Answer:
pH = 3.95
Explanation:
It is possible to calculate the pH of a buffer using H-H equation.
pH = pka + log₁₀ [HCOONa] / [HCOOH]
If concentration of [HCOONa] = [HCOOH] = 0.50M and pH = 3.77:
3.77 = pka + log₁₀ [0.50] / [0.50]
3.77 = pka
Knowing pKa, the NaOH reacts with HCOOH, thus:
HCOOH + NaOH → HCOONa + H₂O
That means the NaOH you add reacts with HCOOH producing more HCOONa.
Initial moles of 100.0mL = 0.1000L:
[HCOOH] = (0.50mol / L) ₓ 0.1000L = 0.0500moles HCOOH
[HCOONa] = (0.50mol / L) ₓ 0.1000L = 0.0500moles HCOONa
After the reaction, moles of each species is:
0.0500moles HCOOH - 0.010 moles NaOH (Moles added of NaOH) = 0.0400 moles HCOOH
0.0500moles HCOONa + 0.010 moles NaOH (Moles added of NaOH) = 0.0600 moles HCOONa
With these moles of the buffer, you can calculate pH:
pH = 3.77 + log₁₀ [0.0600] / [0.0400]
pH = 3.95When the pH be after 0.010 mol of NaOH has been added to 100.0 mL of the buffer pH is = 3.77 + log₁₀ [0.0600] / [0.0400] = 3.95
What is Formic Acid?It is possible to Computation the pH of a buffer using H-H equation.
Then pH is = pka + log₁₀ [HCOONa] / [HCOOH]
Then If concentration of [HCOONa] is = [HCOOH] then = 0.50M and pH = 3.77:
3.77 is = pka + log₁₀ [0.50] / [0.50]
After that, 3.77 = pka
Then, Knowing pKa, the NaOH reacts with HCOOH, thus:
After that,[tex]HCOOH + NaOH \rightarrow HCOONa + H2O[/tex]
Now, That means the NaOH you add reacts with HCOOH producing more HCOONa.
Then, Initial moles of 100.0mL = 0.1000L:
After that, [HCOOH] = (0.50mol / L) ₓ 0.1000L = 0.0500moles HCOOH
Then, [HCOONa] = (0.50mol / L) ₓ 0.1000L = 0.0500moles HCOONa
After that, when the reaction, moles of each species is:
Then, 0.0500moles HCOOH - 0.010 moles NaOH (Moles added of NaOH) = 0.0400 moles HCOOH
Now, 0.0500moles HCOONa + 0.010 moles NaOH (Moles added of NaOH) = 0.0600 moles HCOONa
Then, With these moles of the buffer, you can calculate pH:
pH = 3.77 + log₁₀ [0.0600] / [0.0400]
Therefore, pH = 3.95
Find more information about Formic Acid here:
https://brainly.com/question/26708431
The migration of atoms or molecules through a material is called Choose one: biomineralization. precipitation from a gas. solidification of a melt. diffusion.
Answer:
diffusion
Explanation:
Diffusion is the movement of particles from a region of higher concentration to a region of lower concentration in response to a concentration gradient. A concentration gradient simply means a difference in concentration.
Diffusion occurs in solids,liquids and gases. Diffusion is fastest in gases and slowest in solids. Diffusion of solid particles may take very many years while diffusion of gases takes a few milliseconds depending on the mass of the gas.
In materials, atoms and molecules also move from one part of the material to another. This is also refereed to as diffusion.
Osmosis is the process responsible for carrying nutrients and water from groundwater supplies to the upper parts of trees. The osmotic pressures required for this process can be as high as 19.1 atm . What would the molar concentration of the tree sap have to be to achieve this pressure on a day when the temperature is 32 ∘C ? Express your answer to three significant figures and include the appropriate units. View Available Hint(s)
Answer:
[tex]M=0.763\frac{mol}{L}=0.763M[/tex]
Explanation:
Hello,
In this case, as the osmotic pressure (π) is widely known as a colligative property, we can see that the solution in this case is formed by water and tree sap, that is mathematically defined by:
[tex]\pi =iMRT[/tex]
Thus, since tree sap is a covalent substance that is nonionizing, we can infer its van't Hoff factor to be 1, therefore, for the given osmotic pressure and temperature, we can compute the molar concentration (in molar units mol/L) as follows:
[tex]M=\frac{\pi }{RT} =\frac{19.1atm}{0.082\frac{atm*L}{mol*K}*(32+273.15)K} \\\\M=0.763\frac{mol}{L}=0.763M[/tex]
Best regards.
A pharmaceutical company is making a large volume of nitrous oxide (NO). They predict they will be able to make a maximum amount of 4860 grams with the materials they have in stock. From the previous 10 volumes they have made, they know that the percent yield of this reaction is fairly low at 47%. How much will the actual yield be?
Answer:
2284.2 g.
Explanation:
The following data were obtained from the question:
Percentage yield = 47%
Theoretical yield = 4860 g
Actual yield =?
The percentage yield is simply defined as the ratio of actual yield to the theoretical yield multiplied by 100. Mathematically, it is expressed as:
Percentage yield = Actual yield /Theoretical yield x 100
With the above formula, we can obtain the actual yield as follow:
Percentage yield = Actual yield /Theoretical yield x 100
47% = Actual yield /4860
Cross multiply
Actual yield = 47% × 4860
Actual yield = 47/100 x 4860
Actual yield = 2284.2 g
Therefore, the actual yield is 2284.2 g.
The specific rotation of (S)-carvone (at 20°C) is +61. A chemist prepared a mixture of (R)-carvone and its enantiomer, and this mixture had an observed rotation of -55°.
A) What is the specific rotation of (R)-carvone at 20°C?
B) Calculate the % ee of this mixture.
C) What percentage of the mixture is (S)-carvone?
Answer:
a) Specific Rotation of (R)-carvone = -61°
b) The enantiomeric excess of (R)-carvone in the mixture = 90.2%
c) The percentage of (S)-carvone in the mixture = 4.9%
Explanation:
a) The specific rotation of the enantiomer of a substance is given simply as the negative of the specific rotation of that substance.
Hence, the specific rotation of (R)-carvone is simply the negative of the specific rotation of (S)-carvone.
Specific Rotation of (R)-carvone = -(61°) = -61°
b) Enantiometic excess is used to measure the optical purity of an enantiomeric mixture.
The enantiomeric excess is given mathematically as
ee% = (Observed rotation × 100)/(Specific rotation)
Hence, to calculate the enantiomeric excess of (R)-carvone,
Observed rotation of the mixture = -55°
Specific Rotation of (R)-carvone = -61°
ee% = (-55×100)/(-61) = 90.16% = 90.2%
c) An enantiomeric excess of 90.2% for (R)-carvone indicates that it's actual percentage is 90.2% more than the percentage of its enantiomeric partner, (S)-carvone, in the mixture.
Let the percentage of (R)-carvone in the mixture be x
Let the percentage of (S)-carvone in the mixture be y
x + y = 100
x - y = 90.2
2x = 190.2
x = (190.2/2) = 95.1%
y = 100 - x = 100 - 95.1 = 4.9%
Hence, the percentage of (R)-carvone in the mixture = 95.1%
The percentage of (S)-carvone in the mixture = 4.9%
Hope this Helps!!!
a) Specific Rotation of (R)-carvone = -61°
b) The enantiomeric excess of (R)-carvone in the mixture = 90.2%
c) The percentage of (S)-carvone in the mixture = 4.9%
a) Calculation of Specific Rotation:The specific rotation of the enantiomer of a substance is given simply as the negative of the specific rotation of that substance.
Hence, the specific rotation of (R)-carvone is simply the negative of the specific rotation of (S)-carvone.
Specific Rotation of (R)-carvone = -(61°) = -61°
b) Calculation for Enantiomeric excess:
The enantiomeric excess is given mathematically as
ee% = (Observed rotation × 100)/(Specific rotation)
Hence, to calculate the enantiomeric excess of (R)-carvone,
Observed rotation of the mixture = -55°
Specific Rotation of (R)-carvone = -61°
ee% = (-55×100)/(-61) = 90.16% = 90.2%
c) Calculation of percentage:
Let the percentage of (R)-carvone in the mixture be x
Let the percentage of (S)-carvone in the mixture be y
x + y = 100
x - y = 90.2
2x = 190.2
x = (190.2/2) = 95.1%
y = 100 - x = 100 - 95.1 = 4.9%
Hence, the percentage of (R)-carvone in the mixture = 95.1%
The percentage of (S)-carvone in the mixture = 4.9%
Find more information about Specific rotation here:
brainly.com/question/5963685
Draw the major product(s) obtained when the following compounds are treated with bromine in the presence of iron tribromide.
a. Bromobenzene
b. ortho-Xylene
c. Benzene sulfonic acid
d. Benzaldehyde
e. meta-Nitrotoluene
f, para-Dibromobenzene
g. Nitrobenzene tert-Butylbenzene
h. Benzoic acid
i. Dibromobenzene
Answer:
The halogens are the ortho and para directing groups. Whenever they react with other benzene compounds they will attach to the ortho or para positions of the benzene ring.
Major products which are obtained by reacting these given compounds are given in attached pictures with complete reactions.
HBr will always be the side product of the bromine reactions along with the major compound.
Explanation:
True or False
1. Density is considered a chemical (i.e., not a physical) property. TRUE FALSE
2. When naming an ionic compound containing a transition element such as iron (Fe), the name must include a Roman numeral to indicate the charge of the metal ion. TRUE FALSE
3. The neutron was discovered about 20 years after the electron and proton because it has no charge (in order for it to be detected). TRUE FALSE
4. When we balance a chemical equation, we are observing the law of conservation of mass as well as the part of Dalton’s theory that atoms are neither created or destroyed in a chemical reaction TRUE FALSE
5. When a gas is heated up in a closed container, the kinetic energy of the molecules or atoms of the gas increase, which leads to a decrease in the pressure of the gas. TRUE FALSE
6. The amount of enthalpy (heat energy) for a reaction is directly proportional to the amount (number of moles or grams) of the reactants. TRUE FALSE
7. The combined gas law works for any gas (i.e., you do not need to know the chemical formula). TRUE FALSE
8. A balloon with 10.0 g of CO2 gas will have more molecules than a 10.0 g sample of NO gas. TRUE FALSE
9. Unless a sample is at absolute zero (kelvins), the particles in the sample will have kinetic energy and have some kind of motion. TRUE FALSE
Answer:
1. False
2. True
3. True
4. True
5. True
6. True
7. True
8. False
9. True
Explanation:
Density is a physical property since its measurement does not involve any chemical process.
Since transition elements exhibit variable oxidation states, the actual oxidation state of the transition element must be specified in the compound.
Due to the fact that neutron has no charge, it was discovered by Chadwick long after the electron and proton were discovered.
The balancing of chemical reaction equations is a demonstration that atoms are neither created no destroyed. It also shows that mass is neither created nor destroyed in chemical reactions.
When a gas is heated, it expands. Its volume and its kinetic energy increases. Since volume and pressure are inversely proportional (Boyle's law) the pressure decreases.
Enthalpy is said to be an extensive property. This implies that the magnitude of change in enthalpy is known to depend on the amount of reactants that is actually reacted.
The combined gas law is applicable to all ideal gas systems irrespective of their individual chemical formulas.
10g of CO2 contains 0.227 moles of CO2 while 10g of NO contains 0.33 moles of NO hence 10.0 g of NO will contain more molecules than 10.0g of CO2.
If a sample is not at absolute zero, the particles are known to possess kinetic energy which decreases continuously until absolute zero is attained.
The gas in a 250. mL piston experiences a change in pressure from 1.00 atm to 2.55 atm. What is the new volume (in mL) assuming the moles of gas and temperature are held constant?
Answer:
[tex]\large \boxed{\text{0.980 L}}[/tex]
Explanation:
The temperature and amount of gas are constant, so we can use Boyle’s Law.
[tex]p_{1}V_{1} = p_{2}V_{2}[/tex]
Data:
[tex]\begin{array}{rcrrcl}p_{1}& =& \text{1.00 atm}\qquad & V_{1} &= & \text{250. mL} \\p_{2}& =& \text{2.55 atm}\qquad & V_{2} &= & ?\\\end{array}[/tex]
Calculations:
[tex]\begin{array}{rcl}\text{1.00 atm} \times \text{250. mL} & =& \text{2.55 atm} \times V_{2}\\\text{250. mL} & = & 2.55V_{2}\\V_{2} & = &\dfrac{\text{250. mL}}{2.55}\\\\& = &\textbf{98.0 mL}\\\end{array}\\\text{The balloon's new volume is $ \large \boxed{\textbf{0.980 L}}$}[/tex]
What is the molar mass of a protein if a solution of 0.020 g of the protein in 25.0 mL of solution has an osmotic pressure of 0.56 torr at 25 ∘ C
Answer:
26.5 kD
Explanation:
Here we can apply the formula ∏ = iMRT, where ∏ = osmotic pressure = 0.56 - ( given ). This is only one part of the information we are given / can conclude in this case ....
i = van’t Hoff factor = 1 for a protein molecule,
R = gas constant = 62.36 L torr / K-mol,
T ( temperature in Kelvin ) = 25 + 273 - conversion factor C° + 273 = 298K
( Known initially ) ∏ = osmotic pressure = 0.56 torr
..... besides the part " M " in the formula, which we have no information on whatsoever, as we have to determine it's value.
_____
Substitute derived / known values to solve for M ( moles / liter ) -
∏ = iMRT
⇒ 0.56 = ( 1 )( M )( 62.36 )( 298 )
⇒ 0.56 = M( 18583.28 )
⇒ M = 0.56 / 18583.28 ≈ 0.00003013461 ....
_____
We know that M = moles / liter, so we can use this to solve for moles, and hence calculate the molar mass by the formula molar mass = g / mol -
M = mol / l
⇒ 0.00003013461 = 0.020 / 25 mL ( 0.025 L ),
0.020 / 0.025 = 0.8 g / L
⇒ 0.8 g = 0.00003013461 moles,
molar mass = 0.8 g / 0.00003013461 moles = 26,548 g / mol = 26.5 kD
Which of the following properties should carbon (C) have based on its position on
the periodic table?
A. Shiny
B. Dense
C. Malleable
D. Poor conductor
Answer:
D- poor conductor
Explanation:
metallic properties decrease as we go on the right of the periodic table. Carbon is a non metal hence it is dull and a poor conductor.
it has a low density and is ductile.
Answer: Poor conductor
Explanation:
What's the difference between velocity time graph and distance time graph
Explanation:
Hi there!
I attached a photo of a unit summary that states the difference between s-t and v-t graph.
Hope this helps ;) ❤❤❤
A glass cylinder contains 2 gases at a pressure of 106 kPa. If one gas is at 7 kPa, what is the pressure of attributed to the other gas? a) 9 kPa b) 99 kPa c) 113 kPa d) 7 kPa e) 2 kPa (URGENT)
Answer:
b) 99 kPa
Explanation:
According to Daltons law of partial pressure, the total pressure of a mixture of two or more non reactive gases is the sum of their individual pressures. Let the total pressure of a mixture of n number of gases be [tex]P_{total}[/tex] and their individual pressure be [tex]P_1,P_2,P_3,\ .\ .\ .\ ,\ P_n[/tex], According to Daltons partial pressure law:
[tex]P_{total}=P_1+P_2+P_3+.\ .\ .+P_n[/tex]
Since A glass cylinder contains 2 gases at a pressure of 106 kPa, therefore n = 2. Also one gas ([tex]P_1[/tex]) is at 7 kPa. Using Daltons partial pressure law:
[tex]P_{total}=P_1+P_2+P_3+.\ .\ .+P_n\\P_{total}=P_1+P_2\\106\ kPa=7\ kPa+P_2\\P_2=106\ kPa-7\ kPa\\P_2=99\ kPa[/tex]
What does the state symbol (aq) mean when written after a chemical
compound in a chemical equation?
A. It means the compound is in the liquid phase.
B. It means the compound is dissolved in water.
C. It means the compound is in the gas phase.
D. It means the compound is in the solid phase.
B. it means the compound is dissolved in water
Answer:
b
Explanation:
a p e x :)
The specific heat of a certain type of metal is 0.128 J/(g⋅∘C). What is the final temperature if 305 J of heat is added to 52.4 g of this metal, initially at 20.0 ∘C?
Answer:
65.47∘C
Explanation:
Specific heat capacity, c = 0.128 J/(g⋅∘C)
Initial temperature = 20.0 ∘C
Final temperature = ?
Mass = 52.4 g
Heat = 305 J
All these variables are related by the following equation;
H = m c ΔT
ΔT = H / mc
ΔT = 305 / (52.4 * 0.128)
ΔT = 45.47∘C
ΔT = Final Temperature - Initial Temperature
Final temperature = ΔT + Initial temperature
Final temperature = 45.47∘C + 20.0 ∘C = 65.47∘C
Which of these substances has the highest pOH? 0.10 M HCl, pH = 1 0.001 M HNO3, pH = 3 0.01 M NaOH, pH = 12 The answer is 0.10 M HCI, pH=1
Answer:On these combined scales of pH and pH it can be shown that because for water when pH = pH = 7 that pH + pH = 14. This relationship is useful in the inter conversion of values. For example, the pH at a 0.01 M solution of sodium hydroxide is 2, the pH of the same solution must be 14-2 = 12.
Explanation:
The 0.10M HCI, pH = 1 solution has the highest pOH. Therefore, option (1) is correct.
What is the pOH?pOH of a solution can be determined from the negative logarithm of the hydroxide ions concentration in the solution.
The mathematically pOH of the solution can be expressed as:
pOH = -log [OH⁻] ..............(1)
Where [OH⁻] represents the concentration of hydroxide ions in an aqueous solution.
Given, the pH = 1 of HCl
pH + pOH = 14
1 + pOH = 14
pOH = 14 - 1
pOH = 13
Given, the pH = 3 of HNO₃
pH + pOH = 14
3 + pOH = 14
pOH = 14 - 3
pOH = 11
Given, the pH = 12 of NaOH = 0.01 M
pH + pOH = 14
12 + pOH = 14
pOH = 14 - 12
pOH = 2
Learn more about pOH, here:
brainly.com/question/17144456
#SPJ2
Suppose of nickel(II) iodide is dissolved in of a aqueous solution of potassium carbonate. Calculate the final molarity of nickel(II) cation in the solution. You can assume the volume of the solution doesn't change when the nickel(II) iodide is dissolved in it. Round your answer to significant digits.
Answer:
0.619 M to 3 significant figures.
Explanation:
1 mole of [tex]NiI_{2}[/tex] - 312.5 g
? mole of [tex]NiI_{2}[/tex] - 2.9 g
= 2.9/312.5
= 0.0928 moles.
Concentration = no. of moles/vol in litres = [tex]\frac{0.0928}{0.150L}[/tex]
= 0.619 M
During which part of the scientific method would error bars be used?
A. Conclusion
B. Analysis
C. Hypothesis
D. Research
please helppppppppppp
Answer:
The correct answer is B. Analysis
Explanation:
Error bars are part of the statistical analysis in the scientific method. Once the scientist have collected the data, he or she proceed to the data analysis. A very common way of comparing the data variability is to use error bars in ghaphical representations. From these bars, it can be estimated the error of a determination and experimental groups are compared.
The error bars would be used during B. Analysis.
What is an Error Bar?A blunders bar is a line through a factor on a graph, parallel to one of the axes, which represents the uncertainty or variant of the corresponding coordinate of the point. In IB Biology, the error bars most often represent the same old deviation of an information set.
When would error bars be used?Blunders bars can be used to examine visual quantities if various other situations preserve. This can decide whether or not differences are statistically sizable. Mistake bars can also propose the goodness of match of a given characteristic, i.e., how well the function describes the facts.
Learn more about error bars here: https://brainly.com/question/1413254
#SPJ2
16. A metal element and a non-metal element are brought near each other and allowed to react. What's the most likely type of compound
that will form between these two elements?
A. lonic and covalent
B. lonic
C. Covalent
D. Neither, metals and non-metals don't react.
Answer:
B) Ionic
Explanation:
The following balanced equation describes the reduction of iron(III) oxide to molten iron within a blast furnace: Fe2O3(s) + 3CO(g) ---> 2Fe(l) + 3CO2(g) Steve inserts 450. g of iron(III) oxide and 260. g of carbon monoxide into the blast furnace. After cooling the pure liquid iron, Steve determines that he has produced 288g of iron ingots. What is the theoretical yield of liquid iron, in grams? Just enter a numerical value. Do not enter units.
Answer: 313.6
Explanation:
To calculate the moles :
[tex]\text{Moles of solute}=\frac{\text{given mass}}{\text{Molar Mass}}[/tex]
[tex]\text{Moles of} Fe_2O_3=\frac{450g}{160g/mol}=2.8moles[/tex]
[tex]\text{Moles of} CO=\frac{260g}{28g/mol}=9.3moles[/tex]
[tex]Fe_2O_3(s)+3CO(g)\rightarrow 2Fe(l)+3CO_2(g)[/tex]
According to stoichiometry :
1 mole of [tex]Fe_2O_3[/tex] require 3 moles of [tex]CO[/tex]
Thus 2.8 moles of [tex]Fe_2O_3[/tex] will require=[tex]\frac{3}{1}\times 2.8=8.4moles[/tex] of [tex]CO[/tex]
Thus [tex]Fe_2O_3[/tex] is the limiting reagent as it limits the formation of product and [tex]CO[/tex] is the excess reagent.
As 1 mole of [tex]Fe_2O_3[/tex] give = 2 moles of [tex]Fe[/tex]
Thus 2.8 moles of [tex]Fe_2O_3[/tex] give =[tex]\frac{2}{1}\times 2.8=5.6moles[/tex] of [tex]Fe[/tex]
Mass of [tex]Fe=moles\times {\text {Molar mass}}=2.6moles\times 56g/mol=313.6g[/tex]
Theoretical yield of liquid iron is 313.6 g
g The combustion of ethylene proceeds by the following reaction: C2H4(g) + 3 O2(g) → 2 CO2(g) + 2 H2O(g) If the rate of O2 is -0.23 M/s, then what is the rate (in M/s) of disappearance of C2H4?
Answer:
Explanation:
C₂H₄(g) + 3O₂(g) → 2CO₂(g) + 2H₂O(g)
In this reaction we see that 3 moles of O₂ reacts with one mole of C₂H₄ .
Hence rate of disappearance of O₂ is 3 times faster .
- d [O₂] / dt = - 3 d [ C₂ H₄ ] / dt
Putting the given value
.23 = 3 d [ C₂ H₄ ] / dt
d [ C₂ H₄ ] / dt = .23 / 3
= .077 M / s
Hence the rate of disappearance of C₂ H₄ is .077 moles / s .
Draw the curved arrow mechanism for the reaction between (2R,3R)-3,5-dimethylhexan-2-ol and PCl3.
Answer:
Sn2 mechanism
Explanation:
In this case, our nucleophile is the "OH" on (2R,3R)-3,5-dimethylhexan-2-ol. The alcohol group will attack the [tex]PCl_3[/tex] to produce a new bond between O and P with a positive charge in the oxygen. Additionally, when the OH attacks a Br atom leaves the molecule producing a bromide ion.
In the next step, the bromide ion produced will attack the carbon bonded to the OH that now is bonded to [tex]PCl_2[/tex]. An Sn2 reaction takes place and the substitution would be made in only one step. Due to this, we will have an inversion in the stereochemistry and the absolute configuration on carbon 2 will change from "R" to "S" to produce (2S,3R)-2-bromo-3,5-dimethylhexane.
I hope it helps!
How many mL of calcium hydroxide are required to neutralize 25.0 mL of 0.50 M
nitric acid?
Answer:
6.5 mL
Explanation:
Step 1: Write the balanced reaction
Ca(OH)₂ + 2 HNO₃ ⇒ Ca(NO₃)₂ + 2 H₂O
Step 2: Calculate the reacting moles of nitric acid
25.0 mL of 0.50 M nitric acid react.
[tex]0.0250L \times \frac{0.50mol}{L} = 0.013 mol[/tex]
Step 3: Calculate the reacting moles of calcium hydroxide
The molar ratio of Ca(OH)₂ to HNO₃ is 1:2. The reacting moles of Ca(OH)₂ are 1/2 × 0.013 mol = 6.5 × 10⁻³ mol
Step 4: Calculate the volume of calcium hydroxide
To answer this, we need the concentration of calcium hydroxide. Since the data is missing, let's suppose it is 1.0 M.
[tex]6.5 \times 10^{-3} mol \times \frac{1,000mL}{1.0mol} = 6.5 mL[/tex]
Molarity of NaOH: From the following data calculate molarity of NaOH. Molar mass of KHP is 204.23 g/mol. Show calculation. Mass of Erlenmeyer flask + KHP 84.847 g Mass of Erlenmeyer flask 84.347 g Mass of KHP ??? Final buret reading 12.25 mL Initial buret reading 0.50 mL Volume of NaOH added ???
Answer:
Explanation:
Mass of Erlenmeyer flask + KHP = 84.847 g
Mass of Erlenmeyer flask = 84.347 g
Mass of KHP = .5 g
moles of KHP = .5 / 204.23
= 2.448 x 10⁻³ moles
moles of NaOH reacted = 2.448 x 10⁻³
Final buret reading = 12.25 mL
Initial buret reading = 0.50 mL
Volume of NaOH added=
A 0.500 g sample of tin (Sn) is reacted with oxygen to give 0.534 g of product. What is the percent mass of the tin and percent by mass of oxygen in the sample
Answer:
Percentage mass of Tin = 96.3%
Percentage mass of oxygen = 6.40%
Explanation:
The product of the reaction is an oxide of tin.
Assuming all of the 0.500 g sample of tin reacted with oxygen to produce the oxide:
Mass of oxide = 0.534 g
Mass of tin present in the oxide = 0.500 g
Mass of oxygen in the oxide = 0.534 g of oxide - 0.500 g Sn = 0.034 g O
Percentage composition = mass of element/mass of compound × 100%
Percentage composition of Sn = 0.500 g/0.534 g × 100 = 93.6% Sn
Percentage composition of oxygen = 0.034 g/0.534 g × 100 = 6.40%
what is the concentration in ppm of a solution which is prepared by dissolving in 15mg of nacl in 200ml water
Answer:
Explanation:
In weight/volume (w/v) terms,
1 ppm = 1g m-3 = 1 mg L-1 = 1 μg mL-1
200 mL = 0.2 L
15 / 0.2 mg L-1 =75 ppm
The concentration in ppm of a solution which is prepared by dissolving in 15mg of NaCl in 200ml water is 75 mg/.,
What is ppm?ppm stand for 'part per million' and it is used to define the concentration of any substance as mass of any substance present in per liter of volume of solution, its unit for measurement is mg/L.
Given that, mass of NaCl = 15mg
Volume of solution = 200mL = 0.2L
Concentration in ppm will be calculated as:
ppm = 15/0.2 = 75mg/L
Hence ppm concentration of NaCl is 75 mg/L.
To know more about ppm, visit the below link:
https://brainly.com/question/16877061
#SPJ2
When hydrogenation of two alkenes produce the same alkane, the more stable alkene has the___________ smaller heat of hydrogenation.
Explanation:
Heat of hydrogenation of alkenes is a measure of the stability of carbon-carbon double bonds.
In general, the lower the value of the heat of hydrogenation the more stable the double bond of the alkene.
Also, heat of hydrogenation of alkenes always have a negative value.
Give the name of the following molecule
Answer:
[tex]\boxed{Heptene}[/tex]
Explanation:
Double Bond => An Alkene molecule
So, the suffix will be "-ene"
7 Carbons => So, we'll use the prefix "Hept-"
Combining the suffix and prefix, we get:
=> Heptene
Answer:
[tex]\boxed{\mathrm{Heptene}}[/tex]
Explanation:
Alkenes have double bonds. The molecule has one double bond.
Suffix ⇒ ene
The molecule has 7 carbon atoms and 14 hydrogen atoms.
Prefix ⇒ Hept (7 carbons)
The molecule is Heptene.
[tex]\mathrm{C_7H_{14}}[/tex]
All of the following reactions can be described as displacement reactions except:____________.
a.) Zn(s) + FeCl2(aq) → ZnCl2(aq) + Fe(s).
b.) C6H6(l) + Cl2(g) → C6H5Cl(l) + HCl(g).
c.) 2Na(s) + 2H2O(l) → 2NaOH(aq) + H2(g).
d.) Cu(s) + 2AgNO3(aq) → Cu(NO3)2(aq) + 2Ag(s).
e.) CuSO4(aq) + Fe(s) → Cu(s) + FeSO4(aq).
Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is [tex]C_6H_6_{(l)} + Cl_{2(g)} --> C_6H_5Cl_{(l)} + HCl_{(g)}[/tex]
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.
Correct option = b.
The reaction given in Option A is not a displacement reaction. In Displacement reaction functional group of one reactant is replaced by the functional group of the another reactant.
Displacement reaction:
In this reaction functional group of one reactant is replaced by the functional group of the another reactant.
[tex]\bold { Zn(s) + FeCl_2(aq) \rightarrow ZnCl_2(aq) + Fe(s).}[/tex]
In the above reaction Zinc does not any functional group to exchange with iron chloride.
Therefore, the reaction given in Option A is not a displacement reaction.
To know more about Displacement reaction,
https://brainly.com/question/4339209
Please help asap! Giving brainliest.
What is the total number of electrons that can occupy the p sublevel? (3 points)
Select one:
a. 2 electrons
b. 6 electrons
c. 8 electrons
d. 10 electrons
Answer:
The answer is 6 because the p sublevel holds 3 orbitals and since each orbital can hold 2 electrons, the answer is 3 * 2 = 6.
Answer:
6 electrons
Explanation:
Each principal energy level above the first contains one s orbital and three p orbitals. A set of three p orbitals, called the p sublevel, can hold a maximum of six electrons. So the answer is 6 electrons.
Identify each reaction from the citric acid cycle as an oxidation‑reduction reaction, an esterification reaction, an amidation reaction, a hydrolysis reaction, a hydration reaction, or a dehydration reaction.
1. Which type of reaction occurs when succinyl-CoA is converted to succinate in the citric acid cycle?
2. Which type of reaction occurs when malate is converted to oxaloacetate in the citric acid cycle?
3. Which type of reaction occurs when aconitate is converted to isocitrate in the citric acid cycle?
Answer:
1. Oxidation-reduction and hydrolysis
2. Oxidation-reduction
3. Dehydration
Explanation:
Our options for each reaction are:
a) Oxidation‑reduction reaction
b) Esterification reaction
c) Amidation reaction
d) Hydrolysis reaction
c) Hydration reaction
f) Dehydration reaction
In reaction one the have the rupture of the S-CoA bond. This reaction takes place by the addition of a water molecule and the oxidation to a carboxylic acid group. So, for reaction 1 we will have an oxidation-reduction and a hydrolysis reaction.
For reaction 2, the functional group change from alcohol to a carboxylic acid. So, we have an oxidation-reduction reaction.
In the last reaction, we have the production of a double bond by the removal of water. With this in mind, we have a dehydration reaction.
See figure 1
I hope it helps
Treatment of 1 mole of dimethyl sulfate with 2 moles of sodium acetylide results in the formation of propyne as the major product.
A) Draw a reasonable mechanism accounting for the formation of the byproduct 2-butyne.
B) 2-Butyne is observed as a minor product of this reaction. Draw a mechanism accounting for the formation of this minor product and explain how your proposed mechanism is consistent with the observation that acetylene is present among the reaction products.
C) Predict the major and minor products that are expected if diethyl sulfate is used in place of dimethyl sulfate.
Answer:
(a) appended underneath is the inorganic ion shaped in the reaction and the mechanism of its formation
(b) 2-butyne framed as a minor product is appeared in the connection. It is shaped when the monosodium subordinate of dimethylsulphoxide gets a hydrogen from the propyne and reacts again with monosodium methylsulphoxide.
(c) The major product framed when diethylsulphoxide is utilized, would be butyne and minor product would be 3-hexyne.
Explanation:
attached below is diagram