Answer:
∠1 = 116 ° , ∠2 = 32° , ∠3 = 116 ° and ∠4 = 32°
Step-by-step explanation:
∠2 = 32° (The diagonals of a rhombus bisect pairs of opposite angles)
Opposite sides of a rhombus are parallel ,so
∠2 = ∠4 (Alternate interior angles )
∠4 = 32°
32° + ∠4 + ∠3 = 180° (angle sum property of a triangle)
64° + ∠3 = 180°
∠3 = 180 - 64
∠3 = 116°
∠3 =∠1 (in a rhombus opposite angles are equal )
∠1 = 116°
If 40 men working on a U.S. government project can complete the job in 100 hours, how many men would be required to complete the job in 80 hours?
Answer:50
Step-by-step explanation:(40x100):80
Answer: 50 workers
Let the ratio be
(40×100):80
= 400/80
= 50
Therefore 50 workers will complete the same work in 80 hours.
Must click thanks and mark brainliest
Using only the digits 5, 6, 7, 8, how many different three digit numbers can beformed
Answer:
totally 16 numbers can be formed
It is hard and the condition of repeat of number should be clear if you have formula ( it is obvious to have) you can use that.
Find the side of a square whose diagonal is of the given measure.
Given = 15.2 cm
Answer:
15cm
Step-by-step explanation:
First, a square's diagonal is basically the hypotenuse of a 45-45-90 triangle. a 45-45-90 triangle has a really special relationship, where the side length is x, and the diagonal is x [tex]\sqrt{2}[/tex]. So, the side length is 15.
Answer:
15cm
Step-by-step explanation:
Each corner of the square would be a 90° angle so half of that would be 45°.
[tex] \sin(45) \times 15 \sqrt{2} = 15cm[/tex]
use different method of depreciation for each of the assests and explain why u used the method (ex : straight line method, double declining method, unit of production method)
Step-by-step explanation:
sorry but I don't know this answerIs speed the rate of change in the velocity of a moving body?
No, speed is the rate of change of distance.
Velocity is the rate of change of displacement.
Distance is scalar quantity, it has just magnitude.
Displacement is vector quantity, it has both magnitude as well as direction. So, speed and velocity are scalar and vector respectively too.
A square has a side length that is decreasing at a rate of 8 cm per second. What is the rate of change of the area of the square when the side length is 7 cm
Answer:
112cm²/secStep-by-step explanation:
Area of a square is expressed as A = L² where L is the length of one side of the square.
The rate of change of area will be expressed using chain rule as;
dA/dt = dA/dL * dL/dt where;
dL/dt is the rate at which the side length of the square is decreasing.
Given L = 7cm, dL/dt = 8cm/sec and dA/dL = 2L
dA/dL = 2(7)
dA/dL = 14cm
Substituting the given value into the chain rule expression above to get the rate of change of the area of the square, we will have;
dA/dt = dA/dL * dL/dt
dA/dt = 14cm * 8cm/sec
dA/dt = 112cm²/sec
Hence, the rate of change of the area of the square when the side length is 7 cm is 112cm²/sec
An ice cream store makes 144 quarts of ice cream in 8 hours. How many quarts could be made in 12 hours?
Hey there! I'm happy to help!
We know that the ice cream store makes 144 quarts in eight hours. What about in one hour? Let's divide this by eight to find out.
144/8=18
So, they make 18 quarts every hour. We want to figure out how many can be made in 12 hours. So, we just multiply 18 by 12!
18(12)=216
Therefore, 216 quarts of ice cream could be made in 12 hours.
Have a wonderful day! :D
The ice cream store will make 216 quarts of ice cream in 12 hours.
What is division?Division is breaking a number up into an equal number of parts.
Given that, An ice cream store makes 144 quarts of ice cream in 8 hours.
Since, they make 144 quarts of ice cream in 8 hours
Therefore, in 1 hour they will make = 144/8 = 18 quarts
So, in 12 hours = 18x12 = 216 quarts.
Hence, The ice cream store will make 216 quarts of ice cream in 12 hours.
For more references on divisions, click;
https://brainly.com/question/21416852
#SPJ2
(Algebra) HELP ME ASAP PLZ
Answer:
no solution because the answer will be p=2
10 - [ 8p + 3 ] = 9 [ 2p - 5 ]
10 - 8p - 3 = [ 2p - 5 ]
-8p + 10 - 3 = [ 2p - 5 ]
p = 2 We need to get rid of expression parentheses.
If there is a negative sign in front of it, each term within the expression changes sign.
Otherwise, the expression remains unchanged.
In our example, the following 2 terms will change sign:
8p, 3
Step-by-step explanation:
Hello people, please if you can give me a Hint with this, l only get half of the marks, what i am doing wrong here? thanks
Errors: Both of your upper bounds are wrong
You subtracted the upper bound from the upper bound
Step-by-step explanation:
605 kg to the nearest 5 kg
lower bound is 602.5 (because it rounds up to 605)
upper bound is 607.4 (because it rounds down to 605)
Note: 607.5 would round up to 610
78 kg rounded to the nearest 1 kg
lower bound is 77.5 (because it rounds up to 78)
upper bound is 78.4 (because it rounds down to 78)
Note: 78.5 would round up to 79
Upper Bound - Lower bound is the maximum weight remaining on the elevator
607.4 - 77.5 = 529.9
529.9 ≤ 530 so YES the elevator is safe.
Which of the following statements about sets of numbers is true? (1 point)
All integers are whole numbers.
O All irrational numbers are integers.
O All rational numbers are natural numbers.
O All integers are rational numbers.
Answer:
-All integers are whole numbers.
-All rational numbers are natural numbers.
Step-by-step explanation:
The statement which is correct about the sets of numbers is:
All integers are rational numbers.
Option D is the correct answer.
What is a rational number?A rational number is a number that is expressed as the ratio of two integers, where the denominator should not be equal to zero.
We have,
Natural number:
Natural numbers are positive integers or non-negative integers which start from 1 and end at infinity.
Integer:
An integer is a number with no decimal or fractional part and it includes negative and positive numbers, including zero.
Whole number:
Whole numbers include all natural numbers and 0.
It does not include fractions, decimals, and negative integers.
Irrational numbers:
An irrational number is a type of real number which cannot be represented as a simple fraction.
It cannot be expressed in the form of a ratio.
Rational number:
A rational number is a number that is expressed as the ratio of two integers, where the denominator should not be equal to zero.
From the above definition, we can say that,
- Some integers are whole numbers but not all integers are whole numbers.
- No irrational numbers are integers.
-Some rational numbers are natural numbers but not all rational numbers are natural numbers.
- Yes, all integers are rational numbers.
Thus the statement which is correct about the sets of numbers is:
All integers are rational numbers.
Option D is the correct answer.
Learn more about rational numbers here:
https://brainly.com/question/24398433
#SPJ5
Solve the equation 3(2x + 2) = 3x − 15.
Hi there! :)
Answer:
x = -7.
Step-by-step explanation:
Starting with:
3(2x + 2) = 3x - 15
Begin by distributing '3' with the terms inside of the parenthesis:
3(2x) + 3(2) = 3x - 15
Simplify:
6x + 6 = 3x - 15
Isolate the variable by subtracting '3x' from both sides:
6x - 3x + 6 = 3x - 3x - 15
3x + 6 = -15
Subtract 6 from both sides:
3x + 6 - 6 = -15 - 6
3x = -21
Divide both sides by 3:
3x/3 = -21/3
x = -7.
Answer:
x = -7
Step-by-step explanation:
3(2x+2) = 3x - 15
First, we should simplify on the left side.
6x + 6 = 3x - 15 ; Now we subtract six from both sides.
-6 -6
6x = 3x - 21 ; next we just subtract 3x from both sides.
-3x -3x
3x = -21
Finally, we divide 3 from both sides to separate the three from the x.
x = -7
Hope this helps!! <3 :)
hurry
What is the measure of the unknown angle?
Image of a straight angle divided into two angles. One angle is forty two degrees and the other is unknown.
Answer:
x = 138
Step-by-step explanation:
A straight line is 180
x+ 42 = 180
X = 180-42
x = 138
If car eyelashes sold for $13.99. If you bud double that, how much would you have paid for them? (Hint if needed: if they had been exactly $14, how different would your answer be?)
Answer:
13.99 x 2 = 27.98 dollars
now if they were 14 dollars exactly and you doubled that it would be 28 dollars so the difference would be 0.02 cents
Step-by-step explanation:
PLZ ANSWERRRRRRRRRRRRR
Step-by-step explanation:
there it is! hopefully it's visible and understandable
:)
Need help please thank you
Answer:
first term (a1) = 3/2
common difference (d) = 7/4-3/2 = 1/4
The sum of 'n' terms of an arithmetic sequence is 4n^2+3n. What is the first term, the common difference, and the sequence?
Answer:
d=8 and a=7
Step-by-step explanation:
The sum of a arithmetic sequence is given by (n/2)*(2a+(n-1)d). Comparing coefficients with the given Sn, we have; a-d/2=3 and d/2=4, d=8 and a=7. The sequence is 7, 15, 23, 31, 39
A patient with diabetes self-injected 5 units of regular insulin and 15 units of NPH insulin at 0800. When should the nurse assess this patient for signs of hypoglycemia?
Answer:
Hypoglycemia would sign at 1,000
Step-by-step explanation:
We know that a short-acting insulin (Regular insulin) work at last for 2 to 3 hours
Also intermediate acting insulin (NPH) insulin crests in 4 to 10 hours.
So, nurse assess this patient for signs of hypoglycemia 1000 to 1600
What type of polynomial is: -2/3 b^3
Answer:
I think cubic polynomial cause degree is 3
The function f is defined by f(x) = 2x^2+5.
Find f(3a)
The histogram shows that nine students had grades of 80 or higher.
The histogram shows there were 22 students in the class.
The histogram shows there were 25 students in the class.
The histogram is symmetrical.
The histogram has a peak.
The histogram shows the data is evenly distributed.
The histogram shows a gap in the data
Answer:
bde
Step-by-step explanation:
Answer:
B: The histogram shows there were 22 students in the class.
D: The histogram is symmetrical.
E:The histogram has a peak.
F: The histogram shows the data is evenly distributed.
Step-by-step explanation:
edg 2020
solve it quickly. l follow you make brainlaist. first solve so l
[tex]5 \frac{2}{3} + 3 \frac{1}{5} \\ \frac{17}{3} + \frac{16}{5} \\ \frac{(17 \times 5) + (16\times 3)}{5 \times 3} \\ \frac{85 + 48}{15} \\ \frac{133}{15} = 8\frac{13}{15} [/tex]
50% of 80
50% of 48
50% of 15
25% of 120
25% of 90
Three blocks are shown. Which statement is correct?
A. Block A has the greatest density
B. Block B has the greatest density
C. The density of Block A is equal to the density of Block B
D. The density of Block B is equal to the density of Block C
Answer:
Block A has greatest density because it also the biggest.
Step-by-step explanation:
If you like my answer than please mark me brainliest thanks
divide 15 and 27 by 3, 6, 9
Answer:
15: 5, 2.5, 1.6666......
27: 9, 4.5, 3
Step-by-step explanation:
For 15:
So first you divide 15 by 5, which equals 3
Long division:
then by 6. 15/6 can be simplified to 5/2, which can be easier to figure out.
And by nine. 15/9 can be simplified to 5/3 which is harder than 5/2, but you can figure it out by long division. 3 fits once in 5, and there is two left over. Add a decimal after 1 and a zero after the two. 3 fits 6 times into 20 (18), but the cycle continues forever resulting in 1.666666.......
For 27:
27/3 is nine
for 27/6 you can simplify to 9/2, which is like 90/2=45, just move the decimal over one spot to make 4.5
for 27/9, the answer is 3
find terminal points on the unit circle determines by 5pi/3
9514 1404 393
Answer:
(x, y) = (1/2, -√3/2)
Step-by-step explanation:
The coordinates on a unit circle of the intersection of the terminal ray of angle α are ...
(x, y) = (cos(α), sin(α))
For α = 5π/3, the point on the unit circle is ...
(x, y) = (cos(5π/3), sin(5π/3)) = (1/2, (-√3)/2)
The end of a hose was resting on the ground, pointing up an angle. Sal measured the path of the water coming out of the hose and found that it could be modeled using the equation f(x) = –0.3x2 + 2x, where f(x) is the height of the path of the water above the ground, in feet, and x is the horizontal distance of the path of the water from the end of the hose, in feet. When the water was 4 feet from the end of the hose, what was its height above the ground? 3.2 feet 4.8 feet 5.6 feet 6.8 feet
Answer: 3.2 feet.
Step-by-step explanation:
Given: The end of a hose was resting on the ground, pointing up an angle. Sal measured the path of the water coming out of the hose and found that it could be modeled using the equation[tex]f(x) = -0.3x^2 + 2x[/tex], where [tex]f(x)[/tex] is the height of the path of the water above the ground, in feet, and [tex]x[/tex] is the horizontal distance of the path of the water from the end of the hose, in feet.
At x= 4 , we get
[tex]f(x) = -0.3(4)^2 + 2(4)=-0.3(16)+8 =-4.8+8=3.2[/tex]
Hence, when the water was 4 feet from the end of the hose, its height above the ground is 3.2 feet.
Answer:
3.2 feet.
Step-by-step explanation:
what would be the answer for f(0) = -3x+7?
Answer: 7
Step-by-step explanation:
f(0) means that x is equal to zero and so you substitute all the x's for zeros which means -3 times 0 plus 7 is equal to 7
Answer:
[tex]x=\frac{7}{3}[/tex]
Step-by-step explanation:
Since any number multiplied by zero equals zero, our equation is really:
0 = -3x+7
First, we'd have to subtract the 7 from both sides:
-7 = -3x
Now we need to divide the negative three from both sides to isolate the x.
7/3 = x
So, our answer is x=7/3
Hope this helps!! <3 :)
Find the area of the surface generated by revolving x=t + sqrt 2, y= (t^2)/2 + sqrt 2t+1, -sqrt 2 <= t <= sqrt about the y axis
The area is given by the integral
[tex]\displaystyle A=2\pi\int_Cx(t)\,\mathrm ds[/tex]
where C is the curve and [tex]dS[/tex] is the line element,
[tex]\mathrm ds=\sqrt{\left(\dfrac{\mathrm dx}{\mathrm dt}\right)^2+\left(\dfrac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]
We have
[tex]x(t)=t+\sqrt 2\implies\dfrac{\mathrm dx}{\mathrm dt}=1[/tex]
[tex]y(t)=\dfrac{t^2}2+\sqrt 2\,t+1\implies\dfrac{\mathrm dy}{\mathrm dt}=t+\sqrt 2[/tex]
[tex]\implies\mathrm ds=\sqrt{1^2+(t+\sqrt2)^2}\,\mathrm dt=\sqrt{t^2+2\sqrt2\,t+3}\,\mathrm dt[/tex]
So the area is
[tex]\displaystyle A=2\pi\int_{-\sqrt2}^{\sqrt2}(t+\sqrt 2)\sqrt{t^2+2\sqrt 2\,t+3}\,\mathrm dt[/tex]
Substitute [tex]u=t^2+2\sqrt2\,t+3[/tex] and [tex]\mathrm du=(2t+2\sqrt 2)\,\mathrm dt[/tex]:
[tex]\displaystyle A=\pi\int_1^9\sqrt u\,\mathrm du=\frac{2\pi}3u^{3/2}\bigg|_1^9=\frac{52\pi}3[/tex]
3. Find F(3).
F(x)=-x^3+4x^2-2x
Answer:
To Find F(3) you just have to replace x=3 so:
F(3)= -3^3 + 4×3^2 -2×3 = -27 +4×9 - 6 = -33 + 36 = 3
A model rocket is launched with an initial upward velocity of 30 m/s. The rockets height (in meters) after t seconds is given by the following. h=30t-5t2. Find all values of t for which the rockets height is 10 meters
9514 1404 393
Answer:
t = 3-√7 and 3+√7 seconds after launch
Step-by-step explanation:
You want to find the values of t that make h=10.
10 = 30t -5t^2
t^2 -6t = -2 . . . . . divide by -5
t^2 -6t +9 = 7 . . . add 9 to complete the square
(t -3)^2 = 7 . . . . . write as a square
t -3 = ±√7 . . . . . . take the square root
t = 3 ±√7 . . . . . . values of t for which height is 10 meters
__
These values are about 0.354 seconds, and 5.646 seconds.