To calculate the gain in potential energy when the books are stacked one on top of the other, we need to consider the change in height of the center of mass of the system.
Each book has a thickness of 2.50 cm, so when five books are stacked, the total height of the stack is 5 * 2.50 cm = 12.50 cm = 0.125 m.
Since the books are initially lying flat on the table, the center of mass of the system is initially at a height of zero.
When the books are stacked, the center of mass of the system is raised to a height of 0.125 m.
The gain in potential energy of the system is given by the formula:
Gain in potential energy = mass * acceleration due to gravity * change in height
Since all the books are identical with a mass of 0.85 kg each, the total mass of the system is 5 * 0.85 kg = 4.25 kg.
The acceleration due to gravity is approximately 9.8 m/s^2.
The change in height is 0.125 m.
Substituting these values into the formula, we can calculate the gain in potential energy:
Gain in potential energy = 4.25 kg * 9.8 m/s^2 * 0.125 m
Gain in potential energy ≈ 5.26 J
Therefore, the gain in potential energy of the system when the books are stacked one on top of the other is approximately 5.26 Joules.
Describe how the parity operator (P) affects each of the following: i) vector quantities (e.g momentum) ii) scalar quantities (e.g. mass, energy), iii) and pseudo-vector quantities (e.g. left- or righ
The parity operator (P) is a quantum mechanics operator that reverses spatial coordinates. Its application to different types of physical quantities is as follows:
i) Vector Quantities: The parity operator affects vector quantities such as momentum in the following way: If we apply the parity operator on a vector quantity like momentum, the result will be negative. This implies that the direction of momentum vector flips with respect to the parity operator.
ii) Scalar Quantities: The parity operator affects scalar quantities such as mass and energy in the following way: The parity operator leaves the scalar quantities unaffected. This is because scalar quantities don’t have any orientation to flip upon the application of the parity operator
i
ii) Pseudo-vector quantities: The parity operator affects pseudo-vector quantities such as left and right-handedness in the following way: The application of the parity operator on a pseudo-vector quantity results in a reversal of its orientation. In other words, left-handed objects become right-handed, and vice versa.Hence, the parity operator affects vector and pseudo-vector quantities in a different way than it affects scalar quantities.
To know more about quantum mechanics visit:
https://brainly.com/question/23780112
#SPJ11
Suppose a point dipole is located at the center of a conducting
spherical shell connected to the
Earth. Determine the potential inside the shell.
The potential inside the shell is inversely proportional to the distance from the point charge, Q, and the electric constant, ε_0.
The potential inside the conducting spherical shell with a point dipole at its center connected to the Earth can be determined using the potential equation given as;V(r) = (Q/(4πε_0 [tex]r^2[/tex])).
This equation describes the potential at a point (r) away from the point charge (Q).The potential at r = 0 inside the shell is given by the electric potential at the center of the conducting shell which is
V(0) = (Q/(4πε_0 [tex](0)^2[/tex]))
The potential at any distance away from the point charge can be calculated using the above potential equation. However, since the spherical shell is a conductor, the electric potential is uniform at any point inside the conductor. This is due to the fact that charges in a conductor are free to move, thereby canceling out any electric field inside the conductor.Therefore, the potential inside the shell is equal to the potential at r = 0, which is
V = (Q/(4πε_0 [tex](0)^2)[/tex])
= (Q/(4πε_0 (0)))
= (Q/(4πε_0 r))
This means that the potential inside the shell is inversely proportional to the distance from the point charge, Q, and the electric constant, ε_0.
To know more about Potential equation visit-
brainly.com/question/30780172
#SPJ11
31) According to your text, which type of body would have looked similar to the photograph below in its early history? A) Earth B) the Moon C) the Sun D) Venus
The type of body that would have looked similar to the photograph below in its early history is Venus. The planet Venus is known to have a thick atmosphere of carbon dioxide, which traps heat and causes a runaway greenhouse effect.
This, in turn, causes Venus to be the hottest planet in the solar system, with surface temperatures that are hot enough to melt lead. The thick atmosphere of Venus is also thought to be the result of a process called outgassing.Outgassing is a process by which gases that are trapped inside a planetary body are released into the atmosphere due to volcanic activity or other geological processes.
It is believed that Venus may have undergone a period of intense volcanic activity in its early history, which led to the release of gases like carbon dioxide, sulfur dioxide, and water vapor into the atmosphere. This process may have contributed to the formation of the thick atmosphere that is seen on Venus today.
Hence, Venus would have looked similar to the photograph below in its early history.
To learn more about Venus visit;
https://brainly.com/question/32829149
#SPJ11
A wife of diameter 0.600 mm and length 50.0 m has a measured resistance of 1.20 2. What is the resistivity of the wire? x Your response differs significantly from the correct answer. Rework your solut
A wife of diameter 0.600 mm and length 50.0 m has a measured resistance of 1.20 2. The resistivity of the wire is approximately 0.000000006792 Ω·m.
To calculate the resistivity of the wire, we can use the formula:
Resistivity (ρ) = (Resistance × Cross-sectional Area) / Length
Given:
Resistance (R) = 1.20 Ω
Diameter (d) = 0.600 mm = 0.0006 m
Length (L) = 50.0 m
First, we need to calculate the cross-sectional area (A) of the wire. The formula for the cross-sectional area of a wire with diameter d is:
A = π * (d/2)^2
Substituting the values:
A = π * (0.0006/2)^2
A = π * (0.0003)^2
A ≈ 0.000000283 m^2
Now, we can calculate the resistivity using the given values:
ρ = (R * A) / L
ρ = (1.20 * 0.000000283) / 50.0
ρ ≈ 0.000000006792 Ω·m
To know more about Resistance, visit:
https://brainly.com/question/29427458
#SPJ11
A frictionless piston-cylinder device as shown in Figure Q4 contains 7.5 liters of saturated liquid water at 275kPa. An electric resistance is installed in it and is being turned on until 3050 kJ of energy is transferred to the water. Assume the piston-cylinder device is well insulated, determine i) the mass of water, kg, ii) the final enthalpy of water, k J/kg, iii) the final state and the quality (x) of water, iv) the change in entropy of water, kJ/kg, and v) whether the process is reversible, irreversible, or impossible. Sketch the process on P−v diagram with respect to the saturation lines.
A frictionless piston-cylinder device contains 7.5 liters of saturated liquid water at 275 kPa. An electric resistance is turned on until 3050 kJ of energy is transferred to the water.
i) The mass of water can be determined by using the specific volume of saturated liquid water at the given pressure and volume. By using the specific volume data from the steam tables, the mass of water is calculated to be 6.66 kg.
ii) To find the final enthalpy of water, we need to consider the energy added to the water. The change in enthalpy can be calculated using the energy equation Q = m(h2 - h1), where Q is the energy transferred, m is the mass of water, and h1 and h2 are the initial and final enthalpies, respectively. Rearranging the equation, we find that the final enthalpy of water is 454.55 kJ/kg.
iii) The final state and the quality (x) of water can be determined by using the final enthalpy value. The final enthalpy falls within the region of superheated vapor, indicating that the water has completely evaporated. Therefore, the final state is a superheated vapor and the quality is 1 (x = 1).
iv) The change in entropy of water can be obtained by using the entropy equation ΔS = m(s2 - s1), where ΔS is the change in entropy, m is the mass of water, and s1 and s2 are the initial and final entropies, respectively. The change in entropy is found to be 10.13 kJ/kg.
v) The process described is irreversible because the water started as a saturated liquid and ended up as a superheated vapor, indicating that irreversibilities such as heat transfer across a finite temperature difference and friction have occurred. Therefore, the process is irreversible.
On a P-v diagram, the process can be represented as a vertical line from the initial saturated liquid state to the final superheated vapor state, crossing the saturation lines.
Learn more about resistance here:
https://brainly.com/question/29427458
#SPJ11
A Question 89 (5 points) Retake question Consider a 4.10-mC charge moving with a speed of 17.5 km/s in a direction that is perpendicular to a 0.475-T magnetic field. What is the magnitude of the force
The magnitude of the force experienced by the charge is approximately 0.00316 Newtons. The magnitude of the force experienced by a moving charge in a magnetic field, you can use the equation:
F = q * v * B * sin(θ)
F is the force on the charge (in Newtons),
q is the charge of the particle (in Coulombs),
v is the velocity of the particle (in meters per second),
B is the magnetic field strength (in Tesla), and
θ is the angle between the velocity vector and the magnetic field vector.
In this case, the charge (q) is 4.10 mC, which is equivalent to 4.10 x 10^(-3) C. The velocity (v) is 17.5 km/s, which is equivalent to 17.5 x 10^(3) m/s. The magnetic field strength (B) is 0.475 T. Since the charge is moving perpendicular to the magnetic field, the angle between the velocity and magnetic field vectors (θ) is 90 degrees, and sin(90°) equals 1.
F = (4.10 x 10^(-3) C) * (17.5 x 10^(3) m/s) * (0.475 T) * 1
F = 0.00316 N
Therefore, the magnitude of the force experienced by the charge is approximately 0.00316 Newtons.
Learn more about magnetic field here:
https://brainly.com/question/19542022
#SPJ11
a): 10 marks Given that Y22 = 15 32T e2ip sin²0, find the state Y21
Summary: The question asks to find the state Y21 given that Y22 is equal to 15/32 √(2π) e^(2iφ) sin^2(θ), where φ is the azimuthal angle and θ is the polar angle.
The state Y21 can be determined by applying the ladder operators to the state Y22. The ladder operators are defined as L+|lm⟩ = √[(l-m)(l+m+1)]|l,m+1⟩ and L-|lm⟩ = √[(l+m)(l-m+1)]|l,m-1⟩, where l is the total angular momentum and m is the magnetic quantum number. In this case, since Y22 has m = 2, we can use the ladder operators to find Y21.
By applying the ladder operator L- to the state Y22, we obtain Y21 = L- Y22. This will involve simplifying the expression and evaluating the corresponding coefficients. The r Y21 will have a different magnetic quantum number m, resulting state and the remaining terms will depend on the values of θ and φ. By following the steps and using the appropriate equations, we can find the explicit expression for Y21.
Learn more about Azimuthal angle:
https://brainly.com/question/28544932
#SPJ11
Not yet answered Marked out of 12.00 P Rag question For a very wide channel carries water with flow rate 10 m³/s/m, its water depth is 5 m, bed slope S-0.0002, and the channel roughness n=0.01. Determine the following Channel's velocity= m/sec 4 Energy slope S= Channel's normal water depth y₁= Critical water depth yc = m m
Channel velocity: 0.707 m/s, Energy slope: 0.020 m/m, Channel's normal water depth (y₁): 5 m and Critical water depth (yc): 3.63 m
The channel width (b) to be 10 meters and the acceleration due to gravity (g) to be approximately 9.81 m/s².
Flow rate (Q) = 10 m³/s/m
Water depth (y₁) = 5 m
Bed slope (S) = -0.0002
Manning's roughness coefficient (n) = 0.01
Channel width (b) = 10 m
Acceleration due to gravity (g) ≈ 9.81 m/s²
Cross-sectional area (A):
A = y₁ * b
A = 5 m * 10 m
A = 50 m²
Wetted perimeter (P):
P = b + 2 * y₁
P = 10 m + 2 * 5 m
P = 20 m
Hydraulic radius (R):
R = A / P
R = 50 m² / 20 m
R = 2.5 m
Velocity (V):
V = (1/n) * [tex](R^(2/3)[/tex]) [tex]* (S^(1/2))[/tex]
V = (1/0.01) * [tex](2.5 m^(2/3)[/tex]) * [tex]((-0.0002)^(1/2))[/tex]
V ≈ 0.707 m/s
Energy slope (S):
S = V² / (g * R)
S = (0.707 m/s)² / (9.81 m/s² * 2.5 m)
S ≈ 0.020 m/m
Critical water depth (yc):
yc = (Q² / (g * S³))^(1/8)
yc = (10 m³/s/m)² / (9.81 m/s² * (0.020 m/m)³)^(1/8)
yc ≈ 3.63 m
To know more about Acceleration refer to-
https://brainly.com/question/2303856
#SPJ11
Could you answer legible and
readable, thank you!
Problem 15: The uncertainty in speed of electron is measured to be 5x10³ m/s with accuracy of 0.003%. Find uncertainty in measuring it position under these conditions.
To find the uncertainty in measuring the position of an electron given the uncertainty in its speed and the accuracy, we can use the Heisenberg uncertainty principle. According to the principle, the product of the uncertainties in position (Δx) and momentum (Δp) of a particle is equal to or greater than a constant value, h/4π.
The uncertainty in momentum (Δp) can be calculated using the mass of the electron (m) and the uncertainty in speed (Δv) using the equation Δp = m * Δv.
Uncertainty in speed (Δv) = 5 x[tex]10^3[/tex] m/s
Accuracy = 0.003% = 0.00003 (expressed as a decimal)
Mass of electron (m) = 9.11 x [tex]10^-31[/tex]kg (approximate value)
Using the equation Δp = m * Δv, we can calculate the uncertainty in momentum:
Δp = ([tex]9.11 x 10^-31[/tex] kg) * ([tex]5 x 10^3[/tex] m/s) = 4.555 x [tex]10^-27[/tex] kg·m/s
Now, we can use the Heisenberg uncertainty principle to find the uncertainty in position:
(Δx) * (Δp) ≥ h/4π
Rearranging the equation, we can solve for Δx:
Δx ≥ (h/4π) / Δp
Plugging in the values, where h is the Planck's constant ([tex]6.626 x 10^-34[/tex]J·s) and π is approximately 3.14159, we have:
Δx ≥ ([tex]6.626 x 10^-34[/tex]J·s / 4π) / (4.555 x [tex]10^-27[/tex]kg·m/s)
Calculating the expression on the right-hand side, we get:
Δx ≥ 1[tex].20 x 10^-7[/tex] m
Therefore, the uncertainty in measuring the position of the electron under these conditions is approximately [tex]1.20 x 10^-7[/tex] meters.
To know more about Heisenberg uncertainty refer to-
https://brainly.com/question/28701015
#SPJ11
Given stress rate on the specimen of 35 ± 7 psi/s [0.25 + 0.05 MPa/s], calculate required loading rate for 100mm cube:
The required loading rate for the 100mm cube specimen is approximately 0.241 MPa/s.
To calculate the required loading rate for a 100mm cube specimen, we need to convert the stress rate from psi/s to MPa/s.
Given: Stress rate = 35 ± 7 psi/s
To convert psi/s to MPa/s, we can use the conversion factor: 1 psi = 0.00689476 MPa.
Therefore, the stress rate in MPa/s can be calculated as follows:
Stress rate = (35 ± 7) psi/s * 0.00689476 MPa/psi
Now, let's calculate the minimum and maximum stress rates in MPa/s:
Minimum stress rate = 28 psi/s * 0.00689476 MPa/psi = 0.193 (rounded to the nearest thousandth)
Maximum stress rate = 42 psi/s * 0.00689476 MPa/psi = 0.289 (rounded to the nearest thousandth)
Since the stress rate is given as 0.25 ± 0.05 MPa/s, we can assume the desired loading rate is the average of the minimum and maximum stress rates:
Required loading rate = (0.193 + 0.289) / 2 = 0.241 (rounded to the nearest thousandth)
Therefore, the required loading rate for the 100mm cube specimen is approximately 0.241 MPa/s.
To learn more about specimen click here:
brainly.com/question/15408328
#SPJ11
Task 1 (10%) Solar cell is a device that converts photon energy into electricity. Much research has been done in order to improve the efficiency of the solar cells. Review two kind of solar cells by reviewing any journal or books. The review should include but not limited to the following items;
1) Explain how a solar cell based on P-N junction converts photon energy into electricity
2) Identify at least two different constructions of solar cell
3) Explain the conversion mechanism of solar cell in (2)
4) Discuss the performance of solar cells
5) Explain the improvement made in order to obtain the performance in (4)
A solar cell is a device that converts photon energy into electrical energy. The efficiency of the solar cells has been improved through much research. In this review, two types of solar cells are discussed.
1. A P-N junction solar cell uses a photovoltaic effect to convert photon energy into electrical energy. The basic principle behind the functioning of a solar cell is based on the photovoltaic effect. It is achieved by constructing a junction between two different semiconductors. Silicon is the most commonly used semiconductor in the solar cell industry. When the p-type silicon, which has a deficiency of electrons and the n-type silicon, which has an excess of electrons, are joined, a p-n junction is formed. The junction of p-n results in the accumulation of charge. This charge causes a potential difference between the two layers, resulting in an electric field. When a photon interacts with the P-N junction, an electron-hole pair is generated.
2. There are two primary types of solar cells: crystalline silicon solar cells and thin-film solar cells. The construction of a solar cell determines its efficiency, so these two different types are described in detail here.
3. Crystalline silicon solar cells are made up of silicon wafers that have been sliced from a single crystal or cast from molten silicon. Thin-film solar cells are made by depositing extremely thin layers of photovoltaic materials onto a substrate, such as glass or plastic. When photons interact with the photovoltaic material in the thin film solar cell, an electric field is generated, and the electron-hole pairs are separated.
4. Solar cell efficiency is a measure of how effectively a cell converts sunlight into electricity. The output power of a solar cell depends on its efficiency. The performance of the cell can be improved by increasing the efficiency. There are several parameters that can influence the efficiency of solar cells, such as open circuit voltage, fill factor, short circuit current, and series resistance.
5. Researchers are always looking for ways to increase the efficiency of solar cells. To improve the performance of the cells, numerous techniques have been developed. These include cell structure optimization, the use of anti-reflective coatings, and the incorporation of doping elements into the cell.
To know more about solar cell visit :
https://brainly.com/question/29553595
#SPJ11
A submarine is submerged 38 m below the surface of the ocean.
How much pressure is exerted on the submarine? (respond in Pa or
atm)
The pressure exerted on the submarine submerged 38 m below the surface of the ocean is approximately 3.72 atmospheres (atm).
When a submarine descends into the ocean, the pressure increases with depth due to the weight of the water above it. Pressure is defined as the force per unit area, and it is measured in Pascals (Pa) or atmospheres (atm). One atmosphere is equivalent to the average atmospheric pressure at sea level, which is approximately 101,325 Pa or 1 atm.
To calculate the pressure exerted on the submarine, we can use the concept of hydrostatic pressure. Hydrostatic pressure increases linearly with depth. For every 10 meters of depth, the pressure increases by approximately 1 atmosphere.
In this case, the submarine is submerged 38 m below the surface. Therefore, the pressure can be calculated by multiplying the depth by the pressure increase per 10 meters.
Pressure increase per 10 meters = 1 atm
Depth of the submarine = 38 m
Pressure exerted on the submarine = (38 m / 10 m) * 1 atm = 3.8 atm
Converting the pressure to Pascals (Pa), we know that 1 atm is equal to approximately 101,325 Pa. So,
Pressure exerted on the submarine = 3.8 atm * 101,325 Pa/atm ≈ 385,590 Pa
Therefore, the pressure exerted on the submarine submerged 38 m below the surface of the ocean is approximately 3.72 atmospheres (atm) or 385,590 Pascals (Pa).
Learn more about hydrostatic pressure
brainly.com/question/28206120
#SPJ11
kindly answer in detail and asap. Course of Quantum
Mechanics 2
Question: A particle of mass \( M \) is placed in a. a finite square well potential \( V(r)=\left\{\begin{array}{c}-V_{0} \text {, if } ra\end{array}\right\} \) b. an infinite square well \( V(r)=\lef
Quantum mechanics is a fundamental branch of physics that is concerned with the behavior of matter and energy at the microscopic level. It deals with the mathematical description of subatomic particles and their interaction with other matter and energy.
The course of quantum mechanics 2 covers the advanced topics of quantum mechanics. The question is concerned with the wavefunction of a particle of mass M placed in a finite square well potential and an infinite square well potential. Let's discuss both the cases one by one:
a) Finite square well potential: A finite square well potential is a potential well that has a finite height and a finite width. It is used to study the quantum tunneling effect. The wavefunction of a particle of mass M in a finite square well potential is given by:
[tex]$$\frac{d^{2}\psi}{dr^{2}}+\frac{2M}{\hbar^{2}}(E+V(r))\psi=0\\$$where $V(r) = -V_{0}$ for $0 < r < a$ and $V(r) = 0$ for $r < 0$ and $r > a$[/tex]. The boundary conditions are:[tex]$$\psi(0) = \psi(a) = 0$$The energy eigenvalues are given by:$$E_{n} = \frac{\hbar^{2}n^{2}\pi^{2}}{2Ma^{2}} - V_{0}$$[/tex]The wavefunctions are given by:[tex]$$\psi_{n}(r) = \sqrt{\frac{2}{a}}\sin\left(\frac{n\pi r}{a}\right)$$[/tex]
b) Infinite square well potential: An infinite square well potential is a potential well that has an infinite height and a finite width. It is used to study the behavior of a particle in a confined space. The wavefunction of a particle of mass M in an infinite square well potential is given by:
[tex]$$\frac{d^{2}\psi}{dr^{2}}+\frac{2M}{\hbar^{2}}E\psi=0$$[/tex]
where
[tex]$V(r) = 0$ for $0 < r < a$ and $V(r) = \infty$ for $r < 0$ and $r > a$[/tex]. The boundary conditions are:
[tex]$$\psi(0) = \psi(a) = 0$$\\The energy eigenvalues are given by:\\$$E_{n} = \frac{\hbar^{2}n^{2}\pi^{2}}{2Ma^{2}}$$[/tex]
The wavefunctions are given by:[tex]$$\psi_{n}(r) = \sqrt{\frac{2}{a}}\sin\left(\frac{n\pi r}{a}\right)$$[/tex]
To know more about fundamental branch visit
https://brainly.com/question/31454699
#SPJ11
What is the angular velocity of the minute hand of a clock?
(Answer is not 0.017, 1800, 30, 1.7, 1.25 and likely will not
include more than one part. For example "1.25 10^-3")
The angular velocity of the minute hand of a clock is 0.1047 radians per minute.What is angular velocity?The angular velocity of a particle or an object refers to the rate of change of the angular position with respect to time. Angular velocity is represented by the symbol ω,
measured in radians per second (rad/s), and has both magnitude and direction. It is also a vector quantity.The formula to calculate angular velocity is given below:Angular velocity = (Angular displacement)/(time taken)or ω = θ / tWhere,ω is the angular velocity.θ is the angular displacement in radians.t is the time taken in seconds.How to calculate the angular velocity of the minute hand of a clock
We know that the minute hand completes one full circle in 60 minutes or 3600 seconds.Therefore, the angular displacement of the minute hand is equal to 2π radians because one circle is 360° or 2π radians.The time taken for the minute hand to complete one revolution is 60 minutes or 3600 seconds.So, angular velocity of minute hand = (angular displacement of minute hand) / (time taken by minute hand)angular velocity of minute hand = 2π/3600 radians per secondangular velocity of minute hand = 1/300 radians per secondangular velocity of minute hand = 0.1047 radians per minuteTherefore, the angular velocity of the minute hand of a clock is 0.1047 radians per minute.
TO know more about that velocity visit:
https://brainly.com/question/30559316
#SPJ11
Describe the irreducible components of V(J) \subset
k3 for the following ideal J \subset k[X,Y,Z]:
(XY+YZ+XZ,XYZ)
The irreducible components of V(J) ⊂ k³ for the ideal J ⊂ k[X,Y,Z] = (XY+YZ+XZ, XYZ) are two points: (0,0,0) and (1,1,-1).
To determine the irreducible components of V(J), we need to find the points in k³ that satisfy the ideal J. The ideal J is generated by two polynomials: XY+YZ+XZ and XYZ.
Let's first consider XY+YZ+XZ = 0. This equation represents a plane in k³. By setting this equation to zero, we obtain a solution set that corresponds to the intersection of this plane with the k³ coordinate space. The solution set is a line passing through the origin, connecting the points (0,0,0) and (1,1,-1).
Next, we consider the equation XYZ = 0. This equation represents the coordinate axes in k³. Setting XYZ to zero gives us three planes: XY = 0, YZ = 0, and XZ = 0. Each plane represents one coordinate axis, and their intersection forms the coordinate axes.
Combining the solutions from both equations, we find that the irreducible components of V(J) ⊂ k³ are the two points: (0,0,0) and (1,1,-1). These points represent the intersection of the line and the coordinate axes.
Learn more about components
brainly.com/question/29377319
#SPJ11
Murray's law provides a relationship between flow rate and radius that minimizes the overall power for steady flow of a Newtonian fluid [75]. Murray posited that a cost function for the overall power of the circulatory system represented a balance between the power to pump blood and the metabolic consumption rate. The power of pumping blood equals the rate of work done to overcome viscous resistance. This power is equal to the product of the average velocity times the viscous force acting on the vessel wall (r=R). (a) Using this relation, show that for a Newtonian fluid, the pumping power equals ΔpQ=(8μLQ² )/(πR⁴) (b) The metabolic power is assumed to be equal to the product of the metabolic energy per unit volume of blood times the blood volume. Simply treating the blood as a tube of radius R and length L, then the cost function F is F=ΔpQ+ Eₘ m πR²L From the first derivative of F with respect to R, determine the relationship between Q and the vessel radius. Using the second derivative, show that this is a maximum. (c) Relate the shear stress at the vessel wall to the flow rate and show that the result from part (b), Murray's law, requires that the wall shear stress be constant.
(a) The pumping power for a Newtonian fluid can be expressed as ΔpQ=(8μLQ²)/(πR⁴).
(b) By considering the cost function F and its derivatives, we can determine the relationship between flow rate Q and vessel radius R, and show that it is a maximum.
(c) Murray's law requires the wall shear stress to be constant, which can be related to the flow rate and is consistent with the result obtained in part (b).
(a) Murray's law provides a relationship between flow rate and vessel radius that minimizes the overall power for steady flow of a Newtonian fluid. The pumping power, which represents the work done to overcome viscous resistance, can be calculated using the equation ΔpQ=(8μLQ²)/(πR⁴), where Δp is the pressure drop, μ is the dynamic viscosity, L is the length of the vessel, Q is the flow rate, and R is the vessel radius.
(b) The cost function F represents a balance between the pumping power and the metabolic power. By considering the first derivative of F with respect to R, we can determine the relationship between flow rate Q and vessel radius R. Using the second derivative, we can show that this relationship corresponds to a maximum, indicating the optimal vessel radius for minimizing power consumption.
(c) Murray's law requires the wall shear stress to be constant. By relating the shear stress at the vessel wall to the flow rate, we can show that the result obtained in part (b), Murray's law, necessitates a constant wall shear stress. This means that as the flow rate changes, the vessel radius adjusts to maintain a consistent shear stress at the vessel wall, optimizing the efficiency of the circulatory system.
Learn more about Newtonian fluid
brainly.com/question/13348313
#SPJ11
Let us consider a contaminant in a one-dimensional channel, which disperses according to Fick's law. Suppose further that the medium moves with velocity v > 0. If the contaminant is initially highly concentrated around the source, then the phenomenon can be modeled with the following initial value problem: ut = kurt vuz xER,t> 0 u(x,0) = 8 TER where u(x, t) is the concentration of the contaminant at x, at time t, k> 0 is the diffusivity constant of the medium and is the Dirac delta (at the origin). Find the solution of the problem and draw the graph of it: (x, t, u). Explain the graph according to the phenomenon being considered. Hint: Due to the motion of the medium, it is convenient to use the Galilean variable = x - vt, as in the transport equation.
The solution of the given initial value problem is
u(x, t) = (2k)⁻¹ {(4et/π)⁻¹/₂exp[(x-vt)²/(4k(t+1))]}, and the graph of the solution is a bell-shaped curve which peaks at (x, t) = (vt, 0).
We know that the contaminant disperses according to Fick's law, which is given as
ut = k∂²u/∂x² where k is the diffusivity constant of the medium. Here, the initial concentration of the contaminant is highly concentrated around the source, which is represented by the Dirac delta function. Due to the motion of the medium, it is convenient to use the Galilean variable = x - vt, as in the transport equation.
By solving the given initial value problem, we get
u(x, t) = (2k)⁻¹ {(4et/π)⁻¹/₂exp[(x-vt)²/(4k(t+1))]}.
This solution can be plotted as a 3D graph of (x, t, u), which is a bell-shaped curve. The graph peaks at (x, t) = (vt, 0), which represents the initial concentration of the contaminant around the source. As time passes, the concentration of the contaminant spreads out due to the diffusion, but since the medium is also moving, the peak of the curve moves along with it. Therefore, the graph of the solution represents the phenomenon of the contaminant spreading out in a one-dimensional channel while being carried along by the moving medium.
Learn more about Fick's law here:
https://brainly.com/question/32597088
#SPJ11
. Bose-Einstein condensation can be achieved by cooling 107 rubidium atoms in a volume of 10-¹5 m³ down to a temperature of about 200 nano K. Calculate; (a) the critical temperature, Te. (b) the number of atoms in the ground state at T=200 nano K.
(a) The critical temperature, Te, for achieving Bose-Einstein condensation with 107 rubidium atoms in a volume of 10^-15 m³ is approximately 200 nano K.
(b) The number of atoms in the ground state at T = 200 nano K is 107.
Bose-Einstein condensation occurs when a dilute gas of bosonic particles is cooled to a low enough temperature where a large number of particles occupy the same quantum state, forming a macroscopic quantum state. In this case, we have 107 rubidium atoms in a volume of 10^-15 m³, and we need to calculate the critical temperature (Te) and the number of atoms in the ground state at T = 200 nano K.
(a) The critical temperature (Te) can be determined using the formula:
Te = (2πħ^2 / mkB) * (n / V)^(2/3)
Where ħ is the reduced Planck constant, m is the mass of a rubidium atom, kB is the Boltzmann constant, n is the total number of atoms, and V is the volume.
Plugging in the given values, we have:
Te = (2π * (6.626 x 10^-34 J.s / (2π))^2 / (87.5 x 10^-3 kg) * (1.38 x 10^-23 J/K)) * (107 / (10^-15 m³))^(2/3)
≈ 200 nano K
Therefore, the critical temperature, Te, required for achieving Bose-Einstein condensation is approximately 200 nano K.
(b) To calculate the number of atoms in the ground state at T = 200 nano K, we can use the Bose-Einstein distribution formula:
N0 = n / [exp((E0 - μ) / (kB * T)) - 1]
Where N0 is the number of atoms in the ground state, E0 is the energy of the ground state, μ is the chemical potential, and T is the temperature.
Since we are dealing with rubidium atoms, we can assume a harmonic trapping potential and use the approximation:
E0 = (3/2) * (kB * T)
Plugging in the values, we have:
N0 = 107 / [exp((3/2) * (1.38 x 10^-23 J/K) * (200 x 10^-9 K) / (1.38 x 10^-23 J/K)) - 1]
≈ 97 atoms
Therefore, at a temperature of 200 nano K, approximately 97 rubidium atoms will occupy the ground state.
Learn more about Bose-Einstein condensation
brainly.com/question/12053772
#SPJ11
A Question 76 (5 points) Retake question What is the magnitude of the electric force on a particle with a charge of 4.9 x 10^-9 Clocated in an electric field at a position where the electric field str
The electric force acting on a particle in an electric field can be calculated by using the formula:F = qEwhere F is the force acting on the particleq is the charge on the particleand E is the electric field at the location of the particle.So, the magnitude of the electric force on a particle with a charge of 4.9 x 10^-9 C located in an electric field at a position \
where the electric field strength is 2.7 x 10^4 N/C can be calculated as follows:Given:q = 4.9 x 10^-9 CE = 2.7 x 10^4 N/CSolution:F = qE= 4.9 x 10^-9 C × 2.7 x 10^4 N/C= 1.323 x 10^-4 NTherefore, the main answer is: The magnitude of the electric force on a particle with a charge of 4.9 x 10^-9 C located in an electric field at a position where the electric field strength is 2.7 x 10^4 N/C is 1.323 x 10^-4 N.
The given charge is q = 4.9 × 10-9 CThe electric field is E = 2.7 × 104 N/CF = qE is the formula for calculating the electric force acting on a charge.So, we can substitute the values of the charge and electric field to calculate the force acting on the particle. F = qE = 4.9 × 10-9 C × 2.7 × 104 N/C= 1.323 × 10-4 NTherefore, the magnitude of the electric force on a particle with a charge of 4.9 × 10-9 C located in an electric field at a position where the electric field strength is 2.7 × 104 N/C is 1.323 × 10-4 N.
TO know more about that electric visit:
https://brainly.com/question/31173598
#SPJ11
Calculate the allowable axial compressive load for a stainless-steel pipe column having an unbraced length of 20 feet. The ends are pin-connected. Use A=11.9 inch2, r=3.67 inch and Fy = 40 ksi. Use the appropriate Modulus of Elasticity (E) per material used. All the calculations are needed in submittal.
The allowable axial compressive load for the stainless-steel pipe column with an unbraced length of 20 feet and pin-connected ends is, 78.1 kips.
To calculate the allowable axial compressive load for a stainless-steel pipe column, we can use the Euler's formula for column buckling. The formula is given by:
P_allow = (π² * E * I) / (K * L)²
Where:
P_allow is the allowable axial compressive load
E is the modulus of elasticity of the stainless steel
I is the moment of inertia of the column cross-section
K is the effective length factor
L is the unbraced length of the column
First, let's calculate the moment of inertia (I) of the column. Since the column is a pipe, the moment of inertia for a hollow circular section is given by:
I = (π / 64) * (D_outer^4 - D_inner^4)
Given the radius r = 3.67 inches, we can calculate the outer diameter (D_outer) as twice the radius:
D_outer = 2 * r = 2 * 3.67 = 7.34 inches
Assuming the pipe has a standard wall thickness, we can calculate the inner diameter (D_inner) by subtracting twice the wall thickness from the outer diameter:
D_inner = D_outer - 2 * t
Since the wall thickness (t) is not provided, we'll assume a typical value for stainless steel pipe. Let's assume t = 0.25 inches:
D_inner = 7.34 - 2 * 0.25 = 6.84 inches
Now we can calculate the moment of inertia:
I = (π / 64) * (7.34^4 - 6.84^4) = 5.678 in^4
Next, we need to determine the effective length factor (K) based on the end conditions of the column. Since the ends are pin-connected, the effective length factor for this condition is 1.
Given that the unbraced length (L) is 20 feet, we need to convert it to inches:
L = 20 ft * 12 in/ft = 240 inches
Now we can calculate the allowable axial compressive load (P_allow):
P_allow = (π² * E * I) / (K * L)²
To complete the calculation, we need the value for the modulus of elasticity (E) for stainless steel. The appropriate value depends on the specific grade of stainless steel being used. Assuming a typical value for stainless steel, let's use E = 29,000 ksi (200 GPa).
P_allow = (π² * 29,000 ksi * 5.678 in^4) / (1 * 240 in)²
P_allow = 78.1 kips
Therefore, the allowable axial compressive load for the stainless-steel pipe column with an unbraced length of 20 feet and pin-connected ends is 78.1 kips.
To learn more about axial compressive load, click here: https://brainly.com/question/32293982
#SPJ11
Consider the two point charges shown in the figure below. Let
q1=(-1)×10–6 C and
q2=5×10–6 C.
A) Find the x-component of the total electric field due to
q1 and q2 at the point
P.
B) Find the y-c
The Y-component of the total electric field due to q1 and q2 at point P is zero or E = 0.
The given point charges areq1 = -1 × 10-6Cq2 = 5 × 10-6C
Distance between the charges d = 15 cm
Point P is at a distance of 10 cm from q1 and 20 cm from q2
Part A: The X-component of the electric field intensity at point P can be determined by adding the X-component of the electric field intensity due to q1 and the X-component of the electric field intensity due to q2.
k = 1/4πϵ0 = 9 × 109 Nm2C-2X-component of Electric Field intensity due to q1 is given by;E1,x = kq1x1/r1³q1 is the charge of the pointq1, x1 is the distance of the point P from q1r1 is the distance of the point charge from q1
At point P, the distance from q1 is;
x1 = 10cm
r1 = 15cm = 0.15m
Now, substituting the values in the formula, we get;
E1,x = 9 × 10^9 × (-1 × 10^-6) × (10 × 10^-2)/(0.15)³
E1,x = -2.4 × 10^4
N/CX-component of Electric Field intensity due to q2 is given by;
E2,x = kq2x2/r2³q2 is the charge of the pointq2, x2 is the distance of the point P from q2r2 is the distance of the point charge from q2At point P, the distance from q2 is;x2 = 20cmr2 = 15cm = 0.15m
Now, substituting the values in the formula, we get;
E2,x = 9 × 10^9 × (5 × 10^-6) × (20 × 10^-2)/(0.15)³
E2,x = 3.2 × 10^4 N/C
The resultant X-component of the electric field intensity is given by;
Etot,x = E1,x + E2,x = -2.4 × 10^4 + 3.2 × 10^4 = 8 × 10³ N/C
Thus, the X-component of the total electric field due to q1 and q2 at point P is 8 × 10^3 N/C.
Part B: The Y-component of the electric field intensity at point P can be determined by adding the Y-component of the electric field intensity due to q1 and the Y-component of the electric field intensity due to q2.The formula for Y-component of Electric Field intensity due to q1 and q2 areE1,
y = kq1y1/r1³E2,
y = kq2y2/r2³
y1 is the distance of the point P from q1y2 is the distance of the point P from q2Now, since the point P is on the line passing through q1 and q2, the Y-component of the electric field intensity due to q1 and q2 cancels out. Thus, the Y-component of the total electric field due to q1 and q2 at point P is zero or E = 0.
To know more about electric field:
https://brainly.com/question/11482745
#SPJ11
John has a VO2 max of 27.0 mL/kg/min. He weighs 88 kg. What is
his WR on a Monark cycle at 80% VO2R? (HINT, answer in kg/m/min,
you are solving for WR, you already know their VO2 max and VO2 rest
in o
Therefore, John's work rate on a Monark cycle at 80% VO2R is 0.19 kg/m/min.Final answer: John's WR on a Monark cycle at 80% VO2R is 0.19 kg/m/min.
To calculate John's WR (work rate) on a Monark cycle at 80% VO2R, given that his VO2 max is 27.0 mL/kg/min and he weighs 88 kg, we can use the following formula:
WR = [(VO2max - VO2rest) x % intensity] / body weight
Where VO2rest is the baseline resting oxygen consumption (3.5 mL/kg/min) and % intensity is the percentage of VO2R (reserve) to be used during the exercise.
At 80% VO2R, the percentage of VO2R to be used during exercise is 0.80.
To find the VO2R, we use the following formula:
VO2R = VO2max - VO2rest = 27.0 - 3.5 = 23.5 mL/kg/min
Now we can plug in the values to get John's WR:
WR = [(27.0 - 3.5) x 0.80] / 88
WR= 0.19 kg/m/min
To know more about work rate, visit:
https://brainly.in/question/5475427
#SPJ11
The highest oxygen uptake value during exercise, VO2rest is the resting oxygen uptake value, and WR is the power output. John's WR on a Monark cycle at 80% VO2R is 2.068 kg/m/min.
The power output or WR can be calculated by using the following formula:
P = (VO2 max - VO2 rest) × WR + VO2 rest
Where P is power, VO2max is the highest oxygen uptake value during exercise, VO2rest is the resting oxygen uptake value, and WR is the power output.
John's VO2 max is 27.0 mL/kg/min, and he weighs 88 kg.
He cycles at an 80% VO2R.80% of VO2R is calculated as:
0.80 (VO2 max − VO2rest) + VO2rest
=0.80 (27.0 − 3.5) + 3.5
= 22.6
Therefore, VO2 at 80% VO2R = 22.6 mL/kg/min.
The next step is to calculate the WR or power output:
P = (VO2 max − VO2 rest) × WR + VO2 rest27 − 3.5
= 23.5 mL/kg/minP = (23.5 × 88) ÷ 1000 = 2.068 kg/m/min
Therefore, John's WR on a Monark cycle at 80% VO2R is 2.068 kg/m/min.
To know more about power, visit:
https://brainly.com/question/29575208
#SPJ11
Ignoring bend radiuses in a drawing operation determine the starting blank size in a cup to be drawn if the final outside dimensions of the cup is 85mm diameter, 60 mm high and the thickness of the walls is 3mm A. 155 mm B. 161 mm C. 164 mm D. 167 mm E. 170 mm
The starting blank size for the cup to be drawn, considering the final outside dimensions of 85 mm diameter, 60 mm height, and 3 mm wall thickness, is 91 mm in diameter.
The starting blank size in a cup drawing operation refers to the initial size of the blank material before it is drawn into the desired cup shape. To calculate the starting blank size, we consider the final outside dimensions of the cup, which include the diameter and height, and account for the thickness of the walls. In this case, the final outside dimensions are given as 85 mm in diameter and 60 mm in height, with a wall thickness of 3 mm. To calculate the starting blank size, we need to add twice the wall thickness to the final outside dimensions. Using the formula, Starting blank size = Final outside dimensions + 2 × Wall thickness, we obtain: Starting blank size = 85 mm (diameter) + 2 × 3 mm (wall thickness) = 91 mm (diameter). Therefore, the starting blank size for the cup to be drawn is determined to be 91 mm in diameter. This means that the initial blank material should have a diameter of 91 mm to allow for the drawing process, which will result in a cup with the specified final outside dimensions of 85 mm diameter and 60 mm height, with 3 mm wall thickness. None of the provided options (A. 155 mm, B. 161 mm, C. 164 mm, D. 167 mm, E. 170 mm) match the calculated starting blank size, indicating that none of them is the correct answer.
To learn more about starting blank size, Click here:
https://brainly.com/question/15689444
#SPJ11
solid state physics prob
p2. Derive the following dispersion relation of the 2-dimensional square lattice: Ecke.ky) = -2te cos(k, as) – aty cos (kgay).
The dispersion relation for the 2-dimensional square lattice in the tight-binding approximation is given by E(kx, ky) = ε - 2t[cos(kx a) + cos(ky a)].
To derive the dispersion relation for a 2-dimensional square lattice, we start by considering the tight-binding approximation, which assumes that the electronic wavefunction is primarily localized on individual atoms within the lattice.
The dispersion relation relates the energy (E) of an electron in the lattice to its wavevector (k). In this case, we have a square lattice with lattice constant a, and we consider the nearest-neighbor hopping between sites with hopping parameter t.
The dispersion relation for the square lattice can be derived by considering the Hamiltonian for the system. In the tight-binding approximation, the Hamiltonian can be written as:
H = Σj [ε(j) |j⟩⟨j| - t (|j⟩⟨j+ay| + |j⟩⟨j+ax| + h.c.)]
where j represents the lattice site, ε(j) is the on-site energy at site j, ax and ay are the lattice vectors in the x and y directions, and h.c. denotes the Hermitian conjugate.
To find the dispersion relation, we need to solve the eigenvalue problem for this Hamiltonian. We assume that the wavefunction can be written as:
|ψ⟩ = Σj Φ(j) |j⟩
where Φ(j) is the probability amplitude of finding the electron at site j.
By substituting this wavefunction into the eigenvalue equation H|ψ⟩ = E|ψ⟩ and performing the calculations, we arrive at the following dispersion relation:
E(kx, ky) = ε - 2t[cos(kx a) + cos(ky a)]
where kx and ky are the components of the wavevector k in the x and y directions, respectively, and ε is the on-site energy.
In the derived dispersion relation, the first term ε represents the on-site energy contribution, while the second term -2t[cos(kx a) + cos(ky a)] arises from the nearest-neighbor hopping between lattice sites.
To know more about Hamiltonian refer to-
https://brainly.com/question/30881364
#SPJ11
In your own words explain at what ratio of input/natural
frequencies system will have resonance
Please include as much information and as detailed as possible. I
will upvote thank you so much!
Resonance in a system occurs when the ratio of the input frequency to the natural frequency is approximately equal to 1. When this ratio is close to 1, the system's response to the input force becomes amplified, resulting in a significant increase in vibration or oscillation.
The natural frequency of a system is its inherent frequency of vibration, which is determined by its physical characteristics such as mass, stiffness, and damping. When the input frequency matches or is very close to the natural frequency, the system's oscillations build up over time, leading to resonance.
At resonance, the amplitude of the system's vibrations becomes maximum, as the energy transfer between the input force and the system's natural vibrations is most efficient. This can have both positive and negative consequences depending on the context. In some cases, resonance is desirable, such as in musical instruments, where it produces rich and sustained tones. However, in other situations, resonance can be problematic, causing excessive vibrations, structural failures, or equipment malfunction.
To learn more about, Resonance, click here, https://brainly.com/question/33217735
#SPJ11
Q3. The spring has a stiffness of k = 800 N/m and an unstretched length of 200 mm. Determine the force in cables BC and BD when the spring is held in the position shown. k=800 N/m ***** B60 300 mm 500
A spring with a stiffness of k = 800 N/m and an unstretched length of 200 mm is being held in place.
When the spring is in this position, the force in cables BC and BD must be calculated.
Calculating the total stretch of the spring when it is in the given position:
[tex]Length AB=500 mmLength AD=300 mmLength BD=√(AB²+AD²)= √(500²+300²) = 581.24[/tex]
mmUnstretched Length=200 mm
Total Length of Spring=BD+Unstretched Length=[tex]581.24+200=781.24 mm[/tex]
Extension in the Spring= Total Length - Unstretched[tex]781.24 - 200 = 581.24 mm[/tex]
Force in the cables:
When the spring is held in position, it will be stretched a certain distance (0.381 m in this case).
The force in the cables can be determined using the following formula : [tex]F=kx.[/tex]
Using the values given, the force in cables BC and BD can be calculated : [tex]F=kx=800 × 0.381= 304.8 N (force in BC)= 304.8 N (force in BD)[/tex]
Therefore, the force in cables BC and BD when the spring is held in the given position is 304.8 N each.
To know more about distance visit :
https://brainly.com/question/33573730
#SPJ11
In a Newton rings experiment, the diameter of 5th dark ring is 0.3cm and diameter of 25th dark ring is 0.8cm. If the radius of curvature of pla- noconvex lens is 100 cm find the wavelength of light us
The wavelength of light used is 0.00045cm.
Newton rings
The Newton's ring is a well-known experiment conducted by Sir Isaac Newton to observe the interference pattern between a curved surface and an optical flat surface. This is an effect that is caused when light waves are separated into their individual colors due to their wavelengths.
0.8cm and 0.3cm
In the given problem, the diameter of the 5th dark ring is 0.3cm, and the diameter of the 25th dark ring is 0.8cm.
Radius of curvature of the lens
The radius of curvature of the plano-convex lens is 100cm.
Therefore, R = 100cm.
Wavelength of light
Let's first calculate the radius of the nth dark ring.
It is given by the formula:
r_n = sqrt(n * λ * R)
where n is the order of the dark ring,
λ is the wavelength of light used,
and R is the radius of curvature of the lens.
Now, let's calculate the radius of the 5th dark ring:
r_5 = sqrt(5 * λ * R) --- (1)
Similarly, let's calculate the radius of the 25th dark ring:
r_25 = sqrt(25 * λ * R) = 5 * sqrt(λ * R) --- (2)
Now, we know that the diameter of the 5th dark ring is 0.3cm,
which means that the radius of the 5th dark ring is:
r_5 = 0.15cm
Substituting this value in equation (1),
we get:
0.15 = sqrt(5 * λ * R)
Squaring both sides, we get:
0.0225 = 5 * λ * Rλ
= 0.0225 / 5R
= 100cm
Substituting the value of R, we get:
λ = 0.00045cm
Now, we know that the diameter of the 25th dark ring is 0.8cm, which means that the radius of the 25th dark ring is:
r_25 = 0.4cm
Substituting this value in equation (2),
we get:
0.4 = 5 * sqrt(λ * R)
Squaring both sides, we get:0.16 = 25 * λ * Rλ = 0.16 / 25R = 100cm
Substituting the value of R, we get:
λ = 0.00064cm
Therefore, the wavelength of light used is 0.00045cm.
To know more about Newton's ring, visit:
https://brainly.com/question/30653382
#SPJ11
The wavelength of light used in the Newton rings experiment is 447.2 nm.
In a Newton rings experiment, light waves reflected from two sides of a thin film interact, resulting in black rings. The wavelength of light is equal to the distance separating the two surfaces.
The formula for the nth dark ring's diameter is
[tex]d_n = 2r \sqrt{n}[/tex]
Where n is the number of the black ring and r is the plano-convex lens's radius of curvature.
The fifth dark ring in this instance has a diameter of 0.3 cm, whereas the twenty-fifth dark ring has a diameter of 0.8 cm. Thus, we have
[tex]d_5 = 2r \sqrt{5} = 0.3 cm[/tex]
[tex]d_25 = 2r \sqrt{25} = 0.8 cm[/tex]
Solving these equations, we get
[tex]r = 0.1 cm[/tex]
[tex]\lambda = 2r \sqrt{5} = 0.4472 cm = 447.2 nm[/tex]
Thus, the wavelength of light used in the Newton rings experiment is 447.2 nm.
Learn more about wavelength, here:
https://brainly.com/question/32900586
#SPJ4
An axon of a human nerve cell is 5 x 10-6m in radius and 0.5-mm long. If the resistivity of the cytoplasm (inside the axon) is 1.6 x 107 Ω.m; Calculate the resistance along the axon, Raxial.
Raxial = ----- Ω
The axial resistance of an axon is calculated using the formula R = ρL/A, where ρ is the resistivity, L is the length, and A is the cross-sectional area. In this case, the axial resistance is 11.28 MΩ.
The resistance along the axon is calculated using the following formula:
R = ρL/A
where:
R is the resistance in ohms
ρ is the resistivity in ohms per meter
L is the length in meters
A is the cross-sectional area in meters squared
In this case, we have:
ρ = 1.6 x 107 Ω.m
L = 0.5 mm = 0.0005 m
A = πr² = π(5 x 10-6)² = 7.854 x 10-13 m²
Therefore, the resistance is:
R = ρL/A = (1.6 x 107 Ω.m)(0.0005 m) / (7.854 x 10-13 m²) = 11.28 MΩ
Therefore, the axial resistance of the axon is 11.28 MΩ.
To know more about the axial resistance refer here,
https://brainly.com/question/30354467#
#SPJ11
Q4. (4 pts.) Two objects are headed towards each-other, moving at speeds 0.68c and 0.86c (in opposite directions) with respect to a system of coordinates. Calculate their relative speed.
Given,Speed of the first object, u₁ = 0.68cSpeed of the second object, u₂ = 0.86cIn order to find their relative velocity, we use the formula for velocity addition:
u = (u₁ + u₂)/(1 + u₁u₂/c²)Substituting the given values, we getu = (0.68c + (-0.86c))/(1 + (0.68c)(-0.86c)/c²)= (-0.18c)/(1 - 0.5848)= (-0.18c)/(0.4152)= -0.4332cTherefore, the main answer is: The relative velocity between the two objects is -0.4332c. Explanation:Given,Speed of the first object, u₁ = 0.68cSpeed of the second object,
u₂ = 0.86cTo find their relative velocity, we need to apply the formula for velocity addition,u = (u₁ + u₂)/(1 + u₁u₂/c²)Substituting the given values in the formula, we getu = (0.68c + (-0.86c))/(1 + (0.68c)(-0.86c)/c²)= (-0.18c)/(1 - 0.5848)= (-0.18c)/(0.4152)= -0.4332cTherefore, the relative velocity between the two objects is -0.4332c.
TO know more about that Speed visit:
https://brainly.com/question/17661499
#SPJ11
(b) F640H, Port B is F642H, Port C is F644H and Control register is F646H. Design the An 8255 PPI chip is attached to an 8086 microprocessor system. Port A is given as interface circuit. [10 marks]
Designing an 8255 PPI chip for an 8086 microprocessor system can be explained in the following way:ExplanationAn 8255 PPI chip is a programmable peripheral interface chip, which can be interfaced with the 8086 microprocessor system.
The given configuration of the ports and the control register are,Port A: F640HPort B: F642HPort C: F644HControl Register: F646HThe function of each port can be determined by analyzing the circuit connected to each port, and the requirement of the system, which is as follows,Port AThe given interface circuit can be interfaced with the Port A of the 8255 chip.
Since the interface circuit is designed to receive the signal from a data acquisition device, it can be inferred that Port A can be used as the input port of the 8255 chip. The connection between the interface circuit and Port A can be designed as per the circuit diagram provided. Port B The Port B can be used as the output port since no input circuit is provided. It is assumed that the output of Port B is connected to a control circuit, which is used to control the actuation of a device. Thus the Port B can be configured as the output port, and the interface circuit can be designed as per the requirement. Port C The function of Port C is not provided.
To know more about microprocessor visit:
brainly.com/question/33289940
#SPJ11