Answer: b
Step-by-step explanation:
An Airliner has a capacity for 300 passengers. If the company overbook a flight with 320 passengers, What is the probability that it will not be enough seats to accommodate all passengers. Assume that the probability that a randomly selected passenger shows up to the airport is 0.96. Find the probability using the normal distribution as an approximation to the binomial distribution.
Answer:
The probability is [tex]P(X >300 ) = 0.97219 [/tex]
Step-by-step explanation:
From the question we are told that
The capacity of an Airliner is k = 300 passengers
The sample size n = 320 passengers
The probability the a randomly selected passenger shows up on to the airport
[tex]p = 0.96[/tex]
Generally the mean is mathematically represented as
[tex]\mu = n* p[/tex]
=> [tex]\mu = 320 * 0.96[/tex]
=> [tex]\mu = 307.2[/tex]
Generally the standard deviation is
[tex]\sigma = \sqrt{n * p * (1 -p ) }[/tex]
=> [tex]\sigma = \sqrt{320 * 0.96 * (1 -0.96 ) }[/tex]
=> [tex]\sigma =3.50 [/tex]
Applying Normal approximation of binomial distribution
Generally the probability that there will not be enough seats to accommodate all passengers is mathematically represented as
[tex]P(X > k ) = P( \frac{ X -\mu }{\sigma } > \frac{k - \mu}{\sigma } )[/tex]
Here [tex]\frac{ X -\mu }{\sigma } =Z (The \ standardized \ value \ of \ X )[/tex]
=>[tex]P(X >300 ) = P(Z > \frac{300 - 307.2}{3.50} )[/tex]
Now applying continuity correction we have
[tex]P(X >300 ) = P(Z > \frac{[300+0.5] - 307.2}{3.50} )[/tex]
=> [tex]P(X >300 ) = P(Z > \frac{[300.5] - 307.2}{3.50} )[/tex]
=> [tex]P(X >300 ) = P(Z > -1.914 )[/tex]
From the z-table
[tex]P(Z > -1.914 ) = 0.97219[/tex]
So
[tex]P(X >300 ) = 0.97219 [/tex]
Determine the midpoint of the segment with endpoints of (-3, 8) and (-3,
-2).
Answer:
(-3,3)
Step-by-step explanation:
which equation choice could represent the graph shown below?
Answer:
The answer is...
f(x)=(x-3)+(x+3)
I think this is the answer. I haven't done this kind of math in a while so...
The chosen equation, (x +3)(x + 3) = 0, will serve as a representation of the provided graph.
What is a Quadratic equation?ax²+bx+c=0, with a not, equals 0 is a quadratic equation, which is a second-order polynomial equation in a single variable. It has at least one solution because it is a second-order polynomial equation, which is guaranteed by the algebraic fundamental theorem. The answer could be simple or complicated.
given a Graph of a quadratic equation.
Contrarily, parabolas are used to graph quadratic equations. In other words, the data will be displayed as either an "open" or "upside-down" U-shaped curve. The graph is always quadratic if you are drawing a graph from a function and the equation involves x².
in this graph, we can observe that graph has only one root at x = -3
therefore the equation of the Given parabola is
(x + 3)² = 0
or
(x +3)(x + 3) = 0
therefore, the equation choice could represent the graph given will be (x +3)(x + 3) = 0.
Learn more about Quadratic equations here:
https://brainly.com/question/22364785
#SPJ2
Aging workers of the Neotropical termite, Neocapritermes taracua, develop blue crystal containing glands ("backpacks") on their backs, When they fight intruding termites and are hampered, these "blue" termites explode, and the glands spew a sticky liquid (Sobotnik et al. 2012). The following data are from an experiment that measured the toxicity of the blue substance. A single drop of the liquid extracted from blue termites was placed on individuals of a second termite species, Labiotermes labralis, and the number that were immobilized (dead or paralyzed) within 60 minutes was recorded. The frequency of this outcome was compared with a control treatment in which liquid from glands of "white" termites lacking the blue crystals was dropped instead.
Is the blue liquid toxic compared to liquid from white termites?
Liquid source Unharmed Immobilized
Blue workers 3 37
White workers 31 9
Answer:
Yes blue liquid is toxic
Step-by-step explanation:
H0: p1 = p2
H1: p1>p2
For blue
We calculate proportion as
37/40 = 0.925
For white
9/40 = 0.2250
To get p
(X1 + x2)/(n1 + n2)
= 0.5750
After calculating the z as statistic (please check attachment) I got 6.33
P value = 0.0000
We reject null hypothesis and say in conclusion that enough evidence exists for us to say blu liquid is toxic!
Thank you!
According to Boyle's Law, if the temperature of a confined gas is held fixed, then the product of the pressure P and the volume V is a constant, suppose that, for a certain gas, PV=800 where P is measured in pounds per square inch and V is measured in cubic inches.
A) Find the average rate of change of P as V increases from 200in^3 to 250in^3.
B) Express V as a function of P and show that the instantaneous rate of change of V with respect to P is inversely proportional to the square of P.
Answer:
I think its B
Step-by-step explanation:
Forgive me if I am wrong, give me brainliest if I am right!
HELP PLEASE BRAINLESS ANSWER GETS 20 POINTS
An albatross is a large bird that can fly 400 kilometers in 8 hours at a constant speed. Using d for distance in kilometers and t for number of hours, an
equation that represents this situation is d-50t.
Enter the smaller of the two constants of proportionality.
Answer:
t=8
Step-by-step explanation:
400 divided by 50 hopefully that helps with your question
Please help me answer the question in the photo! Will give brainlist :)
Answer:
the answer is B because it make a 90* angle
Which point is located at (-1,3)?
Answer:
C
Step-by-step explanation:
1 back, 3 up.
HELP MEEEE
Solve 1.43p + 2.2 = -4.001. Round your answer to the nearest hundredth. Show your work.
Answer:
p = -4.33636363636
Step-by-step explanation:
subtract 2.2 from -4.001 which equals -4.001-2.2=-6.201 and divide -6.201 by 1.43p and that equals -4.33636363636 so p = -4.33636363636
please help ! i would mark brainliest to the first answer.
x^2 = 4 py
where p<0
Step-by-step explanation:
I think this is it but I am not sure
Find atleast 5 numbers between 1/2 and 1/3.
Answer:
12.2 12.3 12.4 12.5
Step-by-step explanation:
Jessica and Monte sell bananas at a produce stand. Jessica earns $4 for each crate of bananas she sells. At the end of the week, Monte has earned $15 less than Jessica. The following expression shows Monte's earnings:
4y − 15
In the expression, what does the first term represent?
Jessica's earnings at the end of the week
The number of crates of bananas Jessica sold
Monte's earnings at the end of the week
The number of crates of bananas Monte sold
Answer:
Jessica's Earning's at the end of the week
Step-by-step explanation:
If Jessica earns $4 for every crate she sells that means the first term would be what Jessica earned at the end of the week minus $15 because Monte made $15 dollars less then Jessica.
In the expression the first term represents "The number of crates of bananas Monte sold". So option D is correct.
What are expressions?An expression is a sentence with at least two numbers or variables having mathematical operation. Maths operations can be subtraction, multiplication, addition, division.
For example, 2x+3
The expression given for Monte's earnings is 4y - 15.
In this expression, the first term is 4y.
This term represents the amount of money Monte earns per crate of bananas he sells.
Therefore, the first term represents the rate of pay for Monte's earnings, which is $4 per crate.
So, the answer is: The first term represents the amount of money Monte earns per crate of bananas he sells.
To know more about Expressions check:
brainly.com/question/16804733
#SPJ3
Restless Leg Syndrome and Fibromyalgia
People with restless leg syndrome have a strong urge to move their legs to stop uncomfortable sensations. People with fibromyalgia suffer pain and tenderness in joints throughout the body. A recent study indicates that people with fibromyalgia are much more likely to have restless leg syndrome than people without the disease. The study indicates that, for people with fibromyalgia, the probability is 0.33 of having restless leg syndrome, while for people without fibromyalgia, the probability is 0.03. About 2% of the population has fibromyalgia. Create a tree diagram from this information and use it to find the probability that a person with restless leg syndrome has fibromyalgia.
Answer:
The probability that a person with restless leg syndrome has fibromyalgia is 0.183.
Step-by-step explanation:
Denote the events as follows:
F = a person with fibromyalgia
R = a person having restless leg syndrome
The information provided is as follows:
P (R | F) = 0.33
P (R | F') = 0.03
P (F) = 0.02
Consider the tree diagram attached below.
Compute the probability that a person with restless leg syndrome has fibromyalgia as follows:
[tex]P(F|R)=\frac{P(R|F)P(F)}{P(R|F)P(F)+P(R|F')P(F')}[/tex]
[tex]=\frac{(0.33\times 0.02)}{(0.33\times 0.02)+(0.03\times 0.98)}\\\\=\frac{0.0066}{0.0066+0.0294}\\\\=0.183333\\\\\approx 0.183[/tex]
Thus, the probability that a person with restless leg syndrome has fibromyalgia is 0.183.
2
[tex] 2 \times 2[/tex]
Answer:
4
Step-by-step explanation:
2 × 2 = 4
Can someone explain the snake method, I don't understand how to do it
Answer:
x ∈ [−2; 1] ∪ 3.5Step-by-step explanation:
GivenInequality: (x-1)(x+2)(2x-7)≤0
Solution:If we solve the corresponding equation (x-1)(x+2)(2x-7)²= 0, we get roots
x = -2, 1, 3.5We need to consider the following 4 intervals:
(−∞; −2), [−2; 1], (1; 3.5), (3.5; ∞)1st interval (−∞; −2)
The expression (x-1)(x+2)(2x-7)² is positive as two of the multiples are negative and one is always positive (square number), and therefore does not satisfy the inequality.2nd interval [−2; 1]
The expression is negative as only one of the multiples is negative, and therefore the interval (−1; 2) satisfies the inequality.3rd interval (1; 3.5)
The expression is positive as all the multiples are positive. Therefore, the interval (1; 3.5) also does not satisfy the inequality.4th interval
The expression is positive as above, and therefore also does not satisfy the inequality.So, the answer to the inequality is:
x ∈ [−2; 1] ∪ 3.5How do you solve for x?
A river has a current of 2km per hour. Find the rate of Fred’s boat in still water if it travels 30 km downstream and the same time it takes to travel 14 km upstream.
Answer:
32km
Step-by-step explanation:
- You invest $1,000 in a stock market index fund that earns 8% compounded annually overa
10-year period (a simplified example since stock market returns vary year to year). How
much would your investment be worth after this 10-year period?
A. $1,080
B. $1,800
C. $2,000
D. More than $2,000
Answer:
I believe c
Step-by-step explanation:
I believe this because if you invest in stock for ten years as on this paragraph the answer is C
Option D is correct. we worth more than $2000 after 10 year period.
What is Percentage?percentage, a relative value indicating hundredth parts of any quantity.
Given that You invest $1,000 in a stock market index fund that earns 8% compounded annually over a 10-year period.
We have to find the investment be worth after this 10-year period.
A=P(1+r)ⁿ
P is the initial amount
r is rate of interest
n is the time
A=1000(1+0.08)¹⁰
A=1000(1.08)¹⁰
A=1000×2.1589
A=2158.9
Hence, option D is correct. we worth more than $2000 after 10 year period.
To learn more on Percentage click:
https://brainly.com/question/28269290
#SPJ2
The equation of a circle is (x−2)2+(y+6)2=100. Find the equation of a circle that is externally tangent to the given circle and has a center at (14, 3).
Answer:
(x-14)^2+(y-3)^2=9
Step-by-step explanation:
equation of a circle is (x-h)^2+(y-h)^2=r^2
so center is (14,3) and is tangent externally means
(x-14)^2+(y-3)2=3^2
(x-14)^2+(y-3)^2=9 answer
The equation of a circle is externally tangent to the given circle and has a center at (14, 3) is [tex](x-14)^2 + (y-3)^2=9[/tex]
The standard formula for finding the equation of a circle is expressed as:
[tex](x-a)^2+(y-b)^2=r^2[/tex]
where
(a, b) is the centre
r is the radius
Given the center at (14, 3)
If the equation of a circle is externally tangent to the given circle and has a center at (14, 3), then the radius will be 3
Substitute the radius and the centre into the expression above to have:
[tex](x-14)^2 + (y-3)^2=3^2\\(x-14)^2 + (y-3)^2=9[/tex]
Hence the equation of a circle is externally tangent to the given circle and has a center at (14, 3) is [tex](x-14)^2 + (y-3)^2=9[/tex]
Learn more here: https://brainly.com/question/24217736
Please help ASAP!!! Will give brainlist!
Answer:
the last 1
Step-by-step explanation:
find m ABC (2x) (5x+5)
Answer:
=130
Step-by-step explanation:
(2x) (5x+5) = 180
7x + 5 = 180
7x = 175
x = 25
5(25) + 5 = 125 + 5 = 130
Hope this helps (:
) A watershed experiences a rainfall of 8 inches. What is the runoff volume when the curve number is 80
Answer:
5.625 inches
Step-by-step explanation:
Given that:
Total Rainfall in inches (P) = 8 inches
The runoff volume (in inches) Q = ???
The curve number CN = 80
Recall that: The runoff volume can be calculated by using the formula:
[tex]Q = \dfrac{(P-0.2S)^2}{(P+0.8S)}[/tex] for P > 0.2S
Q = 0 for P < 0.2S
[tex]S = \dfrac{1000}{CN}-10[/tex]
where:
curve number CN = 80
[tex]S = \dfrac{1000}{80}-10[/tex]
S = 2.5 inches
Since the rainfall (P) is greater than 0.25
Then:
[tex]Q = \dfrac{(P-0.2S)^2}{(P+0.8S)}[/tex]
[tex]Q = \dfrac{(8-0.2(2.5))^2}{(8+0.8(2.5))}[/tex]
[tex]Q = \dfrac{(8-0.5)^2}{(8+2)}[/tex]
[tex]Q = \dfrac{(7.5)^2}{(10)}[/tex]
[tex]Q = \dfrac{(56.25)}{(10)}[/tex]
Q = 5.625 inches
Thus, the runoff volume = 5.625 inches
The standard height from the floor to the bull’s-eye at which a standard dartboard is hung at 5 feet 8 inches. A standard dartboard is 18 inches in diameter. Suppose a standard dartboard is hung at standard height so that the bull’s-eye is 10 feet from the wall to its left. Sasha throws a dart at the dartboard that land at point 10.25 Feet from the left wall and 5 feet above the floor. Does Sasha’s dart land on the dartboard? Drag the choices into the boxes to correctly complete the statements.
Answer:
Hello! I'm sorry I couldn't get to your question sooner. I just completed this quiz!
The equation of the circle that represents the dartboard is (x-10)^2 + (y-17/3)^2 = 9/16, where the origin is the lower-left corner of the room and the unit of the radius is feet.
The position of Sasha's dart is represented by the coordinates (10.25,5). Sash's dart does land on the dartboard.
This quiz was completed on k12, lesson 3.03.
The question is an illustration of equation of circles.
The equation of the dartboard circle is: [tex]\mathbf{(x - 10)^2 + (y - \frac{17}3)^2 = \frac 9{16}}[/tex]Sasha's dart lands on the dartboard becauseFrom the question, we understand that:
[tex]\mathbf{h = 5\ ft\ 8\ in }[/tex] ---- the height at which the dartboard was hung
[tex]\mathbf{d = 18\i n }[/tex] ---- the diameter of the dartboard
[tex]\mathbf{B = 10ft}[/tex] --- the bull's eye
[tex]\mathbf{D = (10.25ft, 5ft)}[/tex] --- Sasha's dart
Equation of the circle
First, we convert all units to feet
This is done by dividing inches units by 12
[tex]\mathbf{h = 5\ ft\ 8\ in }[/tex]
[tex]\mathbf{h = 5\ ft\ + \frac{8}{12}\ ft }[/tex]
[tex]\mathbf{h = 5\ ft\ + \frac{2}{3}\ ft }[/tex]
Take LCM
[tex]\mathbf{h = \frac{15 + 2}{3}\ ft }[/tex]
[tex]\mathbf{h = \frac{17}{3}\ ft }[/tex]
[tex]\mathbf{d = 18\i n }[/tex]
[tex]\mathbf{d = \frac{18}{12}ft}[/tex]
[tex]\mathbf{d = \frac{3}{2}ft}[/tex]
Divide by 2 to calculate radius
[tex]\mathbf{r = \frac{3}{2*2}ft}[/tex]
[tex]\mathbf{r = \frac{3}{4}ft}[/tex]
The equation of the circle is represented as:
[tex]\mathbf{(x - a)^2 + (y - b)^2 = r^2}[/tex]
In this case:
[tex]\mathbf{a = B = 10ft}[/tex] -- the distance between the bull's eye and the wall
[tex]\mathbf{b = h = \frac{17}{3}\ ft }[/tex] ---- the height at which the dartboard was hung
So, we have:
[tex]\mathbf{(x - a)^2 + (y - b)^2 = r^2}[/tex]
[tex]\mathbf{(x - 10)^2 + (y - \frac{17}3)^2 = (\frac 34)^2}[/tex]
Evaluate the exponents
[tex]\mathbf{(x - 10)^2 + (y - \frac{17}3)^2 = \frac 9{16}}[/tex]
Hence, the equation of the circle is: [tex]\mathbf{(x - 10)^2 + (y - \frac{17}3)^2 = \frac 9{16}}[/tex]
Does Sasha’s dart land on the dartboard?
Yes her dart lands on the dartboard because
[tex]\mathbf{D = (10.25ft, 5ft)}[/tex] is within the circumference of the dartboard
Read more about equation of circles at:
https://brainly.com/question/23988015
Alex is making a candy that contains 75% white chocolate and the rest peppermint sticks. The candy has 3 pounds
of peppermint sticks.
Part A: Write an equation using one variable that can be used to find the total number of pounds of white
chocolate and peppermint sticks in the candy. Define the variable used in the equation. (5 points)
Part B: How many pounds of white chocolate are present in the candy? Show your work. (5 points)
Answer:
163
Step-by-step explanation:
if a person ran 1/2 of a mile in 1/10 of an hour. How far will the person run in one (1) hour?
Step-by-step explanation:
In 1/10 of 1hr = 1/2 mile
10*(1/10) of 1hr = 10(1/2) mile
(10/10) of 1hr = (10/2) mile
1 of 1hr = 5mile
It says, he can run 5 miles in 1 hour
Angle 9 and angle 8 are what kind of angles? *
2
8/1
6/5
11/12
Alternate Interior Angles
Same Side Interior Angles
Corresponding Angles
Alternate Exterior Angles
What is the value of x.
Answer:
Angle 9 and Angle 8 they are the same
Step-by-step explanation:
Answer:
1,2,5
Step-by-step explanation:
f(x)=x-5
g(x) = 2x+1
Write the expressions for (f-g)(x) and (f+g)(x) and evaluate (fg)(4).
Answer:
(f - g)(x) = -x - 6
(f + g)(x) = 3x - 4
(f*g)(4) = -9
Step-by-step explanation:
These are your equations:
f(x) = x - 5
g(x) = 2x + 1
To find (f - g)(x), subtract g(x) from f(x).
(f - g)(x) = x - 5 - (2x + 1)
(f - g)(x) = x - 5 - 2x - 1
(f - g)(x) = -x - 5 - 1
(f - g)(x) = -x - 6
To find (f + g)(x), add f(x) with g(x).
(f + g)(x) = x - 5 + 2x + 1
(f + g)(x) = 3x - 5 + 1
(f + g)(x) = 3x - 4
To find (f*g)(4), you need to first find (f*g)(4). You can do this by multiplying f(x) wih g(x).
(f*g)(x) = (x - 5)(2x + 1)
(f*g)(x) = 2x² - 9x - 5
Now that you have (f*g)(x), solve with x as 4.
(f*g)(4) = 2(4)² - 9(4) - 5
(f*g)(4) = 2(16) - 9(4) - 5
(f*g)(4) = 32 - 36 - 5
(f*g)(4) = -9
The required expression for (f-g)(x), (f+g)(x) and (fg)(4) are given as 3x - 4, -x - 6 and 11.
What are functions?Functions is the relationship between sets of values. e g y=f(x), for every value of x there is its exists in a set of y. x is the independent variable while Y is the dependent variable.
Here,
f(x)=x-5
g(x) = 2x+1
According to the question,
[f + g ](x) = x - 5 + 2x + 1 = 3x - 4
[f + g ](x) = 3x - 4
[f - g ](x) = x - 5 - 2x - 1
[f - g ](x) = -x - 6
(f.g)(x) = (x - 5)(2x + 1)
(f.g)(x) = 2x² -4x -5
(f.g)(4) = 2[4]² - 4[4] - 5
= 32 - 16 - 5
= 11
(f.g)(4) = 11
Thus, the required expression for (f-g)(x), (f+g)(x) and (fg)(4) are given as 3x - 4, -x - 6 and 11.
Learn more about function here:
brainly.com/question/21145944
#SPJ2
FOR EXAMPLE:
Christa and her family went out for pizza and it cost $28. In Tennessee we have a sales tax that is 7% which has to be paid along with $28. What is the sales tax on $28?
3- ¿Cuál es la probabilidad de que al escoger un número positivo de dos cifras, este sea
primo y termine en 3?
O a) 1/15
b) 2/90
c) 6/91
d) 9/90
Answer:
6 primos de dos cifras(casos favorables) / 90 numeros de dos cifras(casos posibles) = 1/15
Step-by-step explanation:
Usando el concepto de probabilidad, se encuentra que hay una probabilidad de [tex]\frac{1}{15}[/tex], opcion A, de que al escoger un número positivo de dos cifras, este sea primo y termine en 3.
------------------------------
Una probabilidad es dada por la división de el número de resultados deseados por el número de resultados totales. Hay 90 números positivos de dos cifras.13, 23, 43, 53, 73, 83 son primos y terminan en 3, o sea, el número de resultados deseados es 6.Entonces:
[tex]p = \frac{6}{90} = \frac{1}{15}[/tex]
Probabilidad de [tex]\frac{1}{15}[/tex], opcion A, de que al escoger un número positivo de dos cifras, este sea primo y termine en 3.
Un problema similar es dado en https://brainly.com/question/24583317
How many edges are there on a cylinder?
Answer:
There are 0 number of edges on a cylinder