidation Is Loss, Reduction Is Gain". In an oxidation-reduction (redox) reaction, one species undergoes oxidation while another undergoes reduction.

Learn more about the oxidation and reduction: https://brainly.com/question/13699873

#SPJ11

Which of the following is TRUE?
Group of answer choices
A basic solution does not contain H3O+.
A basic solution has [H3O+] < [OH-]
A neutral solution contains [H2O] = [H3O⁺].
An acidic solution does not contain OH-
A neutral solution does not contain any H3O+or OH-.

Answers

The TRUE statement is: A basic solution has [H3O+] < [OH-].

In aqueous solutions, the concentration of hydrogen ions (H+) and hydroxide ions (OH-) determines whether the solution is acidic, neutral or basic. An acid solution has a higher concentration of H+ ions than OH- ions, while a basic solution has a higher concentration of OH- ions than H+ ions. In a neutral solution, the concentration of H+ ions and OH- ions are equal.

The pH of a solution is a measure of the concentration of H+ ions. A pH value of 7 is considered neutral, while a pH value less than 7 is considered acidic and a pH value greater than 7 is considered basic.

In a basic solution, the concentration of OH- ions is higher than the concentration of H+ ions. This means that the concentration of H3O+ ions (which are formed when water molecules combine with H+ ions) will be lower than the concentration of OH- ions. Therefore, the statement "A basic solution has [H3O+] < [OH-]" is true.

To know more about basic solutions:

https://brainly.com/question/30549961

#SPJ11

a sample of 1.00 mol of gas in a 8.00 l container is at 45.0 °c. what is the pressure (in bar) of the gas?

Answers

Answer: 3.31 bar

Explanation:

PV=nRT

P=nRT/V

n=1

R=0.08206

T=45.0C = 318.15K

V=8.00L

P=((1)(0.08206)(318.15))/8

P=3.2634atm

1atm=1.01325bar

3.2634*1.01325=3.3066bar or using sig figs 3.31 bar

If a sample of 1.00 mol of gas in a 8.00 l container is at 45.0 °c. The pressure of the gas is 3.25 bar.

To solve this problem, we need to use the Ideal Gas Law:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.

First, we need to convert the temperature from Celsius to Kelvin:

T = 273.15 + 45.0 = 318.15 K

Now we can plug in the values we know:

P(8.00 L) = (1.00 mol)(0.0821 L·bar/mol·K)(318.15 K)

Simplifying this equation, we get:

P = (1.00 mol)(0.0821 L·bar/mol·K)(318.15 K) / 8.00 L

P = 3.25 bar

For more question on gas click on

https://brainly.com/question/25736513

#SPJ11

predict the ordering from shortest to longest of the bond lengths in no no2- and no3-

Answers

The bond lengths in NO, NO2-, and NO3- can be predicted based on their molecular structure and bond order.

NO has a linear structure with a bond order of 2, meaning it has a triple bond between nitrogen and oxygen.

The bond length of the triple bond in NO is shorter than a double bond. Therefore, NO has the shortest bond length.

NO2- has a bent structure with a bond order of 1.5, which means it has one double bond and one single bond between nitrogen and oxygen. The double bond is shorter than the single bond.

Therefore, the bond length of the double bond in NO2- is shorter than the single bond, making it shorter than the NO3- bond length.

NO3- has a trigonal planar structure with a bond order of 1.33, meaning it has one double bond and two single bonds between nitrogen and oxygen. The double bond is shorter than the single bonds.

Therefore, the bond length of the double bond in NO3- is shorter than the single bond in NO3-.

Based on this analysis, the order of bond lengths from shortest to longest is NO > NO2- > NO3-.

To know more about molecular structure refer here

https://brainly.com/question/503958#

#SPJ11

pwhixh ester hydolyzes more rapidly? a. phenyl acetate or benzyl acetate?b. methyl acetate or phenyl acetate?

Answers

Phenyl acetate hydrolyzes more rapidly than benzyl acetate, while methyl acetate hydrolyzes faster than phenyl acetate.

The rate at which esters hydrolyze depends on the stability of the intermediate formed during the reaction.

In the case of phenyl acetate and benzyl acetate, phenyl acetate hydrolyzes more rapidly because it forms a more stable intermediate. The phenoxide ion produced is stabilized through resonance with the phenyl ring.

Comparing methyl acetate and phenyl acetate, methyl acetate hydrolyzes faster because the methyl group is less bulky, resulting in a more accessible carbonyl carbon for nucleophilic attack, which leads to a faster hydrolysis reaction.

For more such questions on hydrolyzes, click on:

https://brainly.com/question/6615591

#SPJ11

Benzyl acetate hydrolyzes more rapidly than phenyl acetate, and methyl acetate hydrolyzes more rapidly than phenylacetate. the correct answer is (a) benzyl acetate and (b) methyl acetate.

The rate of hydrolysis of an ester depends on several factors, including the size of the alkyl group attached to the carbonyl carbon and the electron density around the carbonyl group. In general, esters with larger alkyl groups attached to the carbonyl carbon undergo hydrolysis more slowly than those with smaller alkyl groups. This is because larger alkyl groups hinder the approach of water molecules to the carbonyl carbon, thus reducing the rate of hydrolysis.  Comparing the given options, benzyl acetate has a larger alkyl group than phenyl acetate, so it undergoes hydrolysis more rapidly. Similarly, methyl acetate has a smaller alkyl group than phenyl acetate, so it undergoes hydrolysis more rapidly. Therefore, the correct answer is (a) benzyl acetate and (b) methyl acetate.

learn more about Benzyl acetate here:

https://brainly.com/question/31962652

#SPJ11

Which equation is an example of a redox reaction?


A. HCI + KOH — KCl + H20


B. BaCl2 + Na2S04 - 2NaCl + BaSO4


C. Ca(OH)2 + H2SO3 → 2H20 + CaSO3


D. 2K + CaBr2 — 2KBr + Ca

Answers

The equation that is an example of a redox reaction is option B, BaCl2 + Na2SO4 - 2NaCl + BaSO4.

In a redox reaction, both oxidation and reduction occur. In option B, BaCl2 loses electrons and is oxidized to BaSO4 while Na2SO4 gains electrons and is reduced to NaCl.

This exchange of electrons is what makes it a redox reaction. Option A is a neutralization reaction, option C is a double displacement reaction, and option D is an exchange reaction. Therefore, option B is the only equation that fits the criteria for a redox reaction.

Learn more about neutralization here.

https://brainly.com/questions/14156911

#SPJ11

Plssssss substance increases in temperature by 255°c when a 983g sampleof it absorbs 8300j of heat. What is the specific heat capacity of the substance​

Answers

Substance increases in temperature by 255°c when a 983g sampleof it absorbs 8300j of heat. the specific heat capacity of the substance is approximately 32.28 J/(kg·°C).

To determine the specific heat capacity of a substance, we can use the equation:

Q = mcΔT

Where Q is the heat absorbed, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature.

In this case, the substance increases in temperature by 255°C when a 983g sample of it absorbs 8300J of heat. We can plug these values into the equation:

8300J = (983g) * c * 255°C

First, we need to convert the mass from grams to kilograms:

983g = 0.983kg

Now, we rearrange the equation to solve for the specific heat capacity, c:

C = (8300J) / (0.983kg * 255°C)

C ≈ 32.28 J/(kg·°C)

Therefore, the specific heat capacity of the substance is approximately 32.28 J/(kg·°C). This value represents the amount of heat energy required to raise the temperature of one kilogram of the substance by one degree Celsius.

Learn more about specific heat capacity here:

https://brainly.com/question/28302909

#SPJ11

A current of 0.500 A flows through a cell containing Fe2+ for 10.0 minutes. Calculate
the maximum moles of Fe that can be removed from solution? Assume constant current
over time (Faraday constant = 9.649 x 104 C/mol).
A) 1.04 mmol
B) 51.8 mol
C) 3.11 mmol
D) 1.55 mmol
E) 25.9 mol

Answers

According to the statement the maximum moles of Fe that can be removed from solution is 3.11 mmol (option C).

The solution to this question requires the use of Faraday's law of electrolysis, which states that the amount of substance produced or consumed during electrolysis is directly proportional to the quantity of electricity passed through the cell. We can use the formula:
n = (I*t)/F
where n is the number of moles of substance produced or consumed, I is the current, t is the time, and F is the Faraday constant.
In this case, we are looking for the maximum moles of Fe that can be removed from solution, so we can use the forula to calculate n:
n = (0.500 A * 600 s) / 9.649 x 104 C/mol
n = 3.10 x 10-3 mol
Therefore, the maximum moles of Fe that can be removed from solution is 3.11 mmol (option C).

To know more about solution visit :

https://brainly.com/question/32024431

#SPJ11

A 3.75-g sample of limestone (caco3) contains 1.80 g of oxygen and 0.450 g of carbon. what is the percent o and the percent c in limestone?

Answers

The percent oxygen in limestone is 48% and the percent carbon is 12%.

To find the percent oxygen and carbon in limestone, we need to use the formula:
% element = (mass of element / total mass of compound) x 100%
First, we need to calculate the mass of calcium in the sample:
Mass of calcium = total mass of compound - mass of oxygen - mass of carbon
Mass of calcium = 3.75 g - 1.80 g - 0.450 g
Mass of calcium = 2.52 g
Now we can calculate the percent oxygen:
% O = (1.80 g / 3.75 g) x 100%
% O = 48%
And the percent carbon:
% C = (0.450 g / 3.75 g) x 100%
% C = 12%
Therefore, the percent oxygen in limestone is 48% and the percent carbon is 12%.
To know more about limestone visit:

https://brainly.com/question/30717890

#SPJ11

draw a lewis structure for pf3. how many lone pairs are there on the phosphorus atom

Answers

The Lewis structure for PF3 shows a single phosphorus atom with three fluorine atoms bonded to it. The phosphorus atom has one lone pair, represented by two dots, on its valence shell, for a total of 4 electron pairs around the central atom.

We must first ascertain the total amount of valence electrons present in the molecule in order to design the Lewis structure for PF3. Each atom of fluorine (F) contains seven valence electrons, while phosphorus (P) has five, for a total of:

There are 26 valence electrons (1 x 5 + 3 x 7)

The atoms can then be arranged in a fashion that minimises formal charges and ensures that each atom complies with the octet rule. We may create single bonds between each F atom and the core P atom by positioning the phosphorus atom in the centre and the three fluorine atoms surrounding it. 20 valence electrons are left after using 6 of them in this way. The leftover electrons can then be distributed as lone pairs on the F atoms, providing.

learn more about Lewis structure here:

https://brainly.com/question/20300458

#SPJ11

Given the following electrochemical cell, calculate the potential for the cell in which the concentration of Ag+ is 0.0285 M, the pH of the H+ cell is 2.500, and the pressure for H2 is held constant at 1 atm. The temperature is held constant at 55°C

Answers

According to the question to calculate the potential of the cell, the potential of the cell is 0.7816 V at a temperature of 55°C.

The electrochemical cell given in the question can be represented as follows:
Ag(s) | Ag+(0.0285 M) || H+(pH = 2.500) | H2(1 atm)
To calculate the potential of the cell, we need to use the Nernst equation, which is given as:
Ecell = E°cell - (RT/nF)lnQ
Where E°cell is the standard cell potential, R is the gas constant, T is the temperature, n is the number of electrons transferred, F is the Faraday constant, and Q is the reaction quotient.
In this case, the reaction taking place in the cell can be written as:
Ag+(aq) + H2(g) → Ag(s) + H+(aq)
The balanced equation shows that two electrons are transferred during the reaction. The standard cell potential for this reaction can be found in a table of standard reduction potentials and is 0.799 V.
To calculate the reaction quotient Q, we need to use the concentrations of the species involved. The concentration of Ag+ is given as 0.0285 M, and the pH of the H+ cell is 2.500, which means that the concentration of H+ is 3.16 x 10^-3 M. The pressure of H2 is held constant at 1 atm. Therefore, Q can be calculated as:
Q = [Ag+][H+]/(PH2)
Q = (0.0285)(3.16 x 10^-3)/(1)
Q = 8.994 x 10^-5
Substituting the values in the Nernst equation, we get:
Ecell = 0.799 - (0.0257/2)ln(8.994 x 10^-5)
Ecell = 0.799 - 0.0174
Ecell = 0.7816 V
Therefore, the potential of the cell is 0.7816 V at a temperature of 55°C.

To know more about electrochemical cell visit :

https://brainly.com/question/31149864

#SPJ11

explain why the red cabbage acid-base indicator would not work as the indicator for a titration

Answers

The red cabbage acid-base indicator is a popular choice for identifying the pH of a solution. It works by changing color in response to the acidity or basicity of the solution. However, it may not be suitable for use as an indicator in titrations.

Titrations are a precise method of determining the concentration of a solution by reacting it with a solution of known concentration (the titrant). This reaction is carried out until a specific end point is reached, which is usually identified by a color change in the indicator.
The problem with using red cabbage as an indicator in titrations is that it is not a reliable indicator for the endpoint. This is because the color change is not sharp enough, and the range over which it changes color is relatively broad. This can make it difficult to accurately identify the endpoint, which can result in inaccurate titration results.
Therefore, it is more common to use a specific indicator that is known to produce a sharp, distinctive color change at the end point of the titration. These indicators are carefully chosen to match the pH range of the titration, which ensures the accuracy and reliability of the results.
In summary, while the red cabbage acid-base indicator is a useful tool for identifying the pH of a solution, it is not suitable for use as an indicator in titrations. Titrations require a more specific indicator that can produce a sharp and reliable color change at the endpoint.

To learn more about red cabbage acid-base indicator, refer:-

https://brainly.com/question/16060048

#SPJ11

1. 8 L of a 2. 4M solution of NiCl2 is diluted to 4,5 L. What is the resulting concentration of the diluted solution?

Answers

When 1.8 L of a 2.4 M solution of NiCl2 is diluted to 4.5 L, the resulting concentration of the diluted solution can be calculated by using the formula: (initial concentration) x (initial volume) = (final concentration) x (final volume). The resulting concentration of the diluted solution is approximately 0.96 M.

To find the resulting concentration of the diluted solution, we can use the formula for dilution:

(initial concentration) x (initial volume) = (final concentration) x (final volume)

Given:

Initial concentration = 2.4 M

Initial volume = 1.8 L

Final volume = 4.5 L

Substituting the values into the formula, we have:

(2.4 M) x (1.8 L) = (final concentration) x (4.5 L)

Simplifying the equation, we solve for the final concentration:

(final concentration) = (2.4 M) x (1.8 L) / (4.5 L)

(final concentration) ≈ 0.96 M

Therefore, the resulting concentration of the diluted solution is approximately 0.96 M. This means that the concentration of NiCl2 in the solution has been reduced after dilution to a value lower than the initial concentration of 2.4 M.

Learn more about diluted solution here:

https://brainly.com/question/15467084

#SPJ11

Part D


Complete the following table for the reactions that occur when the black powder is ignited, Balance the equations by


replacing the "?" in front of each substance with a number (or leave it blank if it's a 1). Then fill in the type of reaction


for each compound.


BI X? X2 10pt


Av 三三三三三三yp>


ubmit For


Score


es


Balanced Chemical Equation


Type of Reaction


Comments


Name and Formula of Compound


Charcoal


C(s) + O2(g) - CO2(8)


Sulfur


S


S(s) + O2(8) - SO2(8)


Potassium Perchlorate


KCIO4


KCIO4 - KCI + 20 (8)


Potassium Chlorate


I


?KCIO3 -- ?KCI +702(8)


KCIO3


Potassium Nitrate


KNO3


?KNO3 -- ?K,0 + ?N2(g)+ ?O2(8)


Characters used: 297 / 15000


к


оо


5:45

Answers

The balanced chemical equations and types of reactions for reactions that occur when black powder is ignited are as follows:

1. Charcoal: C(s) + [tex]O_2[/tex](g) → [tex]CO_2[/tex](g) - Combustion reaction

2. Sulfur: S(s) + [tex]O_2[/tex](g) →[tex]SO_2[/tex]g) - Combustion reaction

3. Potassium Perchlorate: [tex]2KCIO_4[/tex](s) → 2KCI(s) +[tex]5O_2[/tex](g) - Decomposition reaction

4. Potassium Chlorate: [tex]2KCIO_3[/tex](s) → 2KCI(s) +[tex]3O_2[/tex](g) - Decomposition reaction

5. Potassium Nitrate: [tex]2KNO_3[/tex](s) → [tex]2K_2O[/tex](s) + [tex]N_2[/tex]N2(g) + [tex]3O_2[/tex](g) - Decomposition reaction

1. Charcoal undergoes a combustion reaction when ignited, combining with oxygen (O2) to form carbon dioxide (CO2).

2. Sulfur also undergoes a combustion reaction when ignited, combining with oxygen (O2) to form sulfur dioxide (SO2).

3. Potassium Perchlorate decomposes when ignited, breaking down into potassium chloride (KCI) and oxygen gas (O2).

4. Potassium Chlorate also decomposes when ignited, breaking down into potassium chloride (KCI) and oxygen gas (O2).

5. Potassium Nitrate undergoes decomposition when ignited, breaking down into potassium oxide (K2O), nitrogen gas (N2), and oxygen gas (O2).

The types of reactions involved in this process include combustion reactions, where substances combine with oxygen to produce carbon dioxide and sulfur dioxide. The other reactions are decomposition reactions, where compounds break down into simpler substances upon heating. These reactions release gases such as oxygen and nitrogen.

Learn more about combustion reaction here:

https://brainly.com/question/14335621

#SPJ11

predict the product for the following dieckmann-like cyclization.

Answers

In a Dieckmann-like cyclization, an ester or similar compound undergoes intramolecular condensation to form a cyclic product, typically a cyclic ester (lactone) or amide (lactam).

This reaction typically involves a base to deprotonate the α-carbon of the ester, generating an enolate intermediate. The enolate then attacks the carbonyl carbon of another ester group within the same molecule, followed by protonation and elimination of the leaving group to yield the cyclic product.

Diesters can be converted into cyclic beta-keto esters via an intramolecular process known as the Dieckmann condensation. This reaction is most effective with 1,6-diesters, which yield five-membered rings, and 1,7-diesters, which yield six-membered rings.

To know about cyclization visit:

https://brainly.com/question/28234696

#SPJ11

Indicate whether solutions of each of the following substance contain ions, molecules, or both (do not consider the solvent, water):
a) hydrochloric acid, a strong acid
b) sodium citrate, a soluble salt
c) acetic acid, a weak acid
d) ethanol, a nonelectrolyte

Answers

The substances hydrochloric acid, a strong acid contains ions, Sodium citrate, a soluble salt contains ions,  Acetic acid, a weak acid contains both ions and molecules, Ethanol, a nonelectrolyte contains only molecules.

Hydrochloric acid, a strong acid, ionizes completely in water to form H⁺ and Cl⁻ ions. So, the solution of hydrochloric acid contains ions.

Sodium citrate, a soluble salt, dissociates into Na⁺ and citrate ions in water. So, the solution of sodium citrate contains ions.

Acetic acid, a weak acid, partially dissociates into H⁺ and acetate ions in water. So, the solution of acetic acid contains both ions and molecules.

Ethanol, a nonelectrolyte, does not dissociate into ions in water. So, the solution of ethanol contains only molecules.

To know more about Hydrochloric acid here

https://brainly.com/question/15231576

#SPJ4

Given 25. 0 g of Chromium and 57. 0 g of Phosphoric acid, what is the maximum amount of Chromium (III) Phosphate formed? *

Answers

We need to identify the limiting reactant, which is the reactant that is completely consumed and determines the maximum amount of product that can be formed, we found the maximum amount of Chromium (III) Phosphate formed is 107.35 g.

First, we need to calculate the number of moles for each reactant. The molar mass of Chromium (Cr) is 52 g/mol, and the molar mass of Phosphoric acid (H3PO4) is 98 g/mol.

Number of moles of Chromium = 25.0 g / 52 g/mol = 0.481 moles

Number of moles of Phosphoric acid = 57.0 g / 98 g/mol = 0.581 moles

Next, we determine the stoichiometric ratio between Chromium (III) Phosphate (CrPO4) and the reactants from the balanced equation. The balanced equation is: 3Cr + 2H3PO4 → CrPO4 + 3H2

From the equation, we can see that 3 moles of Chromium (Cr) react with 2 moles of Phosphoric acid (H3PO4) to form 1 mole of Chromium (III) Phosphate (CrPO4). Comparing the moles of reactants to the stoichiometric ratio, we find that 0.481 moles of Chromium is less than the required 1 mole of Chromium for the reaction. Therefore, Chromium is the limiting reactant.

Since 1 mole of Chromium (III) Phosphate has a molar mass of 107.35 g, the maximum amount of Chromium (III) Phosphate formed is 107.35 g.

LEARN MORE ABOUT limiting reactant here: brainly.com/question/10255265

#SPJ11

given a pipelined processor with 3 stages, what is the theoretical maximum speedup of the the pipelined design over a corresponding single-cycle design?

Answers

The theoretical maximum speedup of a pipelined processor with 3 stages over a corresponding single-cycle design is 3 times. This is due to each stage working concurrently, improving efficiency.

In a pipelined processor with 3 stages, the theoretical maximum speedup over a single-cycle design is 3 times. This is because, in a pipelined design, each stage of the processor works concurrently on different instructions, allowing for more efficient execution of tasks. In contrast, a single-cycle design requires the completion of each instruction sequentially, taking more time for the same number of instructions. The speedup factor is determined by the number of pipeline stages (in this case, 3) as it allows up to 3 instructions to be processed simultaneously. However, this speedup is only achievable under ideal conditions, and factors like pipeline stalls and branch hazards may reduce the actual speedup.

To know more about the pipelined design visit:

https://brainly.com/question/29309586

#SPJ11

Determine the number of moles of electrons that would flow through the resistor if the circuit is operated for 46.52 min.moles of electrons: ? (mol)

Answers

To determine the number of moles of electrons that would flow through the resistor if the circuit is operated for 46.52 min, we need to first calculate the total charge that would flow through the circuit.

The formula to calculate the total charge is:

Q = I * t

Where Q is the total charge (in Coulombs), I is the current (in Amperes), and t is the time (in seconds).

Since we have been given the time in minutes, we need to convert it to seconds. 46.52 minutes is equal to:

t = 46.52 * 60 = 2791.2 seconds

Now, we need to find the current flowing through the resistor. Let's assume that the resistor has a resistance of R ohms and a potential difference of V volts across it. Then, using Ohm's law:

V = IR

I = V / R

We can use the given values to calculate I. Let's say V = 10 volts and R = 5 ohms.

I = 10 / 5 = 2 Amperes

Now, we can use the formula to calculate the total charge:

Q = I * t = 2 * 2791.2 = 5582.4 Coulombs

Finally, we need to find the number of moles of electrons that would flow through the circuit. We know that one Coulomb of charge is equal to the charge on one mole of electrons, which is 96,485.3329 Coulombs. Therefore:

moles of electrons = Q / (96,485.3329)

moles of electrons = 5582.4 / (96,485.3329)

moles of electrons = 0.0579 mol

Therefore, the number of moles of electrons that would flow through the resistor if the circuit is operated for 46.52 min is 0.0579 mol.

To know more about Amperes visit

https://brainly.com/question/31971288

#SPJ11

a sample of nitrogen gas at 1.00 atm is heated rom 250 k to 500 k. if the volume remains constant, what is the final pressure?

Answers

The final pressure of the nitrogen gas is 2.00 atm when heated from 250 K to 500 K at constant volume.

The ideal gas law states that PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is temperature in Kelvin. Since the volume is constant, we can rearrange the equation to solve for pressure:

P = nRT/V

The number of moles of gas (n) and the gas constant (R) are constant, so we can simplify the equation further:

P ∝ T

This means that pressure is directly proportional to temperature, assuming the volume and number of moles of gas remain constant. Therefore, we can use the following equation to solve for the final pressure:

P₂ = P₁(T₂/T₁)

where P₁ and T₁ are the initial pressure and temperature, respectively, and P₂ and T₂ are the final pressure and temperature, respectively.

Substituting the given values, we get:

P₂ = 1.00 atm × (500 K / 250 K) = 2.00 atm

For more question on pressure visit:

https://brainly.com/question/24719118

#SPJ11

The change in enthalpy (δhorxn)(δhrxno) for a reaction is -24.8 kj/molkj/mol. What is the equilibrium constant for the reaction is 3.1×103 at 298 kk?

Answers

To answer this question, we can use the relationship between enthalpy and equilibrium constant:

ΔG = -RTlnK

where ΔG is the change in Gibbs free energy, R is the gas constant, T is the temperature in Kelvin, and K is the equilibrium constant.

We can relate ΔH to ΔG using the equation:

ΔG = ΔH - TΔS

where ΔS is the change in entropy. At equilibrium, ΔG = 0, so we can rearrange the equation to solve for the equilibrium constant:

ΔH = -TΔS

ΔS = -ΔH/T

ΔG = ΔH - TΔS = ΔH - ΔH = 0

Therefore:

ΔH = -RTlnK

-lnK = ΔH/(RT)

lnK = -ΔH/(RT)

K = e^(-ΔH/(RT))

Now we can plug in the values given in the question:

ΔH = -24.8 kJ/mol
T = 298 K
R = 8.314 J/(mol·K)

K = e^(-(-24.8 kJ/mol)/(8.314 J/(mol·K) × 298 K))

K = 3.1 × 10^3

Therefore, the equilibrium constant for the reaction is 3.1 × 10^3.

learn more about equilibrium constant

https://brainly.in/question/8460195?referrer=searchResults

#SPJ11

Other Questions
under the requirements for a statement of cash flow, what sections must be included in the statement? find the arc length of the curve x = 7 cos ( 7 t ) , y = 7 sin ( 7 t ) with 0 t 14 . Part A. Utilize recursion to determine if a number is prime or not. Here is a basic layout for your function. 1.) Negative Numbers, 0, and 1 are not primes. 2.) To determine if n is prime: 2a.) See if n is divisible by i=2 2b.) Set i=i+1 2c.) If i^2 n. Why? Take n=19 as an example. i=2, 2 does not divide 19 evenly i=3, 3 does not divide 19 evenly i=4, 4 does not divide 19 evenly i=5, we don't need to test this. 5*5=25. If 5*x=19, the value of x would have to be smaller then 5. We already tested those values! No larger numbers can be factors unless one we already test is to. Hint: You may have the recursion take place in a helper function! In other words, define two functions, and have the "main" function call the helper function which recursively performs the subcomputations l# (define (is_prime n) 0;Complete this function definition. ) Part B. Write a recursive function that sums the digits in a number. For example: the number 1246 has digits 1,2,4,6 The function will return 1+2+4+6 You may assume the input is positive. You must write a recursive function. Hint: the built-in functions remainder and quotient are helpful in this question. Look them up in the Racket Online Manual! # (define (sum_digits n) 0;Complete this function definition. use the gram-schmidt process to find an orthogonal basis for the column space of the matrix. (use the gram-schmidt process found here to calculate your answer.)[ 0 -1 1][1 0 1][1 -1 0] Varvara is writing a report that compares shipping methods for cattle. Which of the following would be the least helpful point of comparison for such a report? speed of method O origin of method O expense of method availability of method O capacity of method characters in c/c are only 8 bits and therefore can address anywhere. group of answer choices true false how does the viscosity of a polymer melt differ from most fluids that are newtonian? how would you assign a tuple to variable mytuple? Consider the code segment below.PROCEDURE Mystery (number){RETURN ((number MOD 2) = 0)}Which of the following best describes the behavior of the Mystery PROCEDURE? Ira enters a competition to guess how many buttons are in a jar.Iras guess is 200 buttons.The actual number of buttons is 250.What is the percent error of Iras guess?CLEAR CHECKPercent error = %Iras guess was off by %. Suppose that 650 lb of coffee are sold when the price is $4 per pound, and 400 lb are sold at $8 per pound Suppose Sam prepares a solution of 1 g of sugar in 100 mL of water and Ash prepares a solution of 2 g of sugar in 100 mL of water Who made the more concentrated solution? Choose... Then, Ash adds 100 mL more water to her solution. Who has the most concentrated solution after the dilution? determine whether the points are collinear. if so, find the line y = c0 c1x that fits the points. (if the points are not collinear, enter not collinear.) (0, 3), (1, 5), (2, 7) using the following terms, explain what classifications and groups humans fall into, from the most general to the most specific: symmetry, germ layers, coelom, embryological development. If Swifty Corporation issues 3500 shares of $5 par value common stock for $177500, the accounta) Common Stock will be credited for $177500.b)Cash will be debited for $160000.c) Paid-in Capital in Excess of Par Value will be credited for $17500.d)Paid-in Capital in Excess of Par Value will be credited for $160000. An NMOS transistor with k'-800 A/V, W/L=12, Vh=0.9V, and X=0.07 V-1, is operated with VGs=2.0 V.1. What current Ip does the transistor have when is operating at the edge of saturation? Write the answer in mA The melting point of each of 16 samples of a certain brand of hydrogenated vegetable oil was determined, resulting in xbar = 94.32. Assume that the distribution of melting point is normal with sigma = 1.20.a.) Test H0: =95 versus Ha: != 95 using a two-tailed level of .01 test.b.) If a level of .01 test is used, what is B(94), the probability of a type II error when =94?c.) What value of n is necessary to ensure that B(94)=.1 when alpha = .01? In pushing a 0.024-kg dart into a toy dart gun, you have to exert an increasing force that tops out at 7.0 N when the spring is compressed to a maximum value of 0.16 m .Part AWhat is the launch speed of the dart when fired horizontally?Part BDoes your answer change if the dart is fired vertically? the nh3 molecule is trigonal pyramidal, while bf3 is trigonal planar. which of these molecules is flat? only bf3 is flat. both nh3 and bf3 are flat. only nh3 is flat. neither nh3 nor bf3 is flat. P is a function that gives the cost, in dollars, of mailing a letter from the United States to Mexico in 2018 based on the weight of the letter in ounces,w