g Consider the following observations on shear strength (MPa) of a joint bonded in a particular manner. 22.6 40.4 16.4 72.4 36.6 109.8 30.0 4.4 33.1 66.7 81.5 (a) What are the values of the fourths

Answers

Answer 1
Wow same question!!! Nice

Related Questions

The term variation describes the degree to which an object or idea differs from others of the same type or from a standard.

a. True
b. False

Answers

The answer is true. Thank me later<3
The answer is true mainly because they function

Assuming you determine the required section modulus of a wide flange beam is 200 in3, determine the lightest beam possible that will satisfy this condition.

Answers

Answer:

W18 * 106

Explanation:

Given that the section modulus of the wide flange beam is 200 in^3 the lightest beam possible that can satisfy the section modulus must have a section modulus ≥ 200 in^3. also the value of the section modulus must be approximately closest to 200in^3

From wide flange Beam table ( showing the section modulus )

The beam that can satisfy the condition is W18 × 106  because its section modulus ( s ) = 204 in^3

Discuss typical advantages and disadvantages of an irrigation system?

Answers

Advantages include low costs and minimal labor.Water stays in the root zone, and foliage stays dry. Drawbacks to surface irrigation include potential overwatering and wasteful runoff.

what is Geography? pliz help​

Answers

Answer:

hope it's helpful please like and Follow me

Answer:

Geography is the science that studies and describes the surface of the Earth in its physical, current and natural aspect, or as a place inhabited by humanity.

What happens to resistance in the strain gauge and voltage drop from a connected Wheatstone bridge if you were to pull the strain gauge along the long axis

Answers

Answer:

Resistance and voltage drop will still continue to rise, although at a slower pace than on the desired axis.

Explanation:

Pulling the strain gauge in the long axis causes the wires to elongate/thin, the effect of this is that it will lead to an increase in resistance and voltage drop (V = I*R).

As a result of the resultant effect, resistance and voltage drop will still continue to rise, although at a slower pace than on the desired axis, such as the long axis.

Fill in the truth table for output A.
A = (x+y)(x'+z')(x'+z')​

Answers

Answer:

1+1×1 multiplay then you get the answer

Determine the complex power, apparent power, average power absorbed, reactive power, and power factor (including whether it is leading or lagging) for a load circuit whose voltage and current at its input terminals are given by:

Answers

Answer: hello your question is incomplete attached below is the missing detail  

answer :

Complex power = 2.5 ∠ 50°  VA

apparent power = 2.5 VA

average power = 1.6 Watts

reactive power = 1.915 Var

power factor = 0.64 ( leading )

Explanation:

i) complex power

P = Vrms *  Irms

  = 17.67∠40°  * 0.1414∠-10°

  = 2.5∠50° VA

ii) Apparent power

s = Vrms * Irms

  = 17.67 * 0.1414

  = 2.5 VA

iii) Average power absorbed

Absorbed power ( p )  = Vrms * Irms * cos∅

  = 17.67 * 0.1414  * cos ( 50 )

  = 1.6 watt

iv) Reactive power

P =  Vrms * Irms * sin∅

  = 17.67 * 0.1414  * sin ( 50 )

  = 1.915 VAR

v) power factor

P.F = cos ∅ = p /s

                   = 1.6 watt / 2.5 VA  = 0.64.

Which of the following are major components of a Class II BSC: A. Cabinet blower switch B. Foot support C. Drain spillage trough (catch basin) D. Rear grille E. Temperature control

Answers

Answer:

Cabinet blower switch ( A )

Explanation:

A major component of a class II BSC ( Biological safety cabinet ) is  Cabinet blower switch  because the Cabinet blower is an integral part of a class II BSC hence the switch is also a major component.

Class II BSC provides protection for the user, environment and sample to be manipulated in the laboratory ( mostly ; Pharmaceutical laboratories, Microbiology laboratories )

The output side of an ideal transformer has 35 turns, and supplies 2.0 A to a 24-W device. Ifthe input is a standard wall outlet, calculate the number of turns on the input side, and the currentdrawn from the outlet.

Answers

Answer:

The current drawn from the outlet is 0.2 A

The number of turns on the input side is 350 turns

Explanation:

Given;

number of turns of the secondary coil, Ns = 35 turns

the output current, [tex]I_s[/tex] = 2 A

power supplied, [tex]P_s[/tex] = 24 W

the standard wall outlet in most homes = 120 V = input voltage

For an ideal transformer; output power = input power

the current drawn from the outlet is calculated;

[tex]I_pV_p = P_s\\\\I_p = \frac{P_s}{V_p} = \frac{24}{120} = 0.2 \ A[/tex]

The number of turns on the input side is calculated as;

[tex]\frac{N_p}{N_s} = \frac{I_s}{I_p} \\\\N_p = \frac{N_sI_s}{I_p} \\\\N_p = \frac{35 \times 2}{0.2} \\\\N_p = 350 \ turns[/tex]

The object in ....................... shadow is not seen completely​

Answers

Answer:

Dark shadow

Explanation:

Shadow is nothing but space when the light is blocked by an opaque object. It is just that part where light does not reach. When you stand in the sun, you are able to see your shadow behind you. ... This is because our body is opaque and does not allow the light to pass through it

Mark brainliest

In a tension test of steel, the ultimate load was 13,100 lb and the elongation was 0.52 in. The original diameter of the specimen was 0.50 in. and the gage length was 2.00 in. Calculate (a) the ultimate tensile stress (b) the ductility of the material in terms of percent elongation

Answers

Answer:

a) the ultimate tensile stress is 66717.8 psi

b) the ductility of the material in terms of percent elongation is 26%

Explanation:

Given the data in the question;

ultimate load P = 13,100 lb

elongation δl = 0.52 in

diameter of specimen d = 0.50 in

gage length l = 2.00 inch

First we determine the cross-sectional area of the specimen

A = [tex]\frac{\pi }{4}[/tex] × d²

we substitute

A = [tex]\frac{\pi }{4}[/tex] × ( 0.50 )²

A = 0.1963495 in²

a) the ultimate tensile stress σ[tex]_u[/tex]

tensile stress σ[tex]_u[/tex] = P / A

we substitute

tensile stress σ[tex]_u[/tex] = 13,100 / 0.1963495

tensile stress σ[tex]_u[/tex] = 66717.766 ≈ 66717.8 psi

Therefore, the ultimate tensile stress is 66717.8 psi

b) ductility of the material in terms of percent elongation;

percentage elongation of specimen = [change in length / original length]100

% = [ δl / l ]100

we substitute

% = [ 0.52 in / 2.00 in ]100

= [ 0.26 ]100

= 26

Therefore, the ductility of the material in terms of percent elongation is 26%

Analyze the boundary work done during the process having a rigid tank contains air at 500 kPa and 150°C. As a result of heat transfer to the surroundings, the temperature and pressure inside the tank drop to 65°C and 400 kPa, respectively.

Answers

Complete Question

Analyze the boundary work done during the process having a rigid tank contains air at 500 kPa and 150°C. As a result of heat transfer to the surroundings, the temperature and pressure inside the tank drop to 65°C and 400 kPa, respectively.

Determine the boundary work done during this process and heat Lose

Answer:

a)  [tex]W=0[/tex]

b)  [tex]dQ=-61.03KJ/kg[/tex]

Explanation:

From the question we are told that:

Pressure of air [tex]P_1=500kpa[/tex]

Temperature of Air [tex]T_2=150°C[/tex]

Pressure drop [tex]P_2=400kpa[/tex]

Temperature of drop [tex]T_2=65 \textdegree C[/tex]

Generally the Constant Volume Process  is mathematically given by

 [tex]V_1=V_2=V[/tex]

Therefore

a)

Generally the equation for  boundary work w is mathematically given by

 [tex]W=pdv[/tex]

 [tex]W=P(V_2-V_1)[/tex]

 [tex]W=P(V_V)[/tex]

 [tex]W=0KJ[/tex]

b)

Generally the equation for Heat Change is mathematically given by

 [tex]dQ=dU+dW[/tex]

 [tex]dQ=dU[/tex]

 [tex]dQ=C_v(T_2-T_1)[/tex]

Where

   C_v=Specific Heat capacity of Air

  [tex]C_v=0.718 kJ/kg K[/tex]

 [tex]dQ=0.718(338-423)[/tex]

 [tex]dQ=-61.03KJ/kg[/tex]

Air at 40C flows over a 2 m long flat plate with a free stream velocity of 7 m/s. Assume the width of the plate (into the paper) is 0.5 m. If the plate is at a constant temperature of 100C, find:

Answers

Complete Question

Air at 40C flows over a 2 m long flat plate with a free stream velocity of 7m/s. Assume the width of the plate (into the paper) is 0.5 m. If the plate is at a co temperature of 100C,find:

The total heat transfer rate from the plate to the air

Answer:

[tex]q=1.7845[/tex]

Explanation:

From the question we are told that:

Air Temperature [tex]T_1=40c[/tex]

Length [tex]l=2m[/tex]

Velocity [tex]v=7m/s[/tex]

Width [tex]w=0.5[/tex]

Constant temperature [tex]T_t= 100C[/tex]

Generally the equation for Total heat Transfer is mathematically given by

 [tex]q=hA(T_s-T_\infty)[/tex]

Where

h=Convective heat transfer coefficient

 [tex]h=29.9075w/m^2k[/tex]

Therefore

 [tex]q=h(L*B)(T_s-T_\infty)[/tex]

 [tex]q=29.9075*(2*0.5)(100+273-(40+273))[/tex]

 [tex]q=1794.45w[/tex]

 [tex]q=1.7845[/tex]

If the same type of thermoplastic polymer is being tensile tested and the strain rate is increased, it will: g

Answers

Answer:

It would break I think need to try it out

Explanation:

Problem 1. Network-Flow Programming (25pt) A given merchandise must be transported at a minimum total cost between two origins (supply) and two destinations (demand). Destination 1 and 2 demand 500 and 700 units of merchandise, respectively. At the origins, the available amounts of merchandise are 600 and 800 units. USPS charges $5 per unit from origin 1 to demand 1, and $7 per unit from origin 1 to demand 2. From origin 2 to demand 1 and 2, USPS charges the same unit cost, $10 per unit, however, after 200 units, the unit cost of transportation increases by 50% (only from origin 2 to demand 1 and 2).
a) Formulate this as a network-flow problem in terms of objective function and constraint(s) and solve using Excel Solver.
b) How many units of merchandise should be shipped on each route and what is total cost?

Answers

Solution :

Cost

Destination           Destination         Destination                     Maximum supply

Origin 1                       5                          7                                           600

Origin 2                     10                         10                                          800

                         15, for > 200            15, for > 200

         Demand          500                       700

Variables

Destination       1          2

Origin 1             [tex]$X_1$[/tex]        [tex]$$X_2[/tex]

Origin 2            [tex]$X_3$[/tex]        [tex]$$X_4[/tex]

Constraints   :   [tex]$X_1$[/tex], [tex]$$X_2[/tex], [tex]$X_3$[/tex], [tex]$$X_4[/tex]  ≥ 0

Supply : [tex]$X_1$[/tex] + [tex]$$X_2[/tex]  ≤ 600

              [tex]$X_3$[/tex] + [tex]$$X_4[/tex] ≤ 800

Demand : [tex]$X_1$[/tex] + [tex]$$X_3[/tex]  ≥ 500

              [tex]$X_2$[/tex] + [tex]$$X_4[/tex] ≥ 700

Objective function :

Min z = [tex]$5X_1+7X_2+10X_3+10X_4, \ (if \ X_3, X_4 \leq 200)$[/tex]

[tex]$=5X_1+7X_2+(10\times 200)+(X_3-200)15+(10 \times 200)+(X_4-200 )\times 15 , \ \ (\text{else})$[/tex]

Costs :

                  Destination 1       Destination  2

Origin 1         5                             7

Origin 2        10                           10

                     15                            15

Variables :

[tex]$X_1$[/tex]        [tex]$$X_2[/tex]

300    300  

200   400

[tex]$X_3$[/tex]      [tex]$$X_4[/tex]

Objective function : Min z = 10600

Constraints:

Supply    600 ≤ 600

                600 ≤ 800

Demand   500 ≥ 500

                 700 ≥ 500

Therefore, the total cost is 10,600.

Peter B. is admitted to a local hospital emergency room (ER) suffering from an anxiety attack. He tells the ER physician that he is anxious about a job promotion for which he is being considered. Peter’s secretary is worried about him and asks her father, Dr. K., who is on the medical staff at the hospital, to go to the ER and see how Peter is doing. Dr. K., who is often in the ER, knows all the staff and they willingly give him Peter’s chart when he asks for it. Dr. K. calls his daughter to tell her that Peter is being treated for anxiety with an anti-depressant drug and will probably be discharged. She relays this encouraging message to Peter’s boss. Peter does not receive the promotion.
a. Will it be an easy matter for Peter to prove that the ER staff caused Peter to lose his promotion? Explain your answer.
b. What precautions can be taken to avoid giving confidential information to medical personnel who have no need to see it?
c. In your opinion, should a diagnosis of anxiety be a concern for an employer? Why or why not?

Answers

a.No it will be not an easy matter for Peter to prove that the Er staff caused peter to lose his promotion

Here's why?

1)The boss may think he might not able to stretch himself in emergency situations

2)He can think he can't handle normal pressure

b.What precautions can be taken to avoid giving confidential information to medical personnel who have no need to see it?

1)Peter should not let the medical personnel about his personal life

2)He might have not said extra information about his job promotion

3)Will it be easy matter for Peter to prove that the ER staff caused Peter to lose his promotion? Explain your answer

No, it will not be easy, Peter has to prove in one or in another situation that he can face the difficulties and be able to handle anxiety attacks in the future.

Hence above answers are suitable for the given situation

To know more on how to answer paragraph questions please follow this link

https://brainly.com/question/27073860

#SPJ1

whats is the purpose of the stator winding​

Answers

Answer:

In an electric motor, the stator provides a magnetic field that drives the rotating armature; in a generator, the stator converts the rotating magnetic field to electric current. In fluid powered devices, the stator guides the flow of fluid to or from the rotating part of the system.

dentify the recommended practices when putting a tip on a micropipette. Select one or more: Gently push the micropipette into the tip and tap lightly to load the tip. Hold the micropipette at a 45 degree angle to the tip rack. Use the tip size designed for the micropipette size in use. Remove the tip from the rack and place it on micropipette by hand.

Answers

Answer:

Gently push the micropipette into the tip box and tag tightly to load the tip.

Explanation:

The recommended practice when putting a tip on a micropipette is ;  Gently push the micropipette into the tip box and tag tightly to load the tip.

Given that it is not advisable to remove tip from rack so as not to contaminate it, if we want to put a tip on a micropipette we should gently push the micropipette into the tip box.

Unit of rate of heat transfer

Answers

Answer:

The units on the rate of heat transfer are Joule/second, also known as a Watt.

Explanation:

Heat flow is calculated using the rock thermal conductivity multiplied by the temperature gradient. The standard units are mW/m2 = milli Watts per meter squared. Thus, think of a flat plane 1 meter by 1 meter and how much energy is transferred through that plane is the amount of heat flow.

hope it helps .

stay safe healthy and happy..

The rate of heat transfer is measured in Joules per second, also known as Watts.

What is heat transfer?

Heat transfer is a thermal engineering discipline that deals with the generation, use, conversion, and exchange of thermal energy between physical systems.

Heat transfer mechanisms include thermal conduction, thermal convection, thermal radiation, and energy transfer via phase changes.

The rate of heat transfer through a unit thickness of material per unit area per unit temperature difference is defined as thermal conductivity. Thermal conductivity varies with temperature and is measured experimentally.

Heat is typically transferred in a combination of these three types and occurs at random. Heat transfer rate is measured in Joules per second, also known as Watts.

Thus, Joules per second or watts is the unit of rate of heat transfer.

For more details regarding heat transfer, visit:

https://brainly.com/question/13433948

#SPJ6

True or false all workers who do class 1 asbestos work must be part of a medical surveillance program

Answers

Answer:

Yes

Explanation:

Answer:

true

Explanation:

hehehe

An air-standard Diesel cycle engine operates as follows: The temperatures at the beginning and end of the compression stroke are 30 °C and 700 °C, respectively. The net work per cycle is 590.1 kJ/kg, and the heat transfer input per cycle is 925 kJ/kg. Determine the a) compression ratio, b) maximum temperature of the cycle, and c) the cutoff ratio, v3/v2.

Answers

This question is incomplete, the complete question is;

An air-standard Diesel cycle engine operates as follows: The temperatures at the beginning and end of the compression stroke are 30 °C and 700 °C, respectively. The net work per cycle is 590.1 kJ/kg, and the heat transfer input per cycle is 925 kJ/kg. Determine the a) compression ratio, b) maximum temperature of the cycle, and c) the cutoff ratio, v3/v2.

Use the cold air standard assumptions.

Answer:

a) The compression ratio is 18.48

b) The maximum temperature of the cycle is 1893.4 K

c) The cutoff ratio, v₃/v₂ is 1.946

Explanation:

Given the data in the question;

Temperature at the start of a compression T₁ = 30°C = (30 + 273) = 303 K

Temperature at the end of a compression T₂ = 700°C = (700 + 273) = 973 K

Net work per cycle [tex]W_{net[/tex] = 590.1 kJ/kg

Heat transfer input per cycle Qs = 925 kJ/kg

a) compression ratio;

As illustrated in the diagram below, 1 - 2 is adiabatic compression;

so,

Tγ[tex]^{Y-1[/tex] = constant { For Air, γ = 1.4 }

hence;

⇒ V₁ / V₂ = [tex]([/tex] T₂ / T₁ [tex])^{\frac{1}{Y-1}[/tex]

so we substitute

⇒ V₁ / V₂ = [tex]([/tex]  973 K / 303 K  [tex])^{\frac{1}{1.4-1}[/tex]

= [tex]([/tex]  3.21122  [tex])^{\frac{1}{0.4}[/tex]

= 18.4788 ≈ 18.48

Therefore, The compression ratio is 18.48

b) maximum temperature of the cycle

We know that for Air, Cp = 1.005 kJ/kgK

Now,

Heat transfer input per cycle Qs = Cp( T₃ - T₂ )

we substitute

925 = 1.005( T₃ - 700 )

( T₃ - 700 ) = 925 / 1.005

( T₃ - 700 ) = 920.398

T₃ = 920.398 + 700

T₃ = 1620.398 °C

T₃ = ( 1620.398 + 273 ) K

T₃ = 1893.396 K ≈ 1893.4 K

Therefore, The maximum temperature of the cycle is 1893.4 K

c)  the cutoff ratio, v₃/v₂;

Since pressure is constant, V ∝ T

So,

cutoff ratio S = v₃ / v₂  = T₃ / T₂

we substitute

cutoff ratio S = 1893.396 K / 973 K

cutoff ratio S = 1.9459 ≈ 1.946

Therefore, the cutoff ratio, v₃/v₂ is 1.946

1. A hydro facility operates with an elevation difference of 50 m and a flow rate of 500 m3/s. If the rotational speed is 90 RPM, find the most suitable type of turbine and estimate the power output of the arrangement

Answers

Answer:

a) Pelton Turbine

b) [tex]P=2.42*10^{5}KW[/tex]

Explanation:

From the question we are told that:

Height [tex]h=50[/tex]

Flow Rate [tex]R= 500 m^3/s[/tex]

Rotational speed [tex]\omega=\90 RPM[/tex]

Let

Density of water

[tex]\rho=1000[/tex]

Generally the equation for momentum is mathematically given by

[tex]P=\rho gRh[/tex]

[tex]P=1000*9.81*500*50[/tex]

[tex]P=2.42*10^{5}KW[/tex]

A small ship capable of making a speed of 6 knots through still water maintains a heading due east while being set to the south by an ocean current. The actual course of the boat is from A to B, a dis- tance of 10 nautical miles that requires exactly 2 hours. Determine the speed vC of the current and its direction measured clockwise from the north.

Answers

This question is incomplete, the missing diagram is uploaded along this answer below;

Answer:

the speed Vc of the current and its direction measured clockwise from the north is 0.71 m/s and 231.02° respectively

Explanation:

Given the data in the question and as illustrated in the diagram below;

The absolute velocity of the ship Vs is 6 Knots due east

so we convert to meter per seconds

Vs = 6 Knots × [tex]\frac{0.51444 m/s}{1 Knots}[/tex] = 3.0866 m/s

Next we determine the relative velocity of the ship Vs/c

Vs/c = AB / t

given that distance between A to B = 10 nautical miles which requires 2 hours

so we substitute

Vs/c = 10 nautical miles / 2 hrs

Vs/c = [10 nautical miles × [tex]\frac{1852 m}{1 nautical-miles}[/tex] ] / [ 2 hrs × [tex]\frac{3600s}{1hr}[/tex] ]

Vs/c = 18520 / 7200

Vs/c = 2.572 m/s

Now, from the second diagram below, { showing the relative velocity polygon }

Now, using COSINE RULE, we calculate the velocity current.

Vc = √( V²s + V²s/c - 2VsSs/ccos10 )

we substitute

Vc = √( (3.0866)² + (2.572)² - (2 × 3.0866 × 2.572 × cos10 ) )

Vc = √( (3.0866)² + (2.572)² - (2 × 3.0866 × 2.572 × 0.9848 ) )

Vc = √( 9.527099 + 6.615184 - 15.6361 )

Vc = √0.506183

Vc = 0.71 m/s

Next, we use the SINE RULE to calculate the direction;

Vc/sin10 = Vs/c / sinθ

we substitute

0.71 / sin10 = 2.572 / sinθ

0.71 / 0.173648 = 2.572 / sinθ

4.0887 = 2.572 / sinθ

sinθ  = 2.572 / 4.0887

sinθ = 0.62905

θ = sin⁻¹( 0.62905 )

θ = 38.98°

So, angle measured clock-wise will be;

θ = 270° - 38.98°

θ = 231.02°

Therefore, the speed Vc of the current and its direction measured clockwise from the north is 0.71 m/s and 231.02° respectively

The National Weather Service has issued an alert for a severe storm that will bring 100 mm of rainfall in one hour. A farmer in the area is trying to decide whether to sand bag the creek that drains the 40 acres of row crops. The soil for the drainage area is a sandy clay loam and has a porosity of 0.398, effective porosity of 0.330, suction pressure of 52.3 cm, a hydraulic conductivity of 0.25 cm/hr and an effective saturation of 90%. Assuming that ponding occurs instantaneously, estimate the total depth of direct runoff in mm from the event using the Green-Ampt infiltration model.

a. 80
b. 89
c. 76
d. 72

Answers

I believe it’s 72 or 76

A cylinder is internally pressurized to a pressure of 100 MPa. This causes tangential and axial stresses in the outer surface of 400 and 200 MPa, respectively. Make a Mohr circle representation of the stresses in the outer surface. What maximum normal and shear stresses are experienced by the outer surface?

Answers

Answer:

[tex]\mu_{max}=200Mpa[/tex]

Explanation:

From the question we are told that:

Internally pressurized [tex]P_i=100MPa[/tex]

Tangential Stress [tex]P_t=400mpa[/tex]

Axial stress [tex]P_a=200mpa[/tex]

Generally the equation for maximum normal and shear stresses are experienced by the outer surface is mathematically given by

 [tex]\mu_{max}=|\frac{P_t-P_a}{2}|,|\frac{P_t}{2}|,|\frac{P_t}{2}|[/tex]

Therefore

 [tex]\mu_{max}=|\frac{400-200}{2}|,|\frac{400}{2}|,|\frac{200}{2}|[/tex]

 [tex]\mu_{max}=200Mpa[/tex]

A rapid sand filter has a loading rate of 8.00 m/h, surface dimensions of , an effective filtration rate of 7.70 m/h, and a production efficiency of 96 percent. A complete filter cycle duration is 52 h and the filter is rinsed for 20 minutes at the start of each cycle

Required:
a. What flow rate (m3/s) does the filter handle during production?
b. What volume of water is needed for backwashing plus rinsing the filter in each filter cycle?

Answers

Answer: hello there is a Missing information below is the missing information

surface dimensions of  10m * 8m

answer :

a) 640 m^3/hr

b) 1334.66 m^3

Explanation:

a) Determine the flow rate ( m^3/s ) of the filter handle

Va = Q /A[tex]_{f}[/tex]

where ; Va = filtration rate ( 8.00 m/h ) ,  Q = flow rate of filter handle , A[tex]_{f}[/tex] = surface area ( 10 m * 8 m  )

Q = 8 * ( 10m * 8m ) = 640 m^3 / hr

b) Determine the volume of water needed for backwashing plus rinsing the filter in each filter cycle

Лf = 0.96  ( production efficiency )

Vb + Vr = 0.04 Vf

∴ Vf  =  ( Vb + Vr ) / 0.04  ------ ( 1 )

next step ; determine the volume of filtered water making use of effective filtration rate

Ref = ( Vf - Vb - Vr ) / A[tex]_{f}[/tex]T[tex]_{c}[/tex]

therefore : Vb + Vr = Vf - ( 80 * 52 * 7.7 ) ----  ( 2 )

Input equation 1 into 2

Vb + Vr = ( ( Vb + Vr ) / 0.04  )  - 32032  ---- ( 3 )

Resolve equation 3

hence the Volume of water needed for Backwashing  and rinsing the filter in each filter cycle

= 1334.66 m^3

(8 pts.) Air in an Otto cycle engine is compressed to a temperature and pressure of 450 °C and 2.5 MPa. After the power stroke, the conditions are 600 °C and 0.45 MPa. Find the peak cycle temperature (°C), heat addition (kJ/kg), and efficiency

Answers

Answer:

a)  [tex]Tb=1845.05K[/tex]

b)  [tex]Q=1000.25KJ[/tex]

c)  [tex]\mu=0.59[/tex]

Explanation:

From the question we are told that:

Temperature x [tex]Tx=450c=>723K[/tex]

Pressure x [tex]Px=2.5MPa[/tex]

Temperature y [tex]Ty=600c=>873K[/tex]

Pressure y [tex]Py=0.45MPa[/tex]

Let

Air atmospheric temperature be [tex]25c[/tex]

Therefore

Temperature [tex]Ta=25+273=298k[/tex]

Generally the equation for Otto cycle is mathematically given by

 [tex]\frac{Tb}{Tx}=\frac{Ty}{Ta}[/tex]

 [tex]Tb=\frac{873*723}{298}[/tex]

 [tex]Tb=2118.05[/tex]

Therefore the peak cycle temperature (°C)

 [tex]Tb=2118.05k[/tex]

 [tex]Tb=2118.05-273[/tex]

 [tex]Tb=1845.05K[/tex]

Generally the equation for Heat addition is mathematically given by

 [tex]Q=Cv(Tb-Tx)[/tex]

 [tex]Q=Cv(2118.05-723)[/tex]

 [tex]Q=1000.25KJ[/tex]

Generally the equation for Thermal  efficiency is mathematically given by

 [tex]\mu=1-\frac{Ta}{Tx}[/tex]

 [tex]\mu=1-\frac{298}{723}[/tex]

 [tex]\mu=0.59[/tex]

Analyze the rate of heat transfer through a wall of an industrial furnace which is constructed from 0.15-m-thick fireclay brick having a thermal conductivity of 1.7 W/m.K. Measurements made during steady state operation reveal temperatures of 1400 and 1150 K at the inner and outer surfaces, respectively. The wall dimension is 0.5 m by 1.2 m by side.

Answers

Answer:

1700 W

Explanation:

The heat transfer rate P = kA(T - T')/d where k = thermal conductivity of wall = 1.7 W/m-K, A = area of wall = 0.5 m × 1.2 m = 0.6 m², T = temperature of inner surface = 1400 K, T = temperature of outer surface = 1150 K and d = thickness of wall = 0.15 m

So, P = kA(T - T')/d

substituting the values of the variables into the equation, we have

P = 1.7 W/m-K × 0.6 m²(1400 K - 1150 K)/0.15 m

P = 1.7 W/m-K × 0.6 m² × 250 K/0.15 m

P = 255 Wm/0.15 m

P = 1700 W

So, the heat transfer rate through the wall is 1700 W

A main cable in a large bridge is designed for a tensile force of 2,600,000 lb. The cable consists of 1470 parallel wires, each 0.16 in. in diameter. The wires are cold-drawn steel with an average ultimate strength of 230,000 psi. What factor of safety was used in the design of the cable

Answers

Answer:

the factor of safety was used in the design of the cable is 2.6146

Explanation:

Given the data in the question;

Load on the main capable [tex]P_{initial[/tex] = 2600000 lb

number of parallel wires n = 1470

Diameter d = 0.16 in

average ultimate strength [tex]S_{ultimate[/tex] = 230000 psi

First we calculate the Load acting on each cable;

[tex]P_{initial[/tex] = P × n

P = [tex]P_{initial[/tex] / n

we substitute

P = 2600000 lb / 1470

P = 1768.70748 lb

Next we determine the working stress acting in a member;

[tex]S_{working[/tex] = P/A

{ Area A = [tex]\frac{\pi }{4}[/tex]d² }

[tex]S_{working[/tex] = P / [tex]\frac{\pi }{4}[/tex]d²

we substitute

[tex]S_{working[/tex] = 1768.70748 / [tex]\frac{\pi }{4}[/tex](0.16)²

[tex]S_{working[/tex] = 1768.70748 / 0.02010619298

[tex]S_{working[/tex] = 87968.29 psi

Now we calculate the factor of safety F.S

F.S = [tex]S_{ultimate[/tex] / [tex]S_{working[/tex]

we substitute

F.S = 230000 psi / 87968.29 psi

F.S = 2.6145785 ≈ 2.6146

Therefore, the factor of safety was used in the design of the cable is 2.6146

Which option identifies the best way to reduce the environmental impact in the following scenario?
Sheryl has been assessing a factory where cheese is made and packaged. She has determined that the
product's packaging is the component that causes the highest environmental impact.
Sheryl should implement steps to create a cheese that does not need to be packaged.
0 Sheryl should implement steps to educate the factory personnel on the subject of conservation.
O Sheryl should implement steps to optimize the packaging in an eco-friendly manner.
O Sheryl should implement steps to reduce costs in the packaging department.

Answers

Sheryl should implement steps to optimize the packaging in an eco-friendly manner.

Other Questions
PLEASE HELP MS Language ArtsAll changes saved3. Which statement supports the analogy "BLACK is an open umbrella" in "I Am a Black"? (You can reread the poem in your book.)"1I am now an African-American.""2I am other than Hyphenation""3We are Here, we are There.""4And I Capitalize my name." Help me PLEASEEEEEEEEEEEEE Computer simulations are __________ ?1) Dry lab2) In-silico3) In-vitro4) Wet lab 4x-1/y -3=2 solve for y 2. Fill in the speech bubbles to show what General Lee might have said before and after the Battle of Gettysburg. DBefore GettysburgAfter Gettysburg Find the missing angle HELP!! In the myth of 'Daedalus and Icarus," Icarus becomes enraptured by the ability to fly, defies his father's order to not flytoo close to the sun, and suffers dreadful consequences as aresult. How is the behavior of Batnik in "Too Fast" similar to that ofIcarus? A. Like Icarus, Batnik does not heed his father'swarningsB. Like Icarus, Batnik loves to travel at great speeds.C. Like Icarus, Batnik feels trapped and tries to get out.D. Like Icarus, Batnik is an inventor who createssomething special 100 points If you tell me to use quizlet or give me a wrong answer or link you will be reported New parents are often overwhelmed with the amount of information about feeding and care of infants.a. Trueb. Flase . one decimal place....................... One way to think about the importance of biodiversity is simply to think in terms of natural capital: the roles that genes, species, ecosystems, and ecological processes play in supporting human society and a healthy biosphere. What are benefits provided by biodiversity? PLEASE HELP WILL GIVE BRAINLIESTAfter a lake dried up during a severe drought a section of undisturbed rock layers was exposed. The layers are represented below.Fossils in UndisturbedRock LayerseoSource: https://www.superlachertools.netThis sequence of rock layers best illustrates the concept thato A. it is important to preserve the diversity of species and habitatsOB new inheritable characteristics can result from the recombiningof genesoc the living and nonliving environment both change over timeD. living organisms have the capacity to produce populations ofunlimited size Which sentences contain adjective clauses? Help?!?!?!?!?!?!?!?!?!?!?!?!?! 2. Blanca y Miguel _____ una computadora,tenemostenistienentiene Please help this is due today!Military submarines incorporate multiple technologies in order to remain silent and undetected in the water. Submarine crews are cautioned not to make loud sounds or drop tools or equipment to avoid detection. Use what you have learned about the factors that affect sound transmission to explain why submarines have to be careful not to make sounds while other military craft, such as airplanes or tanks, don't have to worry about the sounds they make? Use evidence and scientific reasoning to support your response. 14. The two triangles below are similar. What is the length, in inches, of DE? In your opinion, what is the biggest problem facing the Earth's environment right now? I like (the) shoes.Group of answer choicesme gusta los zapatosme gustan los zapatosme gusta los zapatosme gusta los zapatos HOW HAS SOUTH AFRICA CHOSEN TO CELEBRATE THEIR HERITAGE?Historical context