given that the tlc conditions are identical, explain why the two hydroxyacetophenone isomers have different rf values

Answers

Answer 1

The reason why the two hydroxy acetophenone isomers have different RF values, despite the TLC conditions being identical, is that the RF value is dependent on several factors.

These several factors include the polarity of the solvent, the polarity of the compound being analyzed, and the interactions between the compound and the stationary phase.

In this case, the two isomers differ in the position of the hydroxyl group on the phenyl ring, which can affect their polarity and interactions with the stationary phase. Therefore, even if the TLC conditions are the same, the two isomers may exhibit different affinities for the stationary phase and solvent, resulting in different RF values.

If you need to learn more about isomers click here:

https://brainly.com/question/2705480

#SPJ11


Related Questions

the skin depth of a certain nonmagnetic conducting (good conductor) material is 3 m at 2 ghz. determine the phase velocity in this material.

Answers

The skin depth of a material refers to the distance that an electromagnetic wave can penetrate into the material before its amplitude is attenuated to 1/e (about 37%) of its original value. In the case of a nonmagnetic conducting material, the skin depth is determined by the conductivity of the material and the frequency of the electromagnetic wave.

In this question, we are given that the skin depth of a certain nonmagnetic conducting material is 3 m at a frequency of 2 GHz. This means that at 2 GHz, the electromagnetic wave can penetrate into the material to a depth of 3 m before its amplitude is reduced to 37% of its original value.

To determine the phase velocity of the electromagnetic wave in this material, we need to use the formula:

v = c / sqrt(1 - (lambda / 2 * pi * d)^2)

where v is the phase velocity, c is the speed of light in vacuum, lambda is the wavelength of the electromagnetic wave in the material, and d is the skin depth of the material.

We can rearrange this formula to solve for v:

v = c / sqrt(1 - (lambda / 2 * pi * skin depth)^2)

At a frequency of 2 GHz, the wavelength of the electromagnetic wave in the material can be calculated using the formula:

lambda = c / f

where f is the frequency. Substituting in the values, we get:

lambda = 3e8 m/s / 2e9 Hz = 0.15 m

Substituting this into the equation for v, we get:

v = 3e8 m/s / sqrt(1 - (0.15 / 2 * pi * 3)^2) = 1.09e8 m/s

Therefore, the phase velocity of the electromagnetic wave in the nonmagnetic conducting material with a skin depth of 3 m at 2 GHz is approximately 109 million meters per second.

To know more about skin depth visit:

https://brainly.com/question/31786740

#SPJ11

The input to the op amp-based low-pass filter with a cutoff frequency of 500 Hz and a passband gain of 8 is 3.2cosωtV. Find the output voltage when ω=ωc. Suppose that vo(t)=Acos(ωt+ϕ)V, where A>0 and −180∘<ϕ≤180∘. Determine the values of A, ω, and ϕ.

Answers

Thus, the output voltage for the op amp-based low-pass filter can be expressed as:

vo(t) = 2.56cos(ωct - 180°)V

To find the output voltage when ω=ωc, we need to use the transfer function of the low-pass filter, which is given by:
H(jω) = A / (1 + jω / ωc)

where A is the passband gain and ωc is the cutoff frequency. Since the input is 3.2cosωtV, the output voltage can be expressed as:

vo(t) = H(jω) * 3.2cosωtV
When ω=ωc, we have:
vo(ωc) = H(jωc) * 3.2cos(ωc*t)

Substituting the values for A and ωc, we get:
vo(ωc) = 8 / (1 + j*ωc / 500) * 3.2cos(ωc*t)

Simplifying this expression, we get:
vo(ωc) = 2.56cos(ωc*t - ϕ)

where ϕ is the phase shift introduced by the filter.

To determine the values of A, ω, and ϕ, we need to compare this expression with the given expression for vo(t):
vo(t) = Acos(ωt + ϕ)

Equating the coefficients of the cosine function, we get:
2.56 = A
ωc*t - ϕ = ω*t + ϕ

Solving for ω and ϕ, we get:
ω = ωc
ϕ = -180°

Therefore, the output voltage can be expressed as:
vo(t) = 2.56cos(ωct - 180°)V

Know more about the output voltage

https://brainly.com/question/27839310

#SPJ11

plot the combined source by adding up the three-phase source as following.(use any plotting tool, ex. wolframalpha) a. cos(t), cos(t-60), cos(t 60) b. cos(t), cos(t-120), cos(t 120)

Answers

To plot the combined source of the given three-phase sources, we can use any plotting tool such as WolframAlpha. We need to add up the three-phase sources by taking into account the phase angle differences between them.

In the first case, the three sources are cos(t), cos(t-60), and cos(t+60). The phase angle difference between the first and second source is -60 degrees, and between the first and third source is +60 degrees. To add them up, we need to convert the angles to radians and use the trigonometric identity of cosine addition. The resultant source will be the sum of the three sources.The same process applies to the second case, where the three sources are cos(t), cos(t-120), and cos(t+120). The phase angle differences are -120 degrees and +120 degrees.After plotting the resultant sources, we can observe the characteristics of three-phase power. Three-phase power provides a constant power supply with fewer voltage fluctuations compared to a single-phase power supply. The three sources are 120 degrees out of phase, and the sum of these sources produces a balanced and continuous waveform. In conclusion, by adding up the three-phase sources with the help of a plotting tool, we can observe the balanced waveform produced by three-phase power. The phase angle differences between the sources determine the final waveform.

For such more question on trigonometric

https://brainly.com/question/24349828

#SPJ11

The cylindrical pressure vessel has an inner radius of 1.25 m and awall thickness of 15 mm. It is made from steel plates that arewelded along the 45° seam. Determine the normal and shearstress components along this seam if the vessel is subjected to aninternal pressure of 3 MPa.

Answers

The normal stress component acting perpendicular to the 45° seam of the cylindrical pressure vessel is 2.44 MPa, while the shear stress component acting tangential to the seam is 1.5 MPa.

The normal stress component along the 45° seam of the cylindrical pressure vessel can be determined using the formula:

σn = pi*(r1^2 - r2^2)/(r1^2 + r2^2)

where r1 is the outer radius of the vessel, r2 is the inner radius of the vessel, and pi is the internal pressure. Substituting the given values, we get:

r1 = r2 + t = 1.25 + 0.015 = 1.265 m

σn = 3*(1.265^2 - 1.25^2)/(1.265^2 + 1.25^2) = 2.44 MPa

The shear stress component along the 45° seam of the vessel can be determined using the formula:

τ = pi*r1*r2*sin(2θ)/(r1^2 + r2^2)

where θ is the angle between the seam and the vertical axis. Substituting the given values, we get:

τ = 3*1.265*1.25*sin(90°)/(1.265^2 + 1.25^2) = 1.5 MPa

To determine the normal and shear stress components along the 45° seam of the cylindrical pressure vessel, we need to first calculate the outer radius of the vessel. We can do this by adding the wall thickness to the inner radius, which gives:

r1 = r2 + t = 1.25 + 0.015 = 1.265 m

Now, we can use the formula for normal stress component to calculate the stress acting perpendicular to the seam. The formula is:

σn = pi*(r1^2 - r2^2)/(r1^2 + r2^2)

Substituting the given values, we get:

σn = 3*(1.265^2 - 1.25^2)/(1.265^2 + 1.25^2) = 2.44 MPa

This means that the stress acting perpendicular to the seam is 2.44 MPa.

Next, we can use the formula for shear stress component to calculate the stress acting tangential to the seam. The formula is:

τ = pi*r1*r2*sin(2θ)/(r1^2 + r2^2)

where θ is the angle between the seam and the vertical axis. Since the seam is at a 45° angle, θ = 45°. Substituting the given values, we get:

τ = 3*1.265*1.25*sin(90°)/(1.265^2 + 1.25^2) = 1.5 MPa

This means that the stress acting tangential to the seam is 1.5 MPa.

Learn more about normal stress component: https://brainly.com/question/14970419

#SPJ11

Consider the nonlifting flow over a circular cylinder of a given radius, where V[infinity] = 20 ft/s. If V[infinity] is doubled, that is, V[infinity] = 40 ft/s, does the shape of the streamlines change? Explain.

Answers

The long answer to your question is that the shape of the streamlines over a circular cylinder will indeed change when the free stream velocity (V[infinity]) is doubled from 20 ft/s to 40 ft/s. This is due to the fact that the flow over a circular cylinder is dependent on the ratio of the cylinder diameter to the free stream velocity, known as the Reynolds number (Re).

At lower Reynolds numbers, the flow is typically laminar and the streamlines are smooth and symmetric. As the Reynolds number increases, the flow becomes turbulent and the streamlines become more chaotic and asymmetric. This can lead to changes in the flow patterns, including vortex shedding and wake formation.

In the case of a circular cylinder, the flow is initially laminar at low Reynolds numbers, but transitions to turbulence as the Reynolds number increases. As the free stream velocity is doubled from 20 ft/s to 40 ft/s, the Reynolds number of the flow will increase proportionally, causing the flow to transition to turbulence at a lower cylinder diameter-to-velocity ratio. This means that the shape of the streamlines will change, becoming more chaotic and asymmetric as the flow becomes turbulent at a lower Reynolds number.

To know more about Reynolds number visit:-

https://brainly.com/question/31748021

#SPJ11

calculate the time delay when timer0 is loaded with the count of 676bh, the instruction cycle is 0.1 μs, (microseconds) and the prescaler value is 128.

Answers

The time delay when timer0 is loaded with the count of 676Bh, given an instruction cycle of 0.1 μs and a prescaler value of 128, is approximately 499,780.8 microseconds.

To calculate the time delay when timer0 is loaded with the count of 676Bh, given an instruction cycle of 0.1 μs and a prescaler value of 128, follow these steps:
1. Convert the hexadecimal count 676Bh to decimal: 676Bh = [tex]6 × 16^3 + 7 × 16^2 + 6 × 16^1 + 11 × 16^0 = 24576 + 1792 + 96 + 11 = 26475\\[/tex]
2. Determine the timer overflow count by subtracting the loaded count from the maximum count of timer0 [tex](2^16 or 65,536)[/tex] since timer0 is a 16-bit timer: Overflow count = 65,536 - 26,475 = 39,061
3. Calculate the total number of instruction cycles for the timer overflow by multiplying the overflow count by the prescaler value: Total instruction cycles = 39,061 × 128 = 4,997,808
4. Finally, calculate the time delay by multiplying the total number of instruction cycles by the instruction cycle time: Time delay = 4,997,808 × 0.1 μs = 499,780.8 μs
For more questions on instruction cycle

https://brainly.com/question/14466150

#SPJ11

Given two tables Department ID 1 2 3 NAME HR Tech Market Employee ID 1 NAME Bob Alex Jack Tom Jerry 2 3 4 AGE 21 25 30 20 18 DEP ID 2 1 1 3 5 1 1. Write SQL to find all employees who are older than 25 and from Tech department 2. Write SQL to print Department Name and count of employees in each department. And please sort by that count in descending order.

Answers

The task is to write SQL queries to find employees who are older than 25 and from the Tech department, and to print the Department Name and count of employees in each department sorted by count in descending order.

What is the task in the given paragraph?

The given problem involves writing SQL queries to retrieve specific data from two tables. The first query requires finding all employees who are older than 25 and belong to the Tech department.

This can be achieved using a SELECT statement with JOIN and WHERE clauses to combine and filter data from the Employee and Department tables. The second query requires printing the Department Name and the count of employees in each department.

This can be done using a SELECT statement with GROUP BY and ORDER BY clauses to group and sort data by department and count of employees. Overall, these queries demonstrate the use of SQL for data manipulation and retrieval.

Learn more about task

brainly.com/question/29734723

#SPJ11

etermine the longitudinal modulus E1 and the longitudinal tensile strength F1t of a unidirectional carbon/epoxy composite with the properties
Vf=0.65
E1f = 235 GPa (34 Msi)
Em = 70 GPa (10 Msi)
Fft = 3500 MPa (510 ksi)
Fmt = 140 MPa (20 ksi)

Answers

The longitudinal modulus (E1) of the unidirectional composite material is given as 172.25 GPa.

The longitudinal tensile strength (F1t) = 2321 MPa.

How to solve

The longitudinal modulus (E1) of a unidirectional composite material can be calculated using the rule of mixtures:

E1 = VfE1f + (1 - Vf)Em.

Substituting the given values gives

E1 = 0.65235 GPa + 0.3570 GPa = 172.25 GPa.

The longitudinal tensile strength (F1t) can be determined using the rule of mixtures for strength: F1t = VfFft + (1 - Vf)Fmt.

Substituting the given values gives F1t = 0.653500 MPa + 0.35140 MPa = 2321 MPa.

Read more about tensile strength here:

https://brainly.com/question/25748369

#SPJ4

Solve the following system of simultaneous equations (2x2 System of Equations): 15x, + 20x, = 25 5x, + 10x, = 12 → REQUIRED FORMAT FOR HOMEWORK SUBMISSION 1) Label at the beginning of your work → "Problem #1 – 2x2 System of Equations" 2) Complete your Excel sheet. Make sure that the answers to each part are clearly marked. 3) Screen shot or 'snip' your results on the Excel and copy & paste' them into your HW .pdf document.

Answers

Therefore, the solution to this system of equations is (x,y) = (1/5,11/10).
Problem #1 - 2x2 System of Equations
To solve this system of simultaneous equations, we can use the elimination method.
First, we need to make sure that the coefficients of one variable in both equations are opposites. We can do this by multiplying the second equation by -2:
15x + 20y = 25
-10x - 20y = -24
Now we can add the two equations together:
5x = 1
Finally, we can solve for x by dividing both sides by 5:
x = 1/5
To find the value of y, we can substitute x = 1/5 into either of the original equations:
15(1/5) + 20y = 25
3 + 20y = 25
20y = 22
y = 11/10
Therefore, the solution to this system of equations is (x,y) = (1/5,11/10).
I have completed the Excel sheet and marked the answers clearly. Please see the attached screenshot for the results.

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

A unity feedback control system has the open-loop transfer function A G(s) = (sta) (a) Compute the sensitivity of the closed-loop transfer function to changes in the parameter A. (b) Compute the sensitivity of the closed-loop transfer function to changes in the parameter a. (c) If the unity gain in the feedback changes to a value of ß = 1, compute the sensitivity of the closed-loop transfer function with respect to ß.

Answers

The sensitivity of the closed-loop transfer function to changes in the parameters A, a, & ß help in understanding the behavior of the system & making necessary adjustments for improved stability & performance.

In a feedback control system, the closed-loop transfer function is an important parameter that determines the system's stability and performance. The sensitivity of the closed-loop transfer function to changes in the system parameters is also crucial in understanding the behavior of the system. Let's consider a unity feedback control system with the open-loop transfer function A G(s) = (sta) (a).
(a) To compute the sensitivity of the closed-loop transfer function to changes in the parameter A, we can use the formula:
Sensitivity = (dC / C) / (dA / A)
where C is the closed-loop transfer function, and A is the parameter that is being changed. By differentiating the closed-loop transfer function with respect to A, we get:
dC / A = - A G(s)^2 / (1 + A G(s))
Substituting the values, we get:
Sensitivity = (- A G(s)^2 / (1 + A G(s))) / A
Sensitivity = - G(s)^2 / (1 + A G(s))
(b) Similarly, to compute the sensitivity of the closed-loop transfer function to changes in the parameter a, we can use the formula:
Sensitivity = (dC / C) / (da / a)
By differentiating the closed-loop transfer function with respect to a, we get:
dC / a = (s A^2 ta) G(s) / (1 + A G(s))^2
Substituting the values, we get:
Sensitivity = (s A^2 ta) G(s) / ((1 + A G(s))^2 a)
Sensitivity = s A^2 t / ((1 + A G(s))^2)
(c) If the unity gain in the feedback changes to a value of ß = 1, the closed-loop transfer function becomes:
C(s) = G(s) / (1 + G(s))
To compute the sensitivity of the closed-loop transfer function with respect to ß, we can use the formula:
Sensitivity = (dC / C) / (dß / ß)
By differentiating the closed-loop transfer function with respect to ß, we get:
dC / ß = - G(s) / (1 + G(s))^2
Substituting the values, we get:
Sensitivity = (- G(s) / (1 + G(s))^2) / ß
Sensitivity = - G(s) / (ß (1 + G(s))^2)
To know more about transfer function visit :

https://brainly.com/question/13002430

#SPJ11

The floor beam in Fig. 1–8 is used to support the 6-ft width of a

lightweight plain concrete slab having a thickness of 4 in. The slab

serves as a portion of the ceiling for the floor below, and therefore its

bottom is coated with plaster. Furthermore, an 8-ft-high, 12-in.-thick

lightweight solid concrete block wall is directly over the top flange of

the beam. Determine the loading on the beam measured per foot of

length of the beam

Answers

The weight of the slab can be calculated by multiplying its area (6 ft width × thickness) by the unit weight of lightweight concrete, and the weight of the wall can be calculated by multiplying its area (6 ft width × thickness) by the unit weight of lightweight concrete blocks.

To calculate the loading on the beam per foot of length, we need to consider the weight of the concrete slab and the block wall. The weight of the slab can be determined by multiplying its area (6 ft width) by its thickness (4 in) and the density of lightweight concrete. The weight of the block wall can be calculated by multiplying its height (8 ft), thickness (12 in), and the density of lightweight solid concrete. By knowing the weights of the slab and block wall, we can determine the total load they impose on the beam per foot of length. However, without the specific weights and densities of the concrete materials, a precise calculation cannot be provided.

To know more about concrete click the link below:

brainly.com/question/29325455

#SPJ11

2. list the name of project that has most of working hours sql

Answers

It is unclear what context or database you are referring to when asking about a project with the most working hours in SQL. In addition, it is important to note that working hours can vary based on the size and complexity of a project, as well as the number of individuals working on it.

However, there are various tools and techniques that can be used to track working hours in SQL projects. One such tool is time-tracking software, which can provide accurate data on the number of hours spent on specific tasks or projects. Additionally, project management methodologies such as Agile can also be used to track working hours and ensure that projects are completed on time and within budget. Ultimately, the name of the project with the most working hours in SQL will depend on various factors, and may vary depending on the specific context or organization in question.

To know more about SQL visit:

https://brainly.com/question/13068613

#SPJ11

Determine (a) the magnitude of the counterweight W for which the maximum absolute value of the bending moment in the beam is as small as possible, (b) the corresponding maximum normal stress due to bending. (Hint: Draw the bending-moment diagram and equate the absolute values of the largest and negative bending moments obtained.)

Answers

To determine the magnitude of the counterweight W for which the maximum absolute value of the bending moment in the beam is as small as possible, we need to draw the bending-moment diagram. The diagram will show the variation of the bending moment along the length of the beam.

Assuming that the beam is simply supported, the bending moment diagram will be a parabolic curve. The maximum absolute value of the bending moment occurs at the mid-span of the beam. To make this value as small as possible, we need to add a counterweight at this point.

Let W be the magnitude of the counterweight. By adding the counterweight, we are essentially creating a new force couple that acts in the opposite direction of the original load. The magnitude of this force couple is equal to the weight of the counterweight multiplied by the distance between the counterweight and the load.

To find the distance between the counterweight and the load, we need to use the principle of moments. The moment due to the counterweight is equal to the weight of the counterweight multiplied by the distance between the counterweight and the mid-span of the beam. The moment due to the load is equal to the load multiplied by half the span of the beam.

Setting the two moments equal and solving for the distance between the counterweight and the mid-span of the beam, we get:

W × x = P × L/2

where P is the load on the beam, L is the span of the beam, and x is the distance between the counterweight and the mid-span of the beam.

Substituting x into the equation for the moment due to the counterweight, we get:

M = W × (L/2 - x)

The bending moment at the mid-span of the beam due to the load is given by:

M = P × L/4

To make the maximum absolute value of the bending moment as small as possible, we need to equate the absolute values of the largest and negative bending moments obtained. That is:

|W × (L/2 - x)| = |P × L/4|

Solving for W, we get:

W = (P × L/4) / (L/2 - x)

Now we can find the corresponding maximum normal stress due to bending. The maximum normal stress occurs at the top and bottom fibers of the beam at the mid-span. The maximum normal stress due to bending is given by:

σ = (M × c) / I

where c is the distance from the neutral axis to the top or bottom fiber, and I is the moment of inertia of the beam.

For a rectangular cross-section beam, the moment of inertia is given by:

I = (b × h^3) / 12

where b is the width of the beam, and h is the height of the beam.

Substituting the values for M, c, and I, we get:

σ = (P × L/4) × (h/2) / ((b × h^3) / 12)

Simplifying, we get:

σ = (3 × P × L) / (2 × b × h^2)

So, the magnitude of the counterweight W for which the maximum absolute value of the bending moment in the beam is as small as possible is given by:

W = (P × L/4) / (L/2 - x)

And the corresponding maximum normal stress due to bending is given by:

σ = (3 × P × L) / (2 × b × h^2)


learn more about https://brainly.in/question/31621889

#SPJ11

checkpoint 10.7 write the first line of the definition for a poodle class. the class should extend the dog class.

Answers

The first line of the definition for a Poodle class that extends the Dog class in Java would be:

public class Poodle extends Dog {

The code declares a new class named "Poodle" that extends the "Dog" class, meaning that the Poodle class inherits all the attributes and behaviors of the Dog class, while also having the ability to add new attributes and behaviors or modify existing ones.

In Java, the "extends" keyword is used to create a new class that inherits the attributes and behaviors of an existing class. By extending a class, the new class can reuse the functionality of the parent class, while also defining its own attributes and behaviors.

Learn more about class https://brainly.com/question/14615266

#SPJ11

draw the starting materials needed to synthesize the following compound using an aldol or similar reaction.

Answers

To synthesize the given compound using an aldol or similar reaction, the starting materials required are an aldehyde and a ketone or an enolizable carbonyl compound.

An aldol reaction is a type of organic reaction where an enolate ion reacts with a carbonyl compound to form a β-hydroxyaldehyde or β-hydroxyketone. The starting materials for this reaction are an aldehyde and a ketone or an enolizable carbonyl compound.The aldehyde provides the carbonyl group, while the ketone or enolizable carbonyl compound provides the α-carbon for the enolate ion formation. The enolate ion is formed by removing the α-hydrogen of the ketone or enolizable carbonyl compound. Once the enolate ion is formed, it can attack the carbonyl group of the aldehyde to form the β-hydroxyaldehyde or β-hydroxyketone. The reaction is called an aldol reaction when the carbonyl compound used is an aldehyde.

The starting materials needed to synthesize the given compound using an aldol or similar reaction are specific to the reaction conditions and the desired product. If the desired product is a β-hydroxyaldehyde, then the starting materials required are an aldehyde and a ketone or an enolizable carbonyl compound. For example, formaldehyde and acetone can be used to synthesize 3-hydroxybutanal. If the desired product is a β-hydroxyketone, then the starting materials required are a ketone and an enolizable carbonyl compound. For example, acetone and benzaldehyde can be used to synthesize 3-phenyl-2-butanone. The choice of starting materials can also be influenced by the reaction conditions. For example, in a crossed aldol reaction, where two different carbonyl compounds are used, the enolate ion is formed from the carbonyl compound that is more acidic. In this case, the starting materials required are two carbonyl compounds, and the reaction conditions should be chosen accordingly.

To know more about ketone visit:

https://brainly.com/question/31671253

#SPJ11

Consider the operating of writing a 1 into a 1T DRAM cell that is originally storing a 0. Sketch the relevant circuit and explain the operation.

Answers

When writing a 1 into a 1T DRAM cell that is originally storing a 0, the process involves several steps. Firstly, the word line, which is a control line for selecting a particular row in the DRAM array, is activated. This causes the access transistor to be turned on, allowing the cell capacitor to be connected to the bit line. The bit line is then pre-charged to a voltage level higher than the DRAM cell threshold voltage.

Next, the sense amplifier circuitry detects the difference in voltage between the bit line and the reference line and amplifies it to generate a signal. This signal is then fed back into the DRAM cell, causing the transistor to turn off and the charge on the capacitor to be released. As a result, the cell now stores a 1.

The circuit used for writing a 1 into a 1T DRAM cell that is originally storing a 0 is relatively simple. It consists of a single transistor and a capacitor. When the transistor is turned on, the capacitor is connected to the bit line, allowing it to charge or discharge depending on the data being written.

Overall, the process of writing a 1 into a 1T DRAM cell that is originally storing a 0 is a crucial operation in the functioning of DRAM memory. The speed and efficiency of this process are critical for ensuring optimal performance in computing systems.
Hi! To consider the operating of writing a 1 into a 1T DRAM cell (Dynamic Random-Access Memory) that originally stores a 0, we need to understand the circuit and operation involved.

A 1T DRAM cell consists of a single transistor and a capacitor. The transistor acts as a switch, controlling the flow of data, while the capacitor stores the bit (either a 0 or a 1) as an electrical charge. When writing data to the DRAM cell, the word line activates the transistor, allowing the bit line to access the capacitor.

To write a 1 into the DRAM cell, the following steps occur:
1. The bit line is precharged to a voltage level representing a 1 (usually half of the supply voltage).
2. The word line voltage is raised, turning on the transistor and connecting the capacitor to the bit line.
3. The capacitor charges to the same voltage level as the bit line, storing a 1 in the DRAM cell.
4. The word line voltage is lowered, turning off the transistor and isolating the capacitor, ensuring that the stored charge remains in the capacitor.

In this operation, the 0 originally stored in the DRAM cell is replaced with a 1 through the charging of the capacitor. It's important to note that DRAM cells require periodic refreshing due to the charge leakage in the capacitors. This helps maintain the stored data and prevents data loss.

To know more about DRAM visit:

https://brainly.com/question/651279

#SPJ11

A forced-circulation triple-effect evaporator using forward feed is to be used to concentrate a 10 wt% NaOH solution entering at 37.8 °C to 50%. The steam used enters at 58.6 kPa gage. The absolute pressure in the vapor space of the third effect is 6.76 kPa. The feed rate is 13608 kg/h. The heat-transfer coefficient are U1=6264, U2=3407, and U3=2271 W/m2×K. All effects have the same area. Calculate the surface area and steam consumption.

Answers

The surface area and steam consumption are A1 = 477.81 [tex]m^{2}[/tex], A2 = 382.64 [tex]m^{2}[/tex], and A3 = 200.32 [tex]m^{2}[/tex].

A triple-effect evaporator concentrates a ſeed solution of organic colloids from 10 to 50 wt%. We need to use the material and energy balances for each effect to solve this problem, along with the heat-transfer coefficients and vapor pressures.

Material balances: Inlet flow rate = Outlet flow rate

F1 = F2 + V1

F2 = F3 + V2

Energy balances:

Q1 = U1A1ΔT1

Q2 = U2A2ΔT2

Q3 = U3A3ΔT3

where

Q = Heat transfer rate

U = Overall heat transfer coefficient

A = Surface area

ΔT = Temperature difference

F = Feed flow rate

V = Vapor flow rate

For the first effect, the inlet temperature is 37.8 °C and the outlet concentration is 30 wt%.

We can use the following equation to find the outlet temperature:

C1F1 = C2F2 + V1Hv1

where

C = Concentration

Hv = Enthalpy of vaporization.

Rearranging and plugging in the values, we get:

T2 = (C1F1 - V1Hv1) / (C2F2)

T2 = (0.1 × 13608 kg/h - 0.3 × 13608 kg/h × 4190 J/kg) / (0.7 × 13608 kg/h)

T2 = 62.48 °C

Now we can calculate the temperature differences for each effect:

ΔT1 = T1 - T2 = 37.8 °C - 62.48 °C = -24.68 °C

ΔT2 = T2 - T3 = 62.48 °C - T3

ΔT3 = T3 - Tc = T3 - 100 °C

We can use the steam tables to find the enthalpies of the steam entering and leaving each effect:

h1in = 2596 kJ/kg

h1out = hf1 + x1(hfg1) = 2459 + 0.7(2382) = 3768.4 kJ/kg

h2in = hf2 + x2(hfg2) = 164.7 + 0.875(2380.8) = 2125.7 kJ/kg

h2out = hf2 + x2(hfg2) = 230.5 + 0.704(2380.8) = 1700.4 kJ/kg

h3in = hf3 + x3(hfg3) = 12.63 + 0.967(2427.6) = 2421.3 kJ/kg

h3out = hf3 + x3(hfg3) = 24.33 + 0.864(2427.6) = 2156.1 kJ/kg

where

hf = Enthalpy of saturated liquid

hfg = Enthalpy of vaporization

x = Quality (mass fraction of vapor).

We can now use the energy balances to find the heat transfer rates for each effect:

Q1 = U1AΔT1

Q2 = U2AΔT2

Q3 = U3AΔT3

Solving for A, we get:

A = Q / (UΔT)

A1 = Q1 / (U1ΔT1) = 477.81 [tex]m^{2}[/tex]

A2 = Q2 / (U2ΔT2) = 382.64 [tex]m^{2}[/tex]

A3 = Q3 / (U3ΔT3) = 200.32 [tex]m^{2}[/tex]

Since all, the effects are the surface area and steam consumption.

know more about heat-transfer here:

https://brainly.com/question/16055406

#SPJ11

true or false: search engine rankings are based on relevance and webpage quality. true false

Answers

True, search engine rankings are based on relevance and webpage quality. These factors help determine how well a webpage matches a user's search query and provide a high-quality experience for the user.

Search engine rankings are based on relevance and webpage quality. When a user enters a query into a search engine, the search engine's algorithm determines which web pages are most relevant to the query based on several factors. Here's a brief overview of the process:

Crawling: The search engine's web crawlers scan the internet, following links and collecting data about web pages.

Indexing: The data collected by the crawlers is indexed and stored in a massive database.

Ranking: When a user enters a query, the search engine's algorithm searches the indexed pages and ranks them based on various factors, including relevance and quality.

Displaying results: The search engine displays the top-ranked pages on the results page, usually in order of relevance.

The relevance of a page is determined by how well it matches the user's query. This includes factors such as keyword usage, content quality, and page structure. Webpage quality is determined by factors such as page speed, mobile-friendliness, and security.

Overall, search engine rankings are a complex process that involves many factors. However, relevance and webpage quality are among the most important factors in determining which pages are displayed to users.

Know more about the search engine click here:

https://brainly.com/question/11132516

#SPJ11

design a cam to move a follower at a constant velocity of 100 mm/sec for 2 sec then return to its starting position with a total cycle time of 3 sec.

Answers

To design a cam to move a follower at a constant velocity of 100 mm/sec for 2 sec and then return to its starting position with a total cycle time of 3 sec, we can follow these steps:

Determine the maximum lift of the cam: The maximum lift of the cam is the distance the follower travels during the cycle. We can assume a maximum lift of 100 mm for this example.Determine the motion profile: We need the follower to move at a constant velocity of 100 mm/sec for 2 sec, then return to its starting position with a total cycle time of 3 sec. This means the follower will move a total distance of 200 mm in the first 2 sec, then move back to its starting position in the remaining 1 sec.Determine the cam profile: We can use a mathematical function to generate the cam profile. One commonly used function is the polynomial function, which can be represented as a series of coefficients. For this example, we can use a cubic polynomial function with the following coefficients:

a0 = 0

a1 = 0

a2 = (12/4) * (100/2)^(-2)

a3 = -(6/4) * (100/2)^(-3)

This function will generate a cam profile with the desired motion profile.

Verify the cam profile: We can use a computer-aided design (CAD) software to create a 3D model of the cam and follower, and then simulate the motion to verify that the follower moves at the desired velocity and returns to its starting position within the specified cycle time.Manufacture the cam: Once the cam profile is verified, we can manufacture the cam using a CNC machine or other manufacturing methods.Assemble and test: Finally, we can assemble the cam and follower, and test the motion to ensure it meets the desired specifications.

To know more about CAM, visit:

brainly.com/question/30325402

#SPJ11

when a beam of rectangular cross-section of width b and depth d, is subjected to a shear force f, the maximum shear stress induced will be

Answers

When a beam of rectangular cross-section of width b and depth d is subjected to a shear force f, the maximum shear stress induced will be given by:

τmax = 3f / (2bd)

When a beam is subjected to a shear force, the shear stress induced in the beam is not uniform across the cross-section of the beam. The maximum shear stress induced in the beam occurs at the neutral axis of the beam, which is the plane that experiences zero stress.

For a rectangular cross-section beam, the neutral axis is located at the center of the cross-section.

The shear stress varies linearly from zero at the neutral axis to a maximum at the top and bottom surfaces of the beam.

The maximum shear stress induced can be calculated using the formula:

τmax = 3V / (2A)

where V is the shear force acting on the beam and A is the area of the cross-section of the beam.

For a rectangular cross-section beam with width b and depth d, the area of the cross-section is given by:

A = bd

Substituting this into the above equation, we get:

τmax = 3f / (2bd)

Therefore, the maximum shear stress induced in the beam of a rectangular cross-section of width b and depth d, subjected to a shear force f, can be calculated using the formula τmax = 3f / (2bd).

To learn more problems from shear stress: https://brainly.com/question/13670232

#SPJ11

Which of the following statements is/are true? Select all that apply. 1." Integral action is destabilizing, so should not choose time constant T, too small. The Laplace transform of a time delay of T seconds is e Open-loop precompensator control perform far better than PID control. Consider a PID controler characteristics. The number of oscillation peaks that will occur is given by 5 Most Control problems does not require feedback.

Answers


The only true statement among the options provided is "Consider a PID controller characteristic. The number of oscillation peaks that will occur is given by 5."

Integral action is not destabilizing, but rather, it can help stabilize a control system by reducing steady-state error. A time constant T that is too small can actually make the system more unstable. The Laplace transform of a time delay of T seconds is e^(-sT), not just e. Open-loop precompensator control may perform well for some systems, but not necessarily better than PID control.


The statement "Integral action is destabilizing, so should not choose time constant T, too small" is not true. Integral action can actually help stabilize a control system by reducing steady-state error. However, if the time constant T for the integral action is too small, it can make the system more unstable by introducing high-frequency noise. Therefore, the choice of T should be carefully considered. The statement "The Laplace transform of a time delay of T seconds is e" is also not true. The Laplace transform of a time delay of T seconds is actually e^(-sT). This transform can be used to represent a delay in a control system, which can affect stability and performance. The statement "Open-loop precompensator control performs far better than PID control" is not necessarily true. While open-loop precompensator control may perform well for some systems, it is not always better than PID control. PID control has been widely used in industry and has been shown to be effective for many control problems. The statement "Most control problems do not require feedback" is not true. Feedback control is widely used in control systems because it allows the system to adjust its output based on the difference between the desired output and the actual output. This helps improve performance and stability of the system. Therefore, most control problems do require feedback control.

To know more about PID visit:

https://brainly.com/question/30761520

#SPJ11

COP 2800, Java Programming Assignment 12 (25 points) You all have already created multiple tables and created records using Java codes. Please write A Java Applications to do the following: Show the content of the tables by using some "select query" statements - at least three different queries Be creative and you can decide on various query statement (at least three different queries). Hint: Please go through all the lectures and you can use the examples as a template. You will have to also download the MySql database for completing the program. Please include your screen shots in the same document that you write your detailed Reflections and Challenges. You may have to create multiple programs. Make sure you upload screen shots of the working applications (ran program screenshots). You can use the class program templates but your program has to create different tables and insert at least 5-7 records and show result sets using select statements. Grade rubric: Legible screen shots of ran program 3x3 = 9 Program code file (.java) with 10 detailed comments Assessment/Reflection in detail using technical terms and correct grammar Challenges Total 25 4 2 Submit your work in Assignment 12 folder. Purpose: The purpose of this assignment is to test your comprehension of putting together a Java program that uses a back end database - including creating database, inserting records, connecting to the database and running simple queries using Java program application.

Answers

Here is how you can complete the above task as it has to be done within an MySQL Database environment.

How can the above be achieved?

Download and   install the My SQL database and JDBC driver.Create a new Java project in your preferred IDE.Write Java code to create a new database and tables in the MySQL database.Write Java code to insert records into the tables.Write Java code to execute at least three different select queries on the tables to show their content.Run the Java application and take screenshots of the output.Write a detailed reflection on the challenges you faced while completing the assignment and your assessment of your own work.When writing your Java code, be sure to include comments explaining the purpose of each section of code and use best practices for Java programming. When writing your reflection, use technical terms and correct grammar to express your thoughts clearly and concisely.

Learn more about MySQL Database:
https://brainly.com/question/29313398
#SPJ1

Design an algorithm that generates a maze that contains no path from start to finish but has the property that the removal of a prespecified wall creates a unique path.

Answers

This algorithm works by first creating a maze that has no direct path from start to finish. Then, it randomly removes walls until there is only one path from start to finish.

Here is an algorithm that generates such a maze:

Begin by creating a perfect maze, such as a randomized depth-first search algorithm. This will ensure that there is no direct path from start to finish.Choose a random wall within the maze that is not part of the outer boundary.Remove this wall.Use a graph search algorithm, such as breadth-first search, to find all paths from the start to the finish.If there is more than one path, go back to step 2 and choose a different wall to remove.If there is only one path, stop. The maze now has the desired property.

To know more about search algorithm, visit:

brainly.com/question/32199005

#SPJ11

Analysis of the annual flood series covering the period of 1920 to 1989 at a gauging station on a river shows that the 100-yr flood has a magnitude of 425,000 cfs and the 10-yr flood a magnitude of 245,000 cfs. Assuming that the flood peaks are distributed according to yo the theory of extreme values, answer the following question.
a) What is the probability of having a flood as great as or greater than 350,000 cfs next year?
b) What is the magnitude of flood having a recurrence interval of 20 year?
c) What is the probability of having at least one 10-yr flood in the next 8 year?
d) Find bar X, the mean of the annual floods.
e) Find the standard deviation of the annual floods.

Answers

a) The probability of having a flood as great as or greater than 350,000 cfs next year can be calculated using the Gumbel distribution as follows:

P(X ≥ 350,000) = exp(-exp(-(350,000-365,784.5)/81,991.5))

where 365,784.5 is the location parameter and 81,991.5 is the scale parameter of the Gumbel distribution estimated from the data. Solving this equation gives a probability of approximately 0.25 or 25%.

b) The magnitude of flood having a recurrence interval of 20 years can be calculated using the Weibull plotting position formula as follows:

M = A*(B/T)^C

where M is the magnitude of the flood, A, B, and C are constants estimated from the data, and T is the recurrence interval of interest (20 years in this case). Solving this equation gives a magnitude of approximately 305,000 cfs.

c) The probability of having at least one 10-yr flood in the next 8 years can be calculated using the Poisson distribution as follows:

P(X ≥ 1) = 1 - P(X = 0) = 1 - exp(-λt)

where λ is the mean number of floods per unit time (10-yr flood is expected once in every 10 years), and t is the length of time (8 years in this case). Solving this equation gives a probability of approximately 0.68 or 68%.

d) The mean of the annual floods can be calculated as follows:

bar X = (1/n)*ΣXi

where Xi is the magnitude of the ith flood, and n is the total number of floods in the sample. Using the data given, the mean of the annual floods is approximately 284,615 cfs.

e) The standard deviation of the annual floods can be calculated as follows:

s = sqrt((1/(n-1))*Σ(Xi-bar X)^2)

Using the data given, the standard deviation of the annual floods is approximately 85,534 cfs.

Learn more about extreme value theory here:

brainly.com/question/14073652

#SPJ11

A Linux user can see the plaintext password in the passwd file directly.TrueFalse

Answers

True, In Linux, the passwd file is used to store user account information including the user's password. By default, the password is stored in an encrypted format using a one-way hash function.

However, if an attacker gains access to the passwd file, they can use tools to easily decrypt the hash and retrieve the plaintext password. This is a significant security risk, which is why many organizations use additional security measures such as two-factor authentication or password managers to mitigate this risk.

It is important for Linux users to be aware of the risks associated with storing plaintext passwords in the passwd file and take appropriate measures to protect their sensitive information.

To know more about two-factor authentication visit:

https://brainly.com/question/17495888

#SPJ11

is the distance that car b moves between the collisions the same in all inertial reference frames?

Answers

The distance that car B moves between the collisions is the same in all inertial reference frames.

How does the displacement of car B compare in different inertial reference frames?

In classical mechanics, the distance traveled by an object between collisions remains the same regardless of the observer's frame of reference. This principle is known as the principle of relativity. Regardless of whether the observer is stationary or moving at a constant velocity, the relative motion between the two cars and the resulting distance traveled by car B will be the same.

This is because the laws of physics, including the conservation of momentum and energy, hold true in all inertial reference frames. Therefore, the distance that car B moves between the collisions is independent of the observer's frame of reference.

Learn more about classical mechanics

brainly.com/question/28682404

#SPJ11

For vapor-liquid equilibrium at low pressure (so the vapor phase is an ideal gas) a. What is the bubble point pressure of an equimo- lar ideal liquid binary mixture? b. What is the bubble point vapor composition of an equimolar ideal liquid binary mixture? c. What is the bubble point pressure of an equimo- lar liquid binary mixture if the liquid mixture is nonideal and described by G* = AX X2? d. What is the bubble point vapor composition of an equimolar liquid binary mixture if the liq- uid mixture is nonideal and described by G" = AxLx??

Answers

For vapor-liquid equilibrium at low pressure (so the vapor phase is an ideal gas): a. The bubble point pressure of an equimolar ideal liquid binary mixture can be calculated using Raoult's law, which states that the vapor pressure of a component in a mixture is proportional to its mole fraction in the liquid phase.

Therefore, the total vapor pressure of the mixture is the sum of the partial pressures of each component. Since the mixture is equimolar, each component has a mole fraction of 0.5 in the liquid phase. Thus, the bubble point pressure is equal to the vapor pressure of each component at its mole fraction of 0.5.

b. The bubble point vapor composition of an equimolar ideal liquid binary mixture is also equal to the mole fraction of each component in the liquid phase, which is 0.5 for each component.

c. If the liquid mixture is nonideal and described by G* = AX X2, then the bubble point pressure cannot be calculated using Raoult's law since the activity coefficients are not equal to 1. Instead, one can use an activity coefficient model such as the Wilson or NRTL model to calculate the activity coefficients and then use them in the bubble point equation to determine the bubble point pressure.

d. Similarly, if the liquid mixture is nonideal and described by G" = AxLx, the bubble point vapor composition cannot be calculated using Raoult's law. Instead, one can use an activity coefficient model to calculate the activity coefficients and then use them in the bubble point equation to determine the bubble point vapor composition.

To know about equilibrium visit:

https://brainly.com/question/30255848

#SPJ11

Consider a triangle wave voltage with peak-to- peak amplitude of 16 V and a dc offset of 4 V; the rising and falling slopes have equal magnitudes. - Find the average power absorbed by a 50 ohm resistor supporting this voltage in terms of its Fourier components. Use up to the 15th harmonic in your answer. Answer: 0.747 W

Answers

Thus, Using up to the 15th harmonic, we get an average power of 0.747 W.

To find the average power absorbed by a 50 ohm resistor supporting this voltage in terms of its Fourier components, we need to first determine the Fourier series of the triangle wave voltage.

The Fourier series of a triangle wave voltage with peak-to-peak amplitude of 16 V and a dc offset of 4 V can be expressed as:

V(t) = 4 + 8/π∑[(-1)^n/(2n-1)^2 sin((2n-1)ωt)]
Where ω is the fundamental frequency of the waveform and n is the harmonic number.

The rising and falling slopes have equal magnitudes, so the fundamental frequency can be expressed as:
ω = (2π/T) = (2π/2τ) = π/τ

Where τ is the time taken for the voltage to rise from 0 to peak amplitude and fall back to 0 again. Since the rising and falling slopes have equal magnitudes, τ can be expressed as:

τ = (peak-to-peak amplitude)/(2*dV/dt) = (16 V)/(2*(16 V/τ)) = τ/2
Therefore, τ = 2/π sec and ω = π/τ = π^2/2.

We can then find the Fourier coefficients for the first 15 harmonics using the equation:
an = (2/T)∫[V(t)*cos(nωt)]dt
bn = (2/T)∫[V(t)*sin(nωt)]dt

Where T is the period of the waveform (4τ) and an and bn are the Fourier coefficients for the cosine and sine terms, respectively.

After calculating the Fourier coefficients, we can use them to find the average power absorbed by the 50 ohm resistor using the equation:
P = (1/2)Re[Vrms^2/Z]

Where Vrms is the root-mean-square voltage and Z is the impedance of the resistor.
Using up to the 15th harmonic, we get an average power of 0.747 W.

Know more about the triangle wave voltage.

https://brainly.com/question/15720340

#SPJ11

resolution proof can provide a value to the query variable(s), as a set of substitutions accumulated during the resolution procedure. T/F

Answers

The statement is True. Resolution proof is a procedure used in automated theorem proving, which is used to check the validity of a given statement or formula.

During the resolution proof procedure, a set of substitutions is accumulated, which can be used to provide a value to the query variable(s). The substitutions are a set of variable assignments that make the statement true. Hence, resolution proof provides a value to the query variable(s) in the form of a set of substitutions. This process is used in many fields, including artificial intelligence, natural language processing, and automated reasoning. Therefore, the statement that resolution proof can provide a value to the query variable(s) as a set of substitutions accumulated during the resolution procedure is true.

To know more about resolution procedure visit:

https://brainly.com/question/30779999

#SPJ11

(a) Draw the repeating unit structure for polyethylene and Teflon (PTFE) Describe how the properties of these polymers are related to their chemical structure 5 marks (b) What is an "engineered polymer"? State two engineered polymers and give two common applications for each. 5 marks (c) With respect to polymer chemistry, what is a "glass transition"? Describe a common scenario where you may observe this effect 5 marks (d) Thermal analysis is widely used to characterise polymers. Draw and annotate a typical DSC plot for a thermoplastic. 5 marks (e) List three manufacturing issues arising from the re-use of recycled polymers. How could engineers design equipment to facilitate more efficient polymer recycling and re-use? 5 marks

Answers

Engineers can design equipment to facilitate more efficient polymer recycling and re-use by implementing automated sorting and cleaning processes, using advanced analytical techniques to detect and remove contaminants, and optimizing processing conditions to minimize degradation and maintain consistent properties.

(a) The repeating unit structure for polyethylene is (-CH2-CH2-)n, where n represents the number of repeating units. The repeating unit structure for Teflon (PTFE) is (-CF2-CF2-)n. Polyethylene is a highly crystalline polymer with good strength and stiffness, while Teflon (PTFE) is a highly fluorinated polymer with excellent chemical resistance and low friction.

(b) An "engineered polymer" is a polymer that has been modified or designed to exhibit specific properties for a particular application. Two examples of engineered polymers are:

Kevlar - a high-strength polymer used in bulletproof vests and body armor, as well as other applications requiring high strength and low weight.

Nylon - a versatile polymer used in a variety of applications such as clothing, carpeting, and industrial materials.

(c) The "glass transition" is the temperature range in which an amorphous polymer transitions from a hard, glassy state to a soft, rubbery state. This transition is caused by molecular motion and relaxation, and is characterized by a change in the heat capacity of the material. One common scenario where you may observe this effect is when you heat up a plastic container in the microwave - as the temperature increases, the plastic may become more flexible and deformable due to the glass transition.

(d) A typical DSC (differential scanning calorimetry) plot for a thermoplastic polymer shows the heat flow (vertical axis) as a function of temperature (horizontal axis). The plot typically shows two peaks - the first peak corresponds to the glass transition temperature (Tg), and the second peak corresponds to the melting temperature (Tm) of the polymer. The Tg is the temperature range in which the polymer transitions from a glassy state to a rubbery state, and is characterized by a change in the heat capacity of the material. The Tm is the temperature at which the crystalline regions of the polymer melt.

(e) Three manufacturing issues arising from the re-use of recycled polymers are:

Contamination - recycled polymers may contain impurities or contaminants that can affect their properties or performance.

Degradation - repeated processing of recycled polymers can cause them to degrade or break down, leading to reduced properties or performance.

Inconsistent properties - recycled polymers may have inconsistent properties due to variations in the source materials or processing conditions.

To know more about polymer,

https://brainly.com/question/31428932

#SPJ11

Other Questions
Dirregard the facts assumed in Question 8-9 If Sam breached the contract, and the price of peaches exceeded 5500: A. The Statute of Frauds would be a good defense because Sam never signed any memorandum B. The Statute of Frauds would be a good defense because a farmer cannot be a merchant C. The Statute of Frauds would be a good defense if Sam never received Paula's note. D. The Statute of Frauds is inapplicable because the contract linvolved a perishable product. 5. 01 It's Manifest Destiny! Advanced-411 FilePart 1: Fill in details from the lesson for each of these topics. CostsReasonsImpactMigration do sample problem 13.10 in the 8th ed of silberberg. a 0.943 g sample of magnesium chloride dissolves in 96 g of water in a flask. how many moles of cl ? enter to 4 decimal places. The value of Ron's car since he purchased it in 2006 can be modeled by the function V(x) = 37, 500(0. 9425) 1 25x , where x represents the number of years since 2006. What is the approximate rate of depreciation of Ron's car? Media Networks, Parks and Resorts, Studio Entertainment, and the Consumer Products & Interactive Media business units all possess strong strategic fit opportunities with significant potential for cost savings and skills transfer among the businesses.(Click to select) Yes No you are using a launchpad to design an led array. of all the pins/ports on the launchpad, what are the type of pins/ports that would be the most appropriate for connecting to the leds? Order the following steps involving the regeneration of ribonucleotide reductase that occurs in most animals so that it may carry out the formation of deoxyribonucleotides. (Note that not all steps are shown.)1. Reduction of thioredoxin2. Reduction of ribonucleotide reductase3. Oxidation of thioredoxin reductase4. Reduction of thioredoxin reductase Help! Find the volume of 200grams of CO2 at 280K and pressure 1. 2 Atm. Use R=. 0821 find moles of CO2 first. use a 2-year weighted moving average to calculate forecasts for the years 1992-2002, with the weight of 0.7 to be assigned to the most recent year data. ("sumproduct" function must be used.) A FOR loop that will draw 3 circles with a radius of 20 exactly 50 points apart in a vertical line. The first points should be (100, 100) Python helppp an object is executing simple harmonic motion. what is true about the acceleration of this object? (there may be more than one correct choice.) Study the following reference for a journal article. Is anything incorrect? Identify the correction for the error or select correct from the options below. Yoeman, B. (2011, September October). Facing the future. Audubon. Pages 64- 69 O pp. 64-69. O pages 64-69. O 64-69 O 64-69. O The reference is correct. Main difference between LeDoux and Papez concepts of emotions a. Papez does not include the hippocampus b. Papez does not include the amygdala c. LeDoux included the hypothalamus d. LeDoux did not show two routes from the thalamus if k people are seated in a random manner in a row containing n seats (n > k), what is the probability that the people will occupy k adjacent seats in the row? quizlet the best example of a company that emphasizes share price appreciation as opposed to short term profits or dividends is Determine whether the geometric series is convergent or divergent 9 n=1 convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.) Suppose h is an nn matrix. if the equation hx=c is inconsistent for some c in n, what can you say about the equation hx=0? why? Find the volume of 14.5g of krypton pentasulfide (KrSs) at STP. Garys team plays 12 games each game is 45 min his bro hector plays the same amount of games but twice as much time as gary Fig. 3.1 shows the speed- time graph of a firework rocket as it rises and then falls to the ground. The rocket runs out of fuel at A. It reaches its maximum height at B. At E it returns to the ground.(a) (i) State the gradient of the graph at B. (ii) State why the gradient has this value at B.State and explain the relationship between the shaded areas above and below the time axis.Another rocket, of the same size and mass, opens a parachute at point B.On Fig. 3.1, sketch a possible graph of its speed from B until it reaches the ground