Explanation:
Electron affinity is defined as the energy released by the addition of an electron to any gaseous atom. Electron affinity of an atom depends on the electronic configuration.
a).The carbon has vacant p-orbital and nitrogen has half-filled configuration which is more stable. Therefore, one electron can be easily added to carbon whereas nitrogen having more stable configuration releases more amount of energy on adding one electron. Therefore, nitrogen has more electron affinity than carbon.
The bromine has vacant p-orbital whereas argon has filled orbital which is most stable. Therefore, one electron can be easily added to bromine whereas argon having more stable configuration releases more amount of energy on adding one electron.Therefore, argon has more electron affinity than bromine.
Answer:
1. a. C; b. N; c. C; 2. a. Br; b. Ar; c. Br
Explanation:
Use your Periodic Table and follow the trends in atomic properties (Fig. 1).
Electron affinity increases from left to right and from bottom to top.
The elements with the most exothermic EA are at the upper right corner
Exceptions are the noble gases (group 18) and the pnictogens (group 18).
The elements of Group 18 have a complete octet and have no tendency to accept electrons.
The elements of Group 15 have half-filled p subshells. They are more stable than the elements immediately preceding them, so they are less exothermic when adding an electron.
Ionization energy increases from left to right and from bottom to top.
The atoms with the highest IE are at the upper right corner.
Atomic size increases from right to left and from bottom to top.
The largest atoms are on the lower-left corner.
1. C vs N
(a) EA: C. N is a Group 15 element
(b) IE: N. N is further to the right.
(c) Size: C. C is further to the left.
2. Ar vs Br
(a) EA: Br. Ar is a noble gas.
(b) IE: Ar. Ar is further to the right.
(c) Size: Br. Br is nearer to the bottom.
The partial Lewis structure that follows is for a hydrocarbon molecule. In the full Lewis structure, each carbon atom satisfies the octet rule, and there are no unshared electron pairs in the molecule. The carbon-carbon bonds are labeled 1, 2, and 3.
A) How many hydrogen atoms are in the molecule?
B) Rank the carbon-carbon bonds in order of increasing bond length.
C) Which carbon-carbon bond is the strongest one?
Answer:
A) How many hydrogen atoms are in the molecule?
A weather balloon is inflated to a volume of 27.6 L at a pressure of 755 mmHg and a temperature of 29.9 ∘C. The balloon rises in the atmosphere to an altitude where the pressure is 385 mmHg and the temperature is -14.1 ∘C. Assuming the balloon can freely expand, calculate the volume of the balloon at this altitude.
Answer: The volume of the balloon at this altitude is 46.3 L
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law
The combined gas equation is,
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1[/tex] = initial pressure of gas = 755 mm Hg
[tex]P_2[/tex] = final pressure of gas (at STP) = 385 mm Hg
[tex]V_1[/tex] = initial volume of gas = 27.6 L
[tex]V_2[/tex] = final volume of gas = ?
[tex]T_1[/tex] = initial temperature of gas = [tex]29.9^0C=(29.9+273)K=302.9K[/tex]
[tex]T_2[/tex] = final temperature of gas = [tex]-14.1^0C=((-14.1)+273)K=258.9K[/tex]
Putting all the values we get:
[tex]\frac{755\times 27.6}{302.9}=\frac{385\times V_2}{258.9}[/tex]
[tex]V_2=46.3L[/tex]
Thus the volume of the balloon at this altitude is 46.3 L
What is an ion?
A. An atom that has lost or gained 1 or more electrons
O B. An atom that has lost or gained 1 or more neutrons
O C. An atom that has lost or gained 1 or more protons
D. An atom that differs in mass from another atom of the same
element
Answer:
An ion is an atom that has lost or gained one or more electrons.
Explanation:
Ions are positively or negatively charged atoms of elements. This is because they can give, take, or share electrons with other elements to encourage the formation of chemical bonds.
Protons are what decide the chemical identity of the element. So, for example, if an atom has 11 protons, we know that will be a Sodium (Na) atom. A loss or gain of protons completely changes the chemical identity of the element and it will then become another element.
Electrons are what give an atom a neutral electrical charge (if that atom has the number of protons and neutrons normally described for the element - otherwise, a discrepancy or gain in neutrons is referred to as an isotope and declares that ions have nothing to do with the mass of an element).
With this information, you can realize that neutrons and protons have nothing to do with ions and you can confirm that ions are atoms that have lost or gained one or more electrons.
When 1-iodo-1-methylcyclohexane is treated with NaOCH2CH3 as the base, the more highly substituted alkene product predominates. When KOC(CH3)3 is used as the base, the less highly substituted alkene predominates. Give the structures of the two products and offer an explanation.
Answer:
See explanation
Explanation:
In this case, we have 2 types of reactions. [tex]CH_3CH_2ONa[/tex] is a strong base but only has 2 carbons therefore we will have less steric hindrance in this base. So, the base can remove hydrogens that are bonded on carbons 1 or 6, therefore, we will have a more substituted alkene (1-methylcyclohex-1-ene).
For the [tex]KOC(CH_3)_3[/tex] we have more steric hindrance. So, we can remove only the hydrogens from carbon 7 and we will produce a less substituted alkene (methylenecyclohexane).
See figure 1
I hope it helps!
Benny Beaver wants to determine what dyesare present in his favorite sports drink. He analyzesa sample witha UV-visiblespectrophotometer and sees absorbance peaks at 415.2nm and 519.6nm. What colordyesare present in his drink
Answer:
At 415.2nm and 519.6nm, the dyes observed by the instrument are violet and green respectively.
Explanation:
In the electromagentic spectrum, visible wavelengths cover a range from approximately 400 to 800 nm. The colours of the spectrum range from red to violet (Red, Orange, Yellow, Green, Blue, Indigo and violet: a.k.a ROGBIV), in order of decreasing wavelength.
I hope this explanation would suffice.
Convert 150 K to degrees C.
Answer:
K = 150, C = - 123.15°
Explanation:
Kelvin = Celcius + 273.15 / 0 Kelvin = - 273.14 C
_____________________________________
Thus,
150 K = Celcius + 273.15,
150 - 273.15 = C,
C = -123.15 degrees
Solution, C = - 123.15°
Answer:
C=-123.15
Explanation:
This is easy
Question 1
1 pts
2B+6HCI --
| --> 2BCl3 + 3H2
How many moles of boron chloride will be produced if you start with 8.752 moles of HCI
(hydrochloric acid)? (Round to 3 sig figs. Enter the number only do not include units.)
Answer:
2.92 mol
Explanation:
Step 1: Write the balanced equation
2 B(s) + 6 HCI(aq) ⇒ 2 BCl₃(aq) + 3 H₂(g)
Step 2: Establish the appropriate molar ratio
The molar ratio of hydrochloric acid to boron chloride is 6:2.
Step 3: Calculate the moles of boron chloride produced from 8.752 moles of hydrochloric acid
[tex]8.752molHCl \times \frac{2molBCl_3}{6molHCl} = 2.92molBCl_3[/tex]
What is the coefficient for oxygen in the balanced equation? C 5H 12 + ? O2 → ? CO2 + ? H2O. 2 4 5 6 8
Answer:
8
Explanation:
When you balance the entire equation, you should get:
C5H12 + 8O2 ---> 5CO2 + 6H2O
AMMONIUM CARBONATE
5. How many grams of nitrogen (N) are in a mass of ammonium carbonate that contains
1.23x10^23 carbon atoms?
Answer:
Zero
Explanation:
Hello,
The question require us to calculate the mass of nitrogen present in aluminium carbonate.
This can easily be calculated using Avogadro's number as a constant with some minor calculations but however in this case, we can't because there's no single atom of nitrogen present in aluminium carbonate hence we can't calculate the mass of nitrogen present in it.
Chemical formula of aluminium carbonate = Al₂(CO₃)₃.
From the above chemical formula, we can see that there's no single atom of nitrogen present in the formula hence the mass of nitrogen present in aluminium carbonate that contains 1.23×10²³ carbon atoms is zero.
Cl2 + F2 → ClF3, 5. How many moles of Cl2 are needed to react with 3.44 moles of F2? 6. How many grams of ClF3 form when 0.204 moles of F2 react with excess Cl2? 7. How many grams of ClF3 form from 130.0 grams of Cl2 when F2 is in excess? 8. How many grams of F2 are needed to react with 3.50 grams of Cl2?
Answer:
5) 1.147 moles Cl2
6) 12.57 grams ClF3
7) 339.10 grams ClF3
8) 5.63 grams F2
Explanation:
Step 1: Data given
Number of moles F2 = 3.44 moles
Molar mass F2 = 38.00 g/mol
Step 2: The balanced equation
Cl2 + 3F2 → 2ClF3
Step 3: Calculate moles F2
For 1 mol Cl2 we need 3 moles F2 to produce 2 moles ClF3
For 3.44 moles F2 we'll need 3.44/3 = 1.147 moles Cl2
Step 1: Data given
Number of moles F2 = 0.204 moles
Molar mass F2 = 38.00 g/mol
Molar mass ClF3 = 92.448 g/mol
Step 2: The balanced equation
Cl2 + 3F2 → 2ClF3
Step 3: Calculate moles ClF3
For 1 mol Cl2 we need 3 moles F2 to produce 2 moles ClF3
For 0.204 moles F2 we'll have 2/3 * 0.204 = 0.136 moles
Step 4: Calculate mass ClF3
Mass ClF3 = Moles ClF3 * molar mass ClF3
Mass ClF3 = 0.136 moles * 92.448 g/mol
Mass ClF3 = 12.57 grams ClF3
Step 1: Data given
Mass of Cl2 = 130.0 grams
Molar mass F2 = 38.00 g/mol
Molar mass ClF3 = 92.448 g/mol
Step 2: The balanced equation
Cl2 + 3F2 → 2ClF3
Step 3: Calculate moles Cl2
Moles Cl2 = mass Cl2 / molar mass Cl2
Moles Cl2 = 130.0 grams / 70.9 g/mol
Moles Cl2 = 1.834 moles
Step 4: Calculate moles
For 1 mol Cl2 we need 3 moles F2 to produce 2 moles ClF3
For 1.834 moles Cl2 e'll have 2*1.834 = 3.668 moles ClF3
Step 5: Calculate mass ClF3
Mass ClF3 = Moles ClF3 * molar mass ClF3
Mass ClF3 = 3.668 moles * 92.448 g/mol
Mass ClF3 = 339.10 grams ClF3
Step 1: Data given
Mass of Cl2 = 3.50 grams
Molar mass F2 = 38.00 g/mol
Molar mass ClF3 = 92.448 g/mol
Step 2: The balanced equation
Cl2 + 3F2 → 2ClF3
Step 3: Calculate moles Cl2
Moles Cl2 = Mass Cl2 / molar mass Cl2
Moles Cl2 = 3.50 grams / 70.9 g/mol
Moles Cl2 = 0.0494 moles
Step 4: Calculate moles F2
For 1 mol Cl2 we need 3 moles F2
For 0.0494 moles we need 3*0.0494 = 0.1482 moles
Step 5: Calculate mass F2
Mass F2 = moles F2 * molar mass F2
Mass F2 = 0.1482 moles * 38.00 g/mol
Mass F2 = 5.63 grams F2
A solution of benzene in methanol has a transmittance of 93.0 % in a 1.00 cm cell at a wavelength of 254 nm. Only the benzene absorbs light at this wavelength, not the methanol. What will the solution's transmittance be if it is placed in a 10.00 cm long pathlength cell
Answer:
T = 48.39%
Explanation:
In this case we need to apply the Beer law which is the following:
A = CεL (1)
Where:
A: Absorbance of solution
C: Concentration of solution
ε: Molar Absortivity (Constant)
L: Length of the cell
Now according to the given data, we have transmittance of 93% or 0.93. We can calculate absorbance using the following expression:
A = -logT (2)
Applying this expression, let's calculate the Absorbance:
A = -log(0.93)
A = 0.03152
Now that we have the absorbance, let's calculate the concentration of the solution, using expression (1).
A = CεL
C = A / εL
Replacing:
C = 0.03152 / 1 *ε (3)
Now, we want to know the transmittance of the solution with a length of 10 cm. so:
A = CεL
Concentration and ε are constant, so:
A = (0.03152 / ε) * ε * 10
A = 0.3152
Now that we have the new absorbance, we can calculate the new transmittace:
T = 10^(-A)
T = 0.4839 ----> 48.39%
The following reactions all have K < 1. 1) HCOO- (aq) + C6H5COOH (aq) HCOOH (aq) + C6H5COO- (aq) 2) C9H7O4- (aq) + C6H5COOH (aq) C6H5COO- (aq) + HC9H7O4 (aq) 3) HCOOH (aq) + C9H7O4- (aq) HC9H7O4 (aq) + HCOO- (aq) Arrange the substances based on their relative acid strength.
Answer:
Explanation:
C₉H₇O₄⁻ = weakest base
C₆H₅COO⁻ = strongest base
HCOO⁻ = intermediate base
HCOOH = not a Bronsted-Lowry base
HC₉H₇O₄ = not a Bronsted-Lowry base
C₆H₅COOH = not a Bronsted-Lowry base
What is Key for the reaction 2503(9) = 2802(9) + O2(g)?
Answer:
Option C. Keq = [SO2]² [O2] /[SO3]²
Explanation:
The equilibrium constant keq for a reaction is simply the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.
Now, let us determine the equilibrium constant for the reaction given in the question.
This is illustrated below:
2SO3(g) <==> 2SO2(g) + O2(g)
Reactant => SO3
Product => SO2, O2
Keq = concentration of products /concentration of reactants
Keq = [SO2]² [O2] /[SO3]²
A sample of chlorine gas starting at 686 mm Hg is placed under a pressure of 991 mm Hg and reduced to a volume of 507.6 mL. What was the initial volume of the chlorine gas container if the process was performed at constant temperature
Answer:
The initial volume of the chlorine gas [tex]V1=733.28mL[/tex]
Explanation:
Given:
P1= 686mmHg
P2= 991mmHg
V2= 5076mL
V1=?
According to Boyle's law which states that at a constant temperature, the pressure on a gas increases as it's volume decreases.
It can be expressed as : P1V1 = P2V2
Where P1 is the initial pressure
P2= final pressure
V1= initial volume
V2 = final volume
[tex]V1= (P2V2)/P1[/tex]
V1= (991mmHg*507.6mL)/686mmHg
V1=503031.6/686
[tex]V1=733.28mL[/tex]
Therefore, The initial volume of the chlorine gas [tex]V1=733.28mL[/tex]
In the presence of a strong base, the following reaction between (CH3)3CCl and OH- occurs: (CH3)3CCl + OH- → (CH3)3COH + Cl- Studies have suggested that the mechanism for the reaction takes place in 2 steps: Step 1) (CH3)3CCl → (CH3)3C+ + Cl- (slow) Step 2) (CH3)3C+ + OH- → (CH3)3COH (fast) What is the rate law expression for the overall reaction? Group of answer choices
Answer:
D. rate = k [(CH3)3CCl]
Explanation:
(CH3)3CCl + OH- → (CH3)3COH + Cl-
The mechanisms are;
Step 1)
(CH3)3CCl → (CH3)3C+ + Cl- (slow)
Step 2)
(CH3)3C+ + OH- → (CH3)3COH (fast)
In kinetics, the slowest step is the ratee determining step.
For a given reaction;
A → B + C, the rate law expression is given as;
rate = k [A]
In this problem, from step 1. The rate expression is;
rate = k [(CH3)3CCl]
What is the net ionic equation of the reaction of MgSO4 with Ba(NO3)2 ?
Answer:
Ba(+2)(aq) + SO4(-2)(aq) -----> BaSO4(s)
Explanation:
Take a look at the attachment below;
When the following molecular equation is balanced using the smallest possible integer coefficients, the values of these coefficients are:
sulfur dioxide (g) + water (l) __________sulfurous acid (H2SO3) (g) + water (I)
Answer:
Sulfur dioxide + 2 ( water ) -----> sulfurous acid + water /
SO2 + 2 ( H2O ) -----> H2SO3 + H2O
Explanation:
This formula may not be right. Sulfur dioxide tends to react with water to produce sulfurous acid as per it's formula, but then again that chemical reaction need not be balanced. However, I will solve for either case here -
Sulfur dioxide + water -----> sulfurous acid,
Sulfur dioxide + water -----> sulfurous acid + water
_______________________________________________________
As I mentioned before, Sulfur dioxide + water -----> sulfurous acid is a chemical reaction that need not balancing as the number of each element present on the reactant and product side are the same. To help, let me rewrite this reaction -
SO2 + H2O -----> H2SO3,
Reactant | Product
Sulfur = 1, Sulfur = 1,
Oxygen = 3, Oxygen = 3,
Hydrogen = 2 Hydrogen = 2
And hence the equation is already balanced. Now let us consider the case we supposedly have at hand - Sulfur dioxide + water -----> sulfurous acid + water. Take a look at the attachment below;
A solution that is 0.135 M is diluted to make 500.0 mL of a 0.0851 M solution. How many milliliters of the original solution were required? View Available Hint(s) A solution that is 0.135 M is diluted to make 500.0 mL of a 0.0851 M solution. How many milliliters of the original solution were required? 5.74 mL 0.315 mL 793 mL 315 mL
Answer:
315mL
Explanation:
Data obtained from the question include the following:
Molarity of stock solution (M1) = 0.135 M
Volume of stock solution needed (V1) =?
Molarity of diluted solution (M2) = 0.0851 M
Volume of diluted solution (V2) = 500mL
The volume of the stock solution needed can be obtain as follow:
M1V1 = M2V2
0.135 x V1 = 0.0851 x 500
Divide both side by 0.135
V1 = (0.0851 x 500) / 0.135
V1 = 315mL
Therefore, the volume of the stock solution needed is 315mL
A solid is dissolved in a liquid, and over time a solid forms again. How can
you confirm the type of change that took place?
A. Testing the new solid to show that its properties are the same as
the starting solid would confirm that a physical change took
place.
B. The solid dissolving in a liquid is confirmation that a chemical
change took place.
C. The solid forming from the liquid is confirmation that a physical
change took place.
D. Showing that the total mass of the solid and liquid changed would
confirm that a chemical change took place.
With methyl, ethyl, or cyclopentyl halides as your organic starting materials and using any needed solvents or inorganic reagents, outline syntheses of each of the following. More than one step may be necessary and you need not repeat steps carried out in earlier parts of this problem. (a) CH3I (b) I (c) CH3OH (d) OH (e) CH3SH (f) SH (g) CH3CN (h) CN (i) CH3OCH3 (j) OMe
Answer:
In the attachment you can find all the possible chemical reactions.
Some reaction can not be obtained by using alkyl halides because halides are weak leaving group which can leave compound during reaction easily but hydroxyl groups is a strong nucleophile which can not leave compound easily. So we can obtain alcohol from ethyl bromide, but we can not obtain hydroxyl ion from ethyl bromide.
Explanation:
The methyl of ethyl halides as the organic starting materials are using the needed solvents or the inorganic reagents. These can be not repeated in steps that arrive out in earlier parts.
The reaction can not be taken by the use of alkyl halides as the halides are the weakest leaving group which leave the compound during reaction easily.the hydroxyl group is the strong nucleophile that cannot leave the compound easily. Thus we can get alcohol from the ethyl bromide, but we can not obtain the hydroxyl ion from the ethyl bromide.Learn more about the methyl or the cyclopentyl.
brainly.com/question/12621202
all compounds are neutral true or false
Answer:
Even all compounds are neutral.
Explanation:
Some of them exhibit polarity. Because of the difference in electron affinity of the constituent atoms, the shared electrons are pulled towards the atom with high affinity to electrons.
The reason for the dramatic decline in the number of measles cases from the 1960s to 2010 in the United States was because the vaccine
Answer:
It was because the vaccine generated actively acquired immunity, that is, inoculation of a portion of the measles virus so that the body forms the antibodies for a second contact and thus can destroy it without triggering the pathology.
Explanation:
Vaccines are methods of active acquired immunity since the antibody is not passively inoculated, it is manufactured by the body with a physiological process once part of the virus is inoculated.
The measles virus most of all affected the lives of infants or newborn children with severe rashes and high fevers that led to death.
When an automobile engine starts, the metal parts immediately begin to absorb heat released during the combustion of gasoline. How much heat will be absorbed by a 165 kg iron engine block as the temperature rises from 15.7°C to 95.7°C? (The specific heat of iron is 0.489 J/g·°C.)
Answer:
H = 4,034,250 J
Explanation:
Mass, m = 165kg = 165,000g (Converting to grams)
Initial temperature = 15.7°C
Final temperature = 95.7°C
Temperature change, ΔT = 95.7 - 15.7 = 50°C
Specific heat capacity, c = 0.489 J/g·°C
Heat = ?
All the parameters are related with the equation below;
H = m * c * ΔT
H = 165000 * 0.489 * 50
H = 4,034,250 J
need helpp asapp please
Answer:
B. None of these
Explanation:
Sulfur has less ionization energy than phosphorus because sulfur has a pair of electron in its 3p subshell that increases electron repulsion in sulfur and sulfur electrons can easily remove from its sub-level.
While, there are no electron pairs in 3p subshell of phosphorus, therefore it requires more energy to remove an electron from 3p subshell.
Hence, the reason is electron repulsion and the correct answer is B.
The amount of calcium in a 15.0-g sample was determined by converting the calcium to calcium oxalate, CaC2O4. The CaC2O4 weighed 40.3 g. What is the percent of calcium in the original sample
Answer:
128 gram of CaC2O4 contains 40 gram of Calcium
40.3 gram of CaC2O4 cotnains = 40*40.3/128 = 12.59 gram of Calcium
out of 15 gram 12.59 gram is Calcaim that means around 50% of orginal sample has Calcium
The lock-and-key model and the induced-fit model are two models of enzyme action explaining both the specificity and the catalytic activity of enzymes. Following are several statements concerning enzyme and substrate interaction. Indicate whether each statement is part of the lock-and-key model, the induced-fit model, or is common to both models.
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
c. Enzyme active site has a rigid structure complementary
d. Substrate binds to the enzyme through noncovalent interactions
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
Among three bases, X−, Y−, and Z−, the strongest one is Y−, and the weakest one is Z−. Rank their conjugate acids, HX, HY, and HZ, in order of decreasing strength. Rank the acids from strongest to weakest. To rank items as equivalent, overlap them.
Answer: HZ > HX > HY in order of decreasing strengths.
Explanation: Generally, the rule is that the stronger the acid, the weaker its conjugate base and vice versa; same rule applies for bases and their conjugate acids.
So the weakest base Z- would have the strongest conjugate acid. Consequently, the strongest base Y- would have the weakest conjugate acid.
I hope this was MORE helpful as this is the correct answer.
The ranking of the conjugate acids in order of decreasing strength (i.e from strongest to weakest) is; HZ < HX < HY
First we must know that the stronger a base is, the weaker is it's conjugate acid and the weaker a base is, the stronger is it's conjugate acid.
Therefore, the order of decreasing strength of the conjugate acid is; HZ < HX < HY
Read more:
https://brainly.com/question/23917439
Please what's the missing minor products? And kindly explain in your own words how they were formed. Thank you!
Answer:
it's a two step elimination reaction
Explanation:
it follows a carbocationic pathway. When carbocation is stable, the equation is favourable, that is, double bond is formed by expelling hydrogen atom.
A certain mass of carbon reacts with 9.53 g of oxygen to form carbon monoxide. ________ grams of oxygen would react with that same mass of carbon to form carbon dioxide, according to the law of multiple proportions.
Answer: 9.53 *2= 19.06
Explanation:
The law of multiple proportions states that if two elements combines to form more than one compound the ratio of masses of the second element which combines to the fixed mass of the first element will always be the ratios of the small whole numbers.
in case of carbon monoxide, mass of carbon will be the same of mass of oxygen.
But in case of carbon dioxide, if carbon is 9.53 units then oxygen will be twice as that of carbon.
CO2, so 9.53*2= 19.06 grams of oxygen will combine with 9.53 grams of carbon to form carbon dioxide.
what type of matter is toluene
Answer:
is an organic chemical conpond