For
all x,y ∈R, if f(x+y)=f(x)+f(y) then there exists exactly one real
number a ∈ R such that for all rational numbers x , show that
f(x)=ax

Answers

Answer 1

If the functional equation f(x+y) = f(x) + f(y) holds for all real numbers x and y, then there exists exactly one real number a such that for all rational numbers x, f(x) = ax.

The given statement is a functional equation that states that if for all real numbers x and y, the function f satisfies f(x+y) = f(x) + f(y), then there exists exactly one real number a such that for all rational numbers x, f(x) = ax.

To prove this, let's consider rational numbers x = p/q, where p and q are integers with q ≠ 0.

Since f is a function satisfying f(x+y) = f(x) + f(y) for all real numbers x and y, we can rewrite the equation as f(x) + f(y) = f(x+y).

Using this property, we have:

f(px/q) = f((p/q) + (p/q) + ... + (p/q)) = f(p/q) + f(p/q) + ... + f(p/q) (q times)

Simplifying, we get:

f(px/q) = qf(p/q)

Now, let's consider f(1/q):

f(1/q) = f((1/q) + (1/q) + ... + (1/q)) = f(1/q) + f(1/q) + ... + f(1/q) (q times)

Simplifying, we get:

f(1/q) = qf(1/q)

Comparing the expressions for f(px/q) and f(1/q), we can see that qf(p/q) = qf(1/q), which implies f(p/q) = f(1/q) * (p/q).

Since f(1/q) is a constant value independent of p, let's denote it as a real number a. Then we have f(p/q) = a * (p/q).

Therefore, for all rational numbers x = p/q, f(x) = ax, where a is a real number.

To know more about functional equation refer to-

https://brainly.com/question/29051369

#SPJ11


Related Questions

N4
(2 points) If \( \vec{v} \) is an eigenvector of a matrix \( A \), show that \( \vec{v} \) is in the image of \( A \) or in the kernel of \( A \).

Answers

If [tex]\( \vec{v} \)[/tex] is an eigenvector of a matrix[tex]\( A \)[/tex], it can be shown that[tex]\( \vec{v} \)[/tex]must belong to either the image (also known as the column space) of[tex]\( A \)[/tex]or the kernel (also known as the null space) of [tex]\( A \).[/tex]

The image of a matrix \( A \) consists of all vectors that can be obtained by multiplying \( A \) with some vector. The kernel of \( A \) consists of all vectors that, when multiplied by \( A \), yield the zero vector. The key idea behind the relationship between eigenvectors and the image/kernel is that an eigenvector, by definition, remains unchanged (up to scaling) when multiplied by \( A \). This property makes eigenvectors particularly interesting and useful in linear algebra.
To see why an eigenvector[tex]\( \vec{v} \)[/tex]must be in either the image or the kernel of \( A \), consider the eigenvalue equation [tex]\( A\vec{v} = \lambda\vec{v} \), where \( \lambda \)[/tex]is the corresponding eigenvalue. Rearranging this equation, we have [tex]\( A\vec{v} - \lambda\vec{v} = \vec{0} \).[/tex]Factoring out [tex]\( \vec{v} \)[/tex], we get[tex]\( (A - \lambda I)\vec{v} = \vec{0} \),[/tex] where \( I \) is the identity matrix. This equation implies that[tex]\( \vec{v} \)[/tex] is in the kernel of [tex]\( (A - \lambda I) \). If \( \lambda \)[/tex] is nonzero, then [tex]\( A - \lambda I \)[/tex]is invertible, and its kernel only contains the zero vector. In this case[tex], \( \vec{v} \)[/tex]must be in the kernel of \( A \). On the other hand, if [tex]\( \lambda \)[/tex]is zero,[tex]\( \vec{v} \)[/tex]is in the kernel of[tex]\( A - \lambda I \),[/tex]which means it satisfies[tex]\( A\vec{v} = \vec{0} \)[/tex]and hence is in the kernel of \( A \). Therefore, an eigenvector[tex]\( \vec{v} \)[/tex] must belong to either the image or the kernel of \( A \).

learn more about eigen vector here

https://brainly.com/question/32640282



#SPJ11

Find the general solution to the following differential equations:
16y''-8y'+y=0
y"+y'-2y=0
y"+y'-2y = x^2

Answers

The general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

Given differential equations are:

16y''-8y'+y=0

y"+y'-2y=0

y"+y'-2y = x²

To find the general solution to the given differential equations, we will solve these equations one by one.

(i) 16y'' - 8y' + y = 0

The characteristic equation is:

16m² - 8m + 1 = 0

Solving this quadratic equation, we get m = 1/4, 1/4

Hence, the general solution of the given differential equation is:

y = c₁e^(x/4) + c₂xe^(x/4)..................................................(1)

(ii) y" + y' - 2y = 0

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2

Hence, the general solution of the given differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(2)

(iii) y" + y' - 2y = x²

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2.

The complementary function (CF) of this differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(3)

Now, we will find the particular integral (PI). Let's assume that the PI of the differential equation is of the form:

y = Ax² + Bx + C

Substituting the value of y in the given differential equation, we get:

2A - 4A + 2Ax² + 4Ax - 2Ax² = x²

Equating the coefficients of x², x, and the constant terms on both sides, we get:

2A - 2A = 1,

4A - 4A = 0, and

2A = 0

Solving these equations, we get

A = 1/2,

B = 0, and

C = 0

Hence, the particular integral of the given differential equation is:

y = (1/2)x²..................................................(4)

The general solution of the given differential equation is the sum of CF and PI.

Hence, the general solution is:

y = c₁e^x + c₂e^(-2x) + (1/2)x²..................................................(5)

Conclusion: Therefore, the general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

To know more about differential visit

https://brainly.com/question/13958985

#SPJ11

The particular solution is: y = -1/2 x². The general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

The general solution of the given differential equations are:

Given differential equation: 16y'' - 8y' + y = 0

The auxiliary equation is: 16m² - 8m + 1 = 0

On solving the above quadratic equation, we get:

m = 1/4, 1/4

∴ General solution of the given differential equation is:

y = c1 e^(x/4) + c2 x e^(x/4)

Given differential equation: y" + y' - 2y = 0

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:

m = -2, 1

∴ General solution of the given differential equation is:

y = c1 e^(-2x) + c2 e^(x)

Given differential equation: y" + y' - 2y = x²

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:m = -2, 1

∴ The complementary solution is:y = c1 e^(-2x) + c2 e^(x)

Now we have to find the particular solution, let us assume the particular solution of the given differential equation:

y = ax² + bx + c

We will use the method of undetermined coefficients.

Substituting y in the differential equation:y" + y' - 2y = x²a(2) + 2a + b - 2ax² - 2bx - 2c = x²

Comparing the coefficients of x² on both sides, we get:-2a = 1

∴ a = -1/2

Comparing the coefficients of x on both sides, we get:-2b = 0 ∴ b = 0

Comparing the constant terms on both sides, we get:2c = 0 ∴ c = 0

Thus, the particular solution is: y = -1/2 x²

Now, the general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

To know more about differential equations, visit:

https://brainly.com/question/32645495

#SPJ11

help
Solve the following inequality algebraically. \[ |x+2|

Answers

The inequality to be solved algebraically is: |x + 2| < 3.

To solve the inequality, let's first consider the case when x + 2 is non-negative, i.e., x + 2 ≥ 0.

In this case, the inequality simplifies to x + 2 < 3, which yields x < 1.

So, the solution in this case is: x ∈ (-∞, -2) U (-2, 1).

Now consider the case when x + 2 is negative, i.e., x + 2 < 0.

In this case, the inequality simplifies to -(x + 2) < 3, which gives x + 2 > -3.

So, the solution in this case is: x ∈ (-3, -2).

Therefore, combining the solutions from both cases, we get the final solution as: x ∈ (-∞, -3) U (-2, 1).

Solving an inequality algebraically is the process of determining the range of values that the variable can take while satisfying the given inequality.

In this case, we need to find all the values of x that satisfy the inequality |x + 2| < 3.

To solve the inequality algebraically, we first consider two cases: one when x + 2 is non-negative, and the other when x + 2 is negative.

In the first case, we solve the inequality using the fact that |a| < b is equivalent to -b < a < b when a is non-negative.

In the second case, we use the fact that |a| < b is equivalent to -b < a < b when a is negative.

Finally, we combine the solutions obtained from both cases to get the final solution of the inequality.

In this case, the solution is x ∈ (-∞, -3) U (-2, 1).

To kow more about inequality algebraically visit:

https://brainly.com/question/29204074

#SPJ11

State whether the following statement is true or false. The two lines 5x+y=5 and 10x+2y=0 are parallel. Choose the correct answer below. True False

Answers

The correct answer that they are parallel or not is: True.

To determine if two lines are parallel, we need to compare their slopes. If the slopes of two lines are equal, then the lines are parallel.

If the slopes are different, the lines are not parallel.

Let's analyze the given lines:

Line 1: 5x + y = 5

Line 2: 10x + 2y = 0

To compare the slopes, we need to rewrite the equations in slope-intercept form (y = mx + b), where "m" represents the slope:

Line 1:

5x + y = 5

y = -5x + 5

Line 2:

10x + 2y = 0

2y = -10x

y = -5x

By comparing the slopes, we can see that the slopes of both lines are equal to -5. Since the slopes are the same, we can conclude that the lines are indeed parallel.

Therefore, the correct answer that they are parallel or not: True.

It's important to note that parallel lines have the same slope but may have different y-intercepts. In this case, both lines have a slope of -5, indicating that they are parallel.

To know more about parallel refer here:

https://brainly.com/question/16853486#

#SPJ11

(1 point) If we simplify \[ \left(x^{2}\right)^{10} \] as \( x^{A} \), what is the value of \( A \) ?

Answers

The value of [tex]\( A \)[/tex] when simplifying [tex]\( \left(x^{2}\right)^{10} \)[/tex] as [tex]\( x^{A} \)[/tex] is 20. This is because raising a power to another power involves multiplying the exponents, resulting in [tex]\( 2 \times 10 = 20 \)[/tex]. Therefore, we can simplify [tex]\( \left(x^{2}\right)^{10} \)[/tex] as [tex]\( x^{20} \)[/tex].

When we raise a power to another power, we multiply the exponents. In this case, we have the base [tex]\( x^2 \)[/tex] raised to the power of 10. Multiplying the exponents, we get [tex]\( 2 \times 10 = 20 \)[/tex]. Therefore, we can simplify [tex]\( \left(x^{2}\right)^{10} \)[/tex] as [tex]\( x^{20} \)[/tex].

This can be understood by considering the repeated multiplication of [tex]\( x^2 \)[/tex]. Each time we raise [tex]\( x^2 \)[/tex] to the power of 10, we are essentially multiplying it by itself 10 times. Since [tex]\( x^2 \)[/tex] multiplied by itself 10 times results in [tex]\( x^{20} \)[/tex], we can simplify [tex]\( \left(x^{2}\right)^{10} \)[/tex] as [tex]\( x^{20} \)[/tex].

To summarize, when simplifying [tex]\( \left(x^{2}\right)^{10} \)[/tex] as [tex]\( x^{A} \)[/tex], the value of [tex]\( A \)[/tex] is 20.

To learn more about Exponents, visit:

https://brainly.com/question/847241

#SPJ11

tomer owns a daycare center called kidz kare. one afternoon he collected the age of each person in kidz kare. the following histogram summarizes the data he collected. based on this data, what is a reasonable estimate of the probability that the next person to enter kidz kare is between 101010 and 151515 years old? choose the best answer. choose 1 answer: choose 1 answer: (choice a) a \dfrac{2}{10} 10 2 ​ start fraction, 2, divided by, 10, end fraction (choice b) b \dfrac{2}{7} 7 2 ​ start fraction, 2, divided by, 7, end fraction (choice c) c \dfrac{3}{10} 10 3 ​ start fraction, 3, divided by, 10, end fraction (choice d) d \dfrac{3}{7} 7 3 ​

Answers

A reasonable estimate of the probability that the next person to enter Kidz Kare is between 10 and 15 years old is 2/7. Hence the correct answer is 2/7.

The histogram provided summarizes the data of ages of each person in Kidz Kare. Based on the data, a reasonable estimate of the probability that the next person to enter Kidz Kare is between 10 and 15 years old is 2/7.

What is a histogram?

A histogram is a graph that shows the distribution of data. It is a graphical representation of a frequency distribution that shows the frequency distribution of a set of continuous data. A histogram groups data points into ranges or bins, and the height of each bar represents the frequency of data points that fall within that range or bin.

Interpreting the histogram:

From the histogram provided, we can see that the 10-15 age group covers 2 bars of the histogram, so we can say that the frequency or the number of students who have ages between 10 and 15 is 2.

The total number of students in Kidz Kare is 7 + 3 + 2 + 4 + 1 + 1 + 1 = 19.

So, the probability that the next person to enter Kidz Kare is between 10 and 15 years old is 2/19.

We need to simplify the fraction.

2/19 can be simplified as follows:

2/19 = (2 * 1)/(19 * 1) = 2/19

Therefore, a reasonable estimate of the probability that the next person to enter Kidz Kare is between 10 and 15 years old is 2/19. The correct answer is 2/19.

Learn more about probability:

https://brainly.com/question/31828911

#SPJ11

create a flowchart using the bisection method when a=2 and b=5 and y=(x-3)3-1

Answers

1. Set the initial values of a = 2 and b = 5.

2. Calculate f(a) and f(b) and check if they have different signs.

3. Use the bisection method to iteratively narrow down the interval until the desired accuracy is achieved or the maximum number of iterations is reached.

Here's a step-by-step guide using the given values:

1. Set the initial values of a = 2 and b = 5.

2. Calculate the value of f(a) = (a - 3)^3 - 1 and f(b) = (b - 3)^3 - 1.

3. Check if f(a) and f(b) have different signs.

4. If f(a) and f(b) have the same sign, then the function does not cross the x-axis within the interval [a, b]. Exit the program.

5. Otherwise, proceed to the next step.

6. Calculate the midpoint c = (a + b) / 2.

7. Calculate the value of f(c) = (c - 3)^3 - 1.

8. Check if f(c) is approximately equal to zero within a desired tolerance. If yes, then c is the approximate root. Exit the program.

9. Check if f(a) and f(c) have different signs.

10. If f(a) and f(c) have different signs, set b = c and go to step 2.

11. Otherwise, f(a) and f(c) have the same sign. Set a = c and go to step 2.

Repeat steps 2 to 11 until the desired accuracy is achieved or the maximum number of iterations is reached.

learn more about "bisection ":- https://brainly.com/question/25770607

#SPJ11

A factory produces cans costing $240,000 per month and costs $0.05 per can, where C is the total cost and x is the quantity produced. c(x)=0.05x+240000 Express, using functional notation, what quantity makes the total cost $300,000 ? 1,200,000C(x)=300,000⊙C(x)=1,200,000∘C(300,000)∘C(300,000)=255,000∘C(1,200,000) What is the value returned from that function (what is x )?

Answers

The value returned from the function C(1,200,000) is $300,000. This means that producing 1,200,000 cans will result in a total cost of $300,000.

To find the quantity that makes the total cost $300,000, we can set the total cost function equal to $300,000 and solve for x:

C(x) = 0.05x + 240,000

$300,000 = 0.05x + 240,000

$60,000 = 0.05x

x = $60,000 / 0.05

x = 1,200,000

Therefore, the quantity that makes the total cost $300,000 is 1,200,000 cans.

To find the value returned from the function C(1,200,000), we can substitute x = 1,200,000 into the total cost function:

C(1,200,000) = 0.05(1,200,000) + 240,000

C(1,200,000) = 60,000 + 240,000

C(1,200,000) = $300,000

Therefore, the value returned from the function C(1,200,000) is $300,000. This means that producing 1,200,000 cans will result in a total cost of $300,000.

Learn more about " cost function" : https://brainly.com/question/2292799

#SPJ11

The water-supply manager for dallas needs to supply the city with at least 19 million gallons of potable water per day. the supply may be drawn from the local reservoir or from a pipeline to an adjacent town. the local reservoir has a maximum daily yield of 20 million gallons of potable water, and the pipeline has a maximum daily yield of 13 million gallons. by contract, the pipeline is required to supply a minimum of 7 million gallons per day. if the cost for 1 million gallons of reservoir water is $290 and the cost for 1 million gallons of pipeline water is $365, how much water should the manager get from each source to minimize daily water costs for the city? what is the minimum daily water cost?

Answers

So, the manager should get all the required water from the local reservoir, resulting in a minimum daily water cost of $5510.

To minimize the daily water costs for the city, the water-supply manager needs to determine how much water to get from each source while meeting the minimum requirement of 19 million gallons per day. Let's denote the amount of water drawn from the local reservoir as R (in million gallons) and the amount of water drawn from the pipeline as P (in million gallons).

Given the constraints:

R ≤ 20 (maximum daily yield of the reservoir)

P ≥ 7 (minimum daily yield of the pipeline)

R + P ≥ 19 (minimum requirement of 19 million gallons)

We need to find the values of R and P that satisfy these constraints while minimizing the daily water costs.

Let's calculate the costs for each source:

Cost of 1 million gallons of reservoir water = $290

Cost of 1 million gallons of pipeline water = $365

The total daily cost can be expressed as:

Total Cost = (Cost of reservoir water per million gallons) * R + (Cost of pipeline water per million gallons) * P

To minimize the total cost, we can use linear programming techniques or analyze the possible combinations. In this case, since the costs per million gallons are provided, we can directly compare the costs and evaluate the options.

Let's consider a few scenarios:

If all the water (19 million gallons) is drawn from the reservoir:

Total Cost = (Cost of reservoir water per million gallons) * 19 = $290 * 19

If all the water (19 million gallons) is drawn from the pipeline:

Total Cost = (Cost of pipeline water per million gallons) * 19 = $365 * 19

If some water is drawn from the reservoir and the remaining from the pipeline:  Since the minimum requirement is 19 million gallons, the pipeline must supply at least 19 - 20 = -1 million gallons, which is not possible. Thus, this scenario is not valid. Therefore, to minimize the daily water costs, the manager should draw all 19 million gallons of water from the local reservoir. The minimum daily water cost would be:

Minimum Daily Water Cost = (Cost of reservoir water per million gallons) * 19 = $290 * 19 = $5510.

To know more about minimum,

https://brainly.com/question/32079065

#SPJ11

Find the slope of the line if it exists.

Answers

Answer:

m = -4/3

Step-by-step explanation:

Slope = rise/run or (y2 - y1) / (x2 - x1)

Pick 2 points (-2,2) (1,-2)

We see the y decrease by 4 and the x increase by 3, so the slope is

m = -4/3

A phone company offers two monthly charge plans. In Plan A, the customer pays a monthly fee of $35 and then an additionat 6 cents per minute of use. In Plan B, the customer pays a monthly fee of $40.20 and then an additional 5 cents per minute of use. For what amounts of monthly phone use will Plan A cost no more than Plan B? Use m for the number of minutes of phone use, and solve your inequality for m.

Answers

Answer:

Plan A will cost no more than Plan B.

Step-by-step explanation:

Let's set up the inequality to determine the range of monthly phone use (m) for which Plan A costs no more than Plan B.

For Plan A:

Total cost of Plan A = $35 + $0.06m

For Plan B:

Total cost of Plan B = $40.20 + $0.05m

To find the range of monthly phone use where Plan A is cheaper than Plan B, we need to solve the inequality:

$35 + $0.06m ≤ $40.20 + $0.05m

Let's simplify the inequality:

$0.06m - $0.05m ≤ $40.20 - $35

$0.01m ≤ $5.20

Now, divide both sides of the inequality by $0.01 to solve for m:

m ≤ $5.20 / $0.01

m ≤ 520

Therefore, for monthly phone use (m) up to and including 520 minutes, Plan A will cost no more than Plan B.

Find a polynomial function that has the given zeros. (There are many correct answers.) \[ 4,-5,5,0 \] \[ f(x)= \]

Answers

A polynomial function with zeros 4, -5, 5, and 0 is f(x) = 0.

To find a polynomial function with zeros 4, -5, 5, and 0, we need to start with a factored form of the polynomial. The factored form of a polynomial with these zeros is:

f(x) = a(x - 4)(x + 5)(x - 5)x

where a is a constant coefficient.

To find the value of a, we can use any of the known points of the polynomial. Since the polynomial has a zero at x = 0, we can substitute x = 0 into the factored form and solve for a:

f(0) = a(0 - 4)(0 + 5)(0 - 5)(0) = 0

Simplifying this equation, we get:

0 = -500a

Therefore, a = 0.

Substituting this into the factored form, we get:

f(x) = 0(x - 4)(x + 5)(x - 5)x = 0

Therefore, a polynomial function with zeros 4, -5, 5, and 0 is f(x) = 0.

Learn more about " polynomial function" : https://brainly.com/question/2833285

#SPJ11



In this problem, you will investigate properties of polygons.


d. Logical

What type of reasoning did you use in part c? Explain.

Answers

In the previous problem, the reasoning that was utilized in part c is "inductive reasoning." Inductive reasoning is the kind of reasoning that uses patterns and observations to arrive at a conclusion.

It is reasoning that begins with particular observations and data, moves towards constructing a hypothesis or a theory, and finishes with generalizations and conclusions that can be drawn from the data. Inductive reasoning provides more support to the conclusion as additional data is collected.Inductive reasoning is often utilized to support scientific investigations that are directed at learning about the world. Scientists use inductive reasoning to acquire knowledge about phenomena they do not understand.

They notice a pattern, make a generalization about it, and then check it with extra observations. While inductive reasoning can offer useful insights, it does not always guarantee the accuracy of the conclusion. That is, it is feasible to form an incorrect conclusion based on a pattern that appears to exist but does not exist. For this reason, scientists will frequently evaluate the evidence using deductive reasoning to determine if the conclusion is precise.

To know more aboit reasoningvisit:

https://brainly.com/question/30612406

SPJ11

The length of a rectangle is \( 4 \mathrm{~cm} \) longer than its width. If the perimeter of the rectangle is \( 44 \mathrm{~cm} \), find its area.

Answers

The area of the rectangle of length 13cm and width 9cm is 117 square cm.

Let's assume the width of the rectangle is x cm. Since the length is 4 cm longer than the width, the length would be (x + 4) cm.

The formula for the perimeter of a rectangle is given by: P = 2(length + width).

Substituting the given values, we have:

44 cm = 2((x + 4) + x).

Simplifying the equation:

44 cm = 2(2x + 4).

22 cm = 2x + 4.

2x = 22 cm - 4.

2x = 18 cm.

x = 9 cm.

Therefore, the width of the rectangle is 9 cm, and the length is 9 cm + 4 cm = 13 cm.

The area of a rectangle is given by: A = length × width.

Substituting the values, we have:

A = 13 cm × 9 cm.

A = 117 cm^2.

Hence, the area of the rectangle is 117 square cm.

To learn more about rectangles visit:

https://brainly.com/question/25292087

#SPJ11

Compute the following expression. 360.00(1+0.04)[ 0.04
(1+0.04) 34
−1

] The value is approximately (Round the final answer to six decimal places as needed. Round all intermediate values to six decimal places as needed.)

Answers

The value of the given expression, 360.00(1+0.04)[0.04(1+0.04)34−1], is approximately 653.637529.

In the expression, we start by calculating the value within the square brackets: 0.04(1+0.04)34−1. Within the parentheses, we first compute 1+0.04, which equals 1.04. Then we multiply 0.04 by 1.04 and raise the result to the power of 34. Finally, we subtract 1 from the previous result. The intermediate value is 0.827373.

Next, we multiply the result from the square brackets by (1+0.04), which is 1.04. Multiplying 0.827373 by 1.04 gives us 0.85936812.

Finally, we multiply the above value by 360.00, resulting in 310.5733216. Rounding this value to six decimal places, we get the approximate answer of 653.637529.

To summarize, the given expression evaluates to approximately 653.637529 when rounded to six decimal places. The calculation involves multiplying and raising to a power, and the intermediate steps are performed to obtain the final result.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Solve the system. x1​−6x3​4x1​+4x2​−9x3​2x2​+4x3​​=9=37=4​ Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. The unique solution of the system is (3,4). (Type integers or simplified fractions.) B. The system has infinitely many solutions. C. The system has no solution.

Answers

The correct choice is: A. The unique solution of the system is (3, 4).To solve the given system of equations:

Write the system of equations in matrix form: AX = B, where A is the coefficient matrix, X is the variable matrix, and B is the constant matrix.

The coefficient matrix A is:

[1 0 -6]

[4 2 -9]

[0 2 4]

The variable matrix X is:

[x1]

[x2]

[x3]

The constant matrix B is:

[9]

[37]

[4]

Find the inverse of matrix A, denoted as A^(-1).

A⁻¹ =

[4/5  -2/5  3/5]

[-8/15  1/15 1/3]

[2/15  2/15  1/3]

Multiply both sides of the equation AX = B by A⁻¹ to isolate X.

X = A⁻¹ * B

X =

[4/5  -2/5  3/5]   [9]

[-8/15  1/15 1/3]*  [37]

[2/15  2/15  1/3]   [4]

Performing the matrix multiplication, we get:X =

[3]

[4]

[-1]

Therefore, the solution to the system of equations is (3, 4, -1). The correct choice is: A. The unique solution of the system is (3, 4).

To learn more about system of equations, click here: brainly.com/question/29887531

#SPJ11

Set up the integral of \( f(r, \theta, z)=r_{z} \) oven the region bounded above by the sphere \( r^{2}+z^{2}=2 \) and bounded below by the cone \( z=r \)

Answers

We have to set up the integral of \(f(r, \theta, z) = r_z\) over the region bounded above by the sphere \(r^2 + z^2 = 2\) and bounded below by the cone \(z = r\).The given region can be shown graphically as:

The intersection curve of the cone and sphere is a circle at \(z = r = 1\). The sphere completely encloses the cone, thus we can set the limits of integration from the cone to the sphere, i.e., from \(r\) to \(\sqrt{2 - z^2}\), and from \(0\) to \(\pi/4\) in the \(\theta\) direction. And from \(0\) to \(1\) in the \(z\) direction.

So, the integral to evaluate is given by:\iiint f(r, \theta, z) dV = \int_{0}^{\pi/4} \int_{0}^{2\pi} \int_{0}^{1} \frac{\partial r}{\partial z} r \, dr \, d\theta \, dz= \int_{0}^{\pi/4} \int_{0}^{2\pi} \int_{0}^{1} \frac{z}{\sqrt{2 - z^2}} r \, dr \, d\theta \, dz= 2\pi \int_{0}^{1} \int_{z}^{\sqrt{2 - z^2}} \frac{z}{\sqrt{2 - z^2}} r \, dr \, dz= \pi \int_{0}^{1} \left[ \sqrt{2 - z^2} - z^2 \ln\left(\sqrt{2 - z^2} + \sqrt{z^2}\right) \right] dz= \pi \left[ \frac{\pi}{4} - \frac{1}{3}\sqrt{3} \right]the integral of \(f(r, \theta, z) = r_z\) over the given region is \(\pi \left[ \frac{\pi}{4} - \frac{1}{3}\sqrt{3} \right]\).

To know about integration visit:

https://brainly.com/question/30900582

#SPJ11

Find the equation of the tangent line to g(x)= 2x / 1+x 2 at x=3.

Answers

The equation of the tangent line to g(x)= 2x / 1+x² at x=3 is 49x + 200y = 267.

To find the equation of the tangent line to g(x)= 2x / 1+x²at x=3, we can use the following steps;

Step 1: Calculate the derivative of g(x) using the quotient rule and simplify.

g(x) = 2x / 1+x²

Let u = 2x and v = 1 + x²

g'(x) = [v * du/dx - u * dv/dx] / v²

= [(1+x²) * 2 - 2x * 2x] / (1+x^2)²

= (2 - 4x²) / (1+x²)²

Step 2: Find the slope of the tangent line to g(x) at x=3 by substituting x=3 into the derivative.

g'(3) = (2 - 4(3)²) / (1+3²)²

= -98/400

= -49/200

So, the slope of the tangent line to g(x) at x=3 is -49/200.

Step 3: Find the y-coordinate of the point (3, g(3)).

g(3) = 2(3) / 1+3² = 6/10 = 3/5

So, the point on the graph of g(x) at x=3 is (3, 3/5).

Step 4: Use the point-slope form of the equation of a line to write the equation of the tangent line to g(x) at x=3.y - y1 = m(x - x1) where (x1, y1) is the point on the graph of g(x) at x=3 and m is the slope of the tangent line to g(x) at x=3.

Substituting x1 = 3, y1 = 3/5 and m = -49/200,

y - 3/5 = (-49/200)(x - 3)

Multiplying both sides by 200 to eliminate the fraction,

200y - 120 = -49x + 147

Simplifying, 49x + 200y = 267

Therefore, the equation of the tangent line to g(x)= 2x / 1+x² at x=3 is 49x + 200y = 267.

Learn more about tangent line visit:

brainly.com/question/12438697

#SPJ11

Use the given function and the given interval to complete parts a and b. f(x)=2x 3−33x 2 +144x on [2,9] a. Determine the absolute extreme values of f on the given interval when they exist. b. Use a graphing utility to confirm your conclusions. a. What is/are the absolute maximum/maxima of fon the given interval? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The absolute maximum/maxima is/are at x= (Use a comma to separate answers as needed. Type exact answers, using radicals as needed.) B. There is no absolute maximum of f on the given interval.

Answers

The absolute maximum of the function \(f(x) = 2x^3 - 33x^2 + 144x\) on the interval \([2, 9]\) is 297.

a. The absolute maximum of \(f\) on the given interval is at \(x = 9\).

b. Graphing utility can be used to confirm this conclusion by plotting the function \(f(x)\) over the interval \([2, 9]\) and observing the highest point on the graph.

To determine the absolute extreme values of the function \(f(x) = 2x^3 - 33x^2 + 144x\) on the interval \([2, 9]\), we can follow these steps:

1. Find the critical points of the function within the given interval by finding where the derivative equals zero or is undefined.

2. Evaluate the function at the critical points and the endpoints of the interval.

3. Identify the highest and lowest values among the critical points and the endpoints to determine the absolute maximum and minimum.

Let's begin with step 1 by finding the derivative of \(f(x)\):

\(f'(x) = 6x^2 - 66x + 144\)

To find the critical points, we set the derivative equal to zero and solve for \(x\):

\(6x^2 - 66x + 144 = 0\)

Simplifying the equation by dividing through by 6:

\(x^2 - 11x + 24 = 0\)

Factoring the quadratic equation:

\((x - 3)(x - 8) = 0\)

So, we have two critical points at \(x = 3\) and \(x = 8\).

Now, let's move to step 2 and evaluate the function at the critical points and the endpoints of the interval \([2, 9]\):

For \(x = 2\):

\(f(2) = 2(2)^3 - 33(2)^2 + 144(2) = 160\)

For \(x = 3\):

\(f(3) = 2(3)^3 - 33(3)^2 + 144(3) = 171\)

For \(x = 8\):

\(f(8) = 2(8)^3 - 33(8)^2 + 144(8) = 80\)

For \(x = 9\):

\(f(9) = 2(9)^3 - 33(9)^2 + 144(9) = 297\)

Now, we compare the values obtained in step 2 to determine the absolute maximum and minimum.

The highest value is 297, which occurs at \(x = 9\), and there are no lower values in the given interval.

Therefore, the absolute maximum of the function \(f(x) = 2x^3 - 33x^2 + 144x\) on the interval \([2, 9]\) is 297.

Learn more about Graphing utility:

brainly.com/question/1549068

#SPJ11

ind the limit, if it exists. limx→0+ (e^2x+x)^1/x a.1 b.2 c.[infinity] d.3 e.e^2

Answers

The limit of the expression as x approaches 0 from the positive side is e^2. Therefore, the limit of the expression is (1/x) * ln(e^(2x) + x) = (1/x) * 0 = 0.

To find the limit of the expression (e^(2x) + x)^(1/x) as x approaches 0 from the positive side, we can rewrite it as a exponential limit. Taking the natural logarithm of both sides, we have:

ln[(e^(2x) + x)^(1/x)].

Using the logarithmic property ln(a^b) = b * ln(a), we can rewrite the expression as:

(1/x) * ln(e^(2x) + x).

Now, we can evaluate the limit as x approaches 0 from the positive side. As x approaches 0, the term (1/x) goes to infinity, and ln(e^(2x) + x) approaches ln(e^0 + 0) = ln(1) = 0.

Therefore, the limit of the expression is (1/x) * ln(e^(2x) + x) = (1/x) * 0 = 0.

Taking the exponential of both sides, we have:

e^0 = 1.

Thus, the limit of the expression as x approaches 0 from the positive side is e^2.

Learn more about logarithmic property here:

https://brainly.com/question/12049968

#SPJ11

Let F=⟨0, z
x

,e −xyz
⟩ and let S be the portion of the paraboloid z=2−x 2
−y 2
,z≥−2, oriented upward. Use Stokes' Theorem to evaluate

Answers

Stokes' Theorem states that the line integral of a vector field F around a simple closed curve C is equal to the surface integral of the curl of F over the surface S bounded by C. In other words:



∮C F · dr = ∬S curl(F) · dS

In this case, the surface S is the portion of the paraboloid z = 2 - x^2 - y^2 for z ≥ -2, oriented upward. The boundary curve C of this surface is the circle x^2 + y^2 = 4 in the plane z = -2.

The curl of a vector field F = ⟨P, Q, R⟩ is given by:

curl(F) = ⟨Ry - Qz, Pz - Rx, Qx - Py⟩

For the vector field F = ⟨0, z/x, e^(-xyz)⟩, we have:

P = 0
Q = z/x
R = e^(-xyz)

Taking the partial derivatives of P, Q, and R with respect to x, y, and z, we get:

Px = 0
Py = 0
Pz = 0
Qx = -z/x^2
Qy = 0
Qz = 1/x
Rx = -yze^(-xyz)
Ry = -xze^(-xyz)
Rz = -xye^(-xyz)

Substituting these partial derivatives into the formula for curl(F), we get:

curl(F) = ⟨Ry - Qz, Pz - Rx, Qx - Py⟩
       = ⟨-xze^(-xyz) - 1/x, 0 - (-yze^(-xyz)), -z/x^2 - 0⟩
       = ⟨-xze^(-xyz) - 1/x, yze^(-xyz), -z/x^2⟩

To evaluate the surface integral of curl(F) over S using Stokes' Theorem, we need to parameterize the boundary curve C. Since C is the circle x^2 + y^2 = 4 in the plane z = -2, we can parameterize it as follows:

r(t) = ⟨2cos(t), 2sin(t), -2⟩ for 0 ≤ t ≤ 2π

The line integral of F around C is then given by:

∮C F · dr
= ∫(from t=0 to 2π) F(r(t)) · r'(t) dt
= ∫(from t=0 to 2π) ⟨0, (-2)/(2cos(t)), e^(4cos(t)sin(t))⟩ · ⟨-2sin(t), 2cos(t), 0⟩ dt
= ∫(from t=0 to 2π) [0*(-2sin(t)) + ((-2)/(2cos(t)))*(2cos(t)) + e^(4cos(t)sin(t))*0] dt
= ∫(from t=0 to 2π) (-4 + 0 + 0) dt
= ∫(from t=0 to 2π) (-4) dt
= [-4t] (from t=0 to 2π)
= **-8π**

Therefore, by Stokes' Theorem, the surface integral of curl(F) over S is equal to **-8π**.

learn more about stokes

https://brainly.com/question/30402683

#SPJ11

Solve the system. x1​−6x3​2x1​+2x2​+3x3​x2​+4x3​​=22=11=−6​ Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. The unique solution of the system is । (Type integers or simplified fractions.) B. The system has infinitely many solutions. C. The system has no solution.

Answers

The unique solution for the system x1​−6x3​2x1​+2x2​+3x3​x2​+4x3​​=22=11=−6 is given system of equations is  x1 = -3, x2 = 7, and x3 = 6. Thus, Option A is the answer.

We can write the system of linear equations as:| 1 - 6 0 |   | x1 |   | 2 || 2  2  3 | x | x2 | = |11| | 0  1  4 |   | x3 |   |-6 |

Let A = | 1 - 6 0 || 2  2  3 || 0  1  4 | and,

B = | 2 ||11| |-6 |.

Then, the system of equations can be written as AX = B.

Now, we need to find the value of X.

As AX = B,

X = A^(-1)B.

Thus, we can find the value of X by multiplying the inverse of A and B.

Let's find the inverse of A:| 1 - 6 0 |   | 2  0  3 |   |-18 6  2 || 2  2  3 | - | 0  1  0 | = | -3 1 -1 || 0  1  4 |   | 0 -4  2 |   | 2 -1  1 |

Thus, A^(-1) = | -3  1 -1 || 2 -1  1 || 2  0  3 |

We can multiply A^(-1) and B to get the value of X:

| -3  1 -1 |   | 2 |   | -3 |  | 2 -1  1 |   |11|   |  7 |X = |  2 -1  1 | * |-6| = |-3 ||  2  0  3 |   |-6|   |  6 |

Thus, the solution of the given system of equations is x1 = -3, x2 = 7, and x3 = 6.

Therefore, the unique solution of the system is A.

Learn more about "system": https://brainly.com/question/27927692

#SPJ11

A furniture manufacturer makes chairs and sets price according to the following equation, where p is the price and q is the quantity produced. p(q)=1600−8q Express, using functional notation, the set price when the manufacturer produces 50 chairs? p( What is the value returned from that function p ? A furniture manufacturer makes chairs and sets price according to the following equation, where p is the price and q is the quantity produced. p(q)=1600−8q Express, using functional notation, how many chairs should be produced to sell them at $ 1,000 each? p(75)p(1000)=75751000p(q)=75∘p(q)=1000 What is the value returned from that function (what is q )?

Answers

When the furniture manufacturer produces 50 chairs, the set price is $1200. To sell the chairs at $1000 each, the manufacturer should produce 75 chairs.

Using the functional notation p(q) = 1600 - 8q, we can substitute the value of q to find the corresponding price p.

a) For q = 50, we have:

p(50) = 1600 - 8(50)

p(50) = 1600 - 400

p(50) = 1200

Therefore, when the manufacturer produces 50 chairs, the set price is $1200.

b) To find the number of chairs that should be produced to sell them at $1000 each, we can set the equation p(q) = 1000 and solve for q.

p(q) = 1600 - 8q

1000 = 1600 - 8q

8q = 600

q = 600/8

q = 75

Hence, to sell the chairs at $1000 each, the manufacturer should produce 75 chairs.

Learn more about number here:

https://brainly.com/question/3589540

#SPJ11

Abody moves on a coordinate line such that it has a position s =f(t)=t 2 −3t+2 on the interval 0≤t≤9, with sin meters and t in seconds. a. Find the body's displacement and average velocity for the given time interval. b. Find the body's speed and acceleration at the endpoints of the interval. c. When, if ever, during the interval does the body change direction?

Answers

The body's displacement on the interval 0 ≤ t ≤ 9 is 56 meters, and the average velocity is 6.22 m/s. The body's speed at t = 0 is 3 m/s, and at t = 9 it is 15 m/s. The acceleration at both endpoints is 2 m/s². The body changes direction at t = 3/2 seconds during the interval 0 ≤ t ≤ 9.

a. To determine the body's displacement on the interval 0 ≤ t ≤ 9, we need to evaluate f(9) - f(0):

Displacement = f(9) - f(0) = (9^2 - 3*9 + 2) - (0^2 - 3*0 + 2) = (81 - 27 + 2) - (0 - 0 + 2) = 56 meters

To determine the average velocity, we divide the displacement by the time interval:

Average velocity = Displacement / Time interval = 56 meters / 9 seconds = 6.22 m/s (rounded to two decimal places)

b. To ]determinine the body's speed at the endpoints of the interval, we calculate the magnitude of the velocity. The velocity is the derivative of the position function:

v(t) = f'(t) = 2t - 3

Speed at t = 0: |v(0)| = |2(0) - 3| = 3 m/s

Speed at t = 9: |v(9)| = |2(9) - 3| = 15 m/s

To determine the acceleration at the endpoints, we take the derivative of the velocity function:

a(t) = v'(t) = 2

Acceleration at t = 0: a(0) = 2 m/s²

Acceleration at t = 9: a(9) = 2 m/s²

c. The body changes direction whenever the velocity changes sign. In this case, we need to find when v(t) = 0:

2t - 3 = 0

2t = 3

t = 3/2

Therefore, the body changes direction at t = 3/2 seconds during the interval 0 ≤ t ≤ 9.

To know more about displacement refer here:

https://brainly.com/question/11934397#

#SPJ11

Let A={46,51,55,70,80,87,98,108,122} and R be an equivalence relation defined on A where aRb if and only if a≡b mod 4. Show the partition of A defined by the equivalence classes of R.

Answers

The partition of A defined by the equivalence classes of R is {[51, 55, 87, 91, 122], [46, 70, 98, 108], [80, 84, 116], [87, 91]}.

The equivalence relation R defined on the set A={46, 51, 55, 70, 80, 87, 98, 108, 122} is given by aRb if and only if a ≡ b (mod 4), where ≡ denotes congruence modulo 4.

To determine the partition of A defined by the equivalence classes of R, we need to identify sets that contain elements related to each other under the equivalence relation.

After examining the elements of A and their congruence modulo 4, we can form the following partition:

Equivalence class 1: [51, 55, 87, 91, 122]

Equivalence class 2: [46, 70, 98, 108]

Equivalence class 3: [80, 84, 116]

Equivalence class 4: [87, 91]

These equivalence classes represent subsets of A where elements within each subset are congruent to each other modulo 4. Each element in A belongs to one and only one equivalence class.

Thus, the partition of A defined by the equivalence classes of R is {[51, 55, 87, 91, 122], [46, 70, 98, 108], [80, 84, 116], [87, 91]}.

To learn more about “modulo” refer to the https://brainly.com/question/23450491

#SPJ11

Find the remaining zeros of f(x) given that c is a zero. Then rewrite f(x) in completely factored form. f(x)=−x 3
−x 2
+16x−20;c=−5 is a zero Identify all the remaining zeros. x= (Use a comma to separate answers as needed.) Write the completely factored form of f(x). f(x)=

Answers

Given that the cubic polynomial function is f(x) = −x³ − x² + 16x − 20 and the zero c = −5. We are to find the remaining zeros of f(x) and rewrite f(x) in completely factored form.

Let's begin by finding the remaining zeros of f(x):We can apply the factor theorem which states that if c is a zero of a polynomial function f(x), then (x - c) is a factor of f(x).Since -5 is a zero of f(x), then (x + 5) is a factor of f(x).

We can obtain the remaining quadratic factor of f(x) by dividing f(x) by (x + 5) using either synthetic division or long division as shown below:Using synthetic division:x -5| -1  -1  16  -20   5  3  -65  145-1 -6  10  -10The quadratic factor of f(x) is -x² - 6x + 10.

To find the remaining zeros of f(x), we need to solve the equation -x² - 6x + 10 = 0. We can use the quadratic formula:x = [-(-6) ± √((-6)² - 4(-1)(10))]/[2(-1)]x = [6 ± √(36 + 40)]/(-2)x = [6 ± √76]/(-2)x = [6 ± 2√19]/(-2)x = -3 ± √19

Therefore, the zeros of f(x) are -5, -3 + √19 and -3 - √19.

The completely factored form of f(x) is given by:f(x) = -x³ - x² + 16x - 20= -1(x + 5)(x² + 6x - 10)= -(x + 5)(x + 3 - √19)(x + 3 + √19)

Hence, the completely factored form of f(x) is -(x + 5)(x + 3 - √19)(x + 3 + √19) and the remaining zeros of f(x) are -3 + √19 and -3 - √19.

To know more about factored form visit:

brainly.com/question/14027843

#SPJ11

Suppose that \( f(x, y)=e^{-3 x^{2}-3 y^{2}-2 y} \) Then the maximum value of \( f \) is

Answers

The maximum value of \( f \) is **1**. the maximum value of \(f\) is approximately 0.0498, which can be rounded to 1.

To find the maximum value of \( f(x, y) = e^{-3x^2 - 3y^2 - 2y} \), we need to analyze the function and determine its behavior.

The exponent in the function, \(-3x^2 - 3y^2 - 2y\), is always negative because both \(x^2\) and \(y^2\) are non-negative. The negative sign indicates that the exponent decreases as \(x\) and \(y\) increase.

Since \(e^t\) is an increasing function for any real number \(t\), the function \(f(x, y) = e^{-3x^2 - 3y^2 - 2y}\) is maximized when the exponent \(-3x^2 - 3y^2 - 2y\) is minimized.

To minimize the exponent, we want to find the maximum possible values for \(x\) and \(y\). Since \(x^2\) and \(y^2\) are non-negative, the smallest possible value for the exponent occurs when \(x = 0\) and \(y = -1\). Substituting these values into the exponent, we get:

\(-3(0)^2 - 3(-1)^2 - 2(-1) = -3\)

So the minimum value of the exponent is \(-3\).

Now, we can substitute the minimum value of the exponent into the function to find the maximum value of \(f(x, y)\):

\(f(x, y) = e^{-3} = \frac{1}{e^3}\)

Approximately, the value of \(\frac{1}{e^3}\) is 0.0498.

Therefore, the maximum value of \(f\) is approximately 0.0498, which can be rounded to 1.

Learn more about approximately here

https://brainly.com/question/27894163

#SPJ11

The function s=f(t) gives the position of a body moving on a coordinate line, with s in meters and t in seconds. Find the body's speed and acceleration at the end of the time interval. s=−t 3
+4t 2
−4t,0≤t≤4 A. 20 m/sec,−4 m/sec 2
B. −20 m/sec ,

−16 m/sec 2
C. 4 m/sec,0 m/sec 2
D. 20 m/sec,−16 m/sec 2

Answers

The correct option is B. −20 m/sec, −16 m/sec^2, the speed of the body is the rate of change of its position,

which is given by the derivative of s with respect to t. The acceleration of the body is the rate of change of its speed, which is given by the second derivative of s with respect to t.

In this case, the velocity is given by:

v(t) = s'(t) = −3t^2 + 8t - 4

and the acceleration is given by: a(t) = v'(t) = −6t + 8

At the end of the time interval, t = 4, the velocity is:

v(4) = −3(4)^2 + 8(4) - 4 = −20 m/sec

and the acceleration is: a(4) = −6(4) + 8 = −16 m/sec^2

Therefore, the body's speed and acceleration at the end of the time interval are −20 m/sec and −16 m/sec^2, respectively.

The velocity function is a quadratic function, which means that it is a parabola. The parabola opens downward, which means that the velocity is decreasing. The acceleration function is a linear function, which means that it is a line.

The line has a negative slope, which means that the acceleration is negative. This means that the body is slowing down and eventually coming to a stop.

To know more about derivative click here

brainly.com/question/29096174

#SPJ11



Find the point(s) of intersection between x^{2}+y^{2}=8 and y=-x .

Answers

The equations [tex]x^2 + y^2[/tex] = 8 and y = -x intersect at the points (-2, 2) and (2, -2). The x-coordinate is ±2, which is obtained by solving[tex]x^2[/tex] = 4, and the y-coordinate is obtained by substituting the x-values into y = -x.

The given question is that there are two points of intersection between the equations [tex]x^2 + y^2[/tex] = 8 and y = -x.

To find the points of intersection, we need to substitute the value of y from the equation y = -x into the equation [tex]x^2 + y^2[/tex] = 8.

Substituting -x for y, we get:
[tex]x^2 + (-x)^2[/tex] = 8
[tex]x^2 + x^2[/tex] = 8
[tex]2x^2[/tex] = 8
[tex]x^2[/tex] = 4

Taking the square root of both sides, we get:
x = ±2

Now, substituting the value of x back into the equation y = -x, we get:
y = -2 and y = 2

Therefore, the two points of intersection are (-2, 2) and (2, -2).

Learn more about points of intersection: https://brainly.com/question/14217061

#SPJ11

Which linear equality will not have a shared solution set with the graphed linear inequality? y > two-fifthsx 2 y < negative five-halvesx – 7 y > negative two-fifthsx – 5 y < five-halvesx 2

Answers

The linear equality that will not have a shared solution set with the graphed linear inequality is y > 2/5x + 2. So, option A is the correct answer.

To determine which linear equality will not have a shared solution set with the graphed linear inequality, we need to compare the slopes and intercepts of the inequalities.

The given graphed linear inequality is y > -5/2x - 3.

Let's analyze each option:

A. y > 2/5x + 2:

The slope of this inequality is 2/5, which is different from -5/2, the slope of the graphed inequality. Therefore, option A will not have a shared solution set.

B. y < -5/2x - 7:

The slope of this inequality is -5/2, which is the same as the slope of the graphed inequality. However, the intercept of -7 is different from -3, the intercept of the graphed inequality. Therefore, option B will have a shared solution set.

C. y > -2/5x - 5:

The slope of this inequality is -2/5, which is different from -5/2, the slope of the graphed inequality. Therefore, option C will not have a shared solution set.

D. y < 5/2x + 2:

The slope of this inequality is 5/2, which is different from -5/2, the slope of the graphed inequality. Therefore, option D will not have a shared solution set.

Based on the analysis, the linear inequality that will not have a shared solution set with the graphed linear inequality is option A: y > 2/5x + 2.

The question should be:

Which linear equality will not have a shared solution set with the graphed linear inequality?

graphed linear equation: y>-5/2x-3 (greater then or equal to)

A. y >2/5 x + 2

B. y <-5/2 x – 7

C. y >-2/5 x – 5

D. y <5/2 x + 2

To learn more about linear inequality: https://brainly.com/question/23093488

#SPJ11

Answer:

b

Step-by-step explanation:

y<-5/2x - 7

Other Questions
The risk-free rate is 3%, the required return on the market is 12%, and Omega's stock has a beta of 0.8. The risk premium on Omega stock is after adding water to the 100.00 ml mark, you take 2.75 ml of that solution and again dilute to 100.00 ml. if you find the dye concentration in the final diluted sample is 0.014 m, what was the dye concentration in the original solution. Test the series for convergence or divergence using the Alternating Series Test. 2(-1)e- n = 1 Identify bo -n e x Test the series for convergence or divergence using the Alternating Series Test. lim b. 0 Since limbo o and bn + 1 b, for all n, the series converges A physician or surgeon may not accept or agree to accept any payment, fee, reward or anything of value for soliciting patients or patronage for any physician or surgeon. A violation constitutes a Class A misdemeanor and each payment, reward, or fee or agreement to accept a reward or fee is a separate offense. Consider the following second order systems modeled by the following differen- tial equations: 1) g" (1) 6g (1) + 6x(t) = 2 (1) + 2x(t) 2) ( ) 6g (1) + 6x(t) = 2(1) 3) y""(t) 3y'(t) + 6y(t) = x(t) Answer to the following questions for each system 1. What is the frequency response of the system? 2. Is this a low-pass, high-pass, or some other kind of filter ? 1 3. At what frequency will the output be attenuated by from its maximum V2 (the cutoff frequency)? 4. If the system is a band pass or a stop pass filter determine its bandwidth. 5. If the input to the overall system is the signal is (t) = 2 cos(21+) sin(41 +5) what is the frequency output response? 7T T = 1 generally, abstracted data is classified into five groups. in which group would each of the following be classified: 1) diagnostic confirmation, 2) class of case, and 3) date of first recurrence? A public warehouse is a Group of answer choices large, centralized warehouse that focuses on moving rather than storing goods. The answer above is NOT correct. Find the slope of the line between the points \( (3,5) \) and \( (7,10) \). slope \( = \) (as fraction a/b) a disorder in one or more of the basic psychological processes involved in understanding or in using language, spoken or written, which may manifest itself in an imperfect ability to listen, think, speak, read, write, spell, or do mathematical calculations is called: how many years will it take 6000 to grow to 11700 if it is invested at 5.25ompounded continuously? Which compound was used as a propellant and refrigerant until it was found that it caused a chain reaction in the ozone layer? Isopropanol methanal phenol steroids CFOs what is the implication of the upside-down pyramid approach to industry analysis by an entrepreneur of a new venture? et f(x, y, z) = (10xyz 5sin(x))i 5x2zj 5x2yk. find a function f such that f = f. f(x, y, z) Do these codes look right for the following 5 statements. This is using Oracle SQL:Write a query that displays the title, ISBN, and wholesale cost of books whose wholesale cost is more than the average of all books. Format the retail price with dollars and cents.Write a query that displays the title and publication date of the oldest book in the BOOKS table. Format the date with the complete name of the month and a comma after the day of the month, like "January 3, 2011."Write a query that shows the title(s) of the book most frequently purchased by the customers in the database. Use the quantity column from the orderitems table to find the book most frequently purchased.Write a query that displays the names of the customers who purchased the book with the highest retail price in the database. Capitalize the first and last names.Write a query that displays the first name and last name of each author along with the number of books he or she has written. Capitalize the first and last names.--1SELECT title, isbn, cost, TO_CHAR(retail, '$999.99') AS retailFROM booksWHERE cost A company manufactures x portable speakers which sell for $r and y smartphones which sell for $s. The weekly demand and cost equations are as follows: r=9x+y+379 s=2x8y+436 C(x,y)=60x+130y+210 How many of each product should the company produce to maximize their profit? a) 22 portable speakers and 23 smartphones b) 20 portable speakers and 29 smartphones c) 18 portable speakers and 19 smartphones d) 24 portable speakers and 23 smartphones True or false: to remedy a short-term budget surplus, shift additional income to a month where a deficit exists. need help ive never done this beforeFor the following function find \( f(x+h) \) and \( f(x)+f(h) \). \[ f(x)=x^{2}-1 \] \( f(x+h)= \) (Simplify your answer.) QC A rocket is fired straight up through the atmosphere from the South Pole, burning out at an altitude of 25km when traveling at 6.00km / s. (a) What maximum distance from the Earth's surface does it travel before falling back to the Earth? volvulus requires ultrasonography to untwist the loop of the bowel. group of answer choices true false how many atoms are contained in a 4.65 g sample of the (atomic mass = 4.003 g/mol)?