Find the volume of the region between the planes x plus y plus 2 z equals 2 and 4 x plus 4 y plus z equals 8 in the first octant.

Answers

Answer 1

Find the intercepts for both planes.

Plane 1, x + y + 2z = 2:

[tex]y=z=0\implies x=2\implies (2,0,0)[/tex]

[tex]x=z=0\implies y=2\implies(0,2,0)[/tex]

[tex]x=y=0\implies 2z=2\implies z=1\implies(0,0,1)[/tex]

Plane 2, 4x + 4y + z = 8:

[tex]y=z=0\implies4x=8\implies x=2\implies(2,0,0)[/tex]

[tex]x=z=0\implies4y=8\impliesy=2\implies(0,2,0)[/tex]

[tex]x=y=0\implies z=8\implies(0,0,8)[/tex]

Both planes share the same x- and y-intercepts, but the second plane's z-intercept is higher, so Plane 2 acts as the roof of the bounded region.

Meanwhile, in the (x, y)-plane where z = 0, we see the bounded region projects down to the triangle in the first quadrant with legs x = 0, y = 0, and x + y = 2, or y = 2 - x.

So the volume of the region is

[tex]\displaystyle\int_0^2\int_0^{2-x}\int_{\frac{2-x-y}2}^{8-4x-4y}\mathrm dz\,\mathrm dy\,\mathrm dx=\displaystyle\int_0^2\int_0^{2-x}\left(8-4x-4y-\frac{2-x-y}2\right)\,\mathrm dy\,\mathrm dx[/tex]

[tex]=\displaystyle\int_0^2\int_0^{2-x}\left(7-\frac72(x+y)\right)\,\mathrm dy\,\mathrm dx=\int_0^2\left(7(2-x)-\frac72x(2-x)-\frac74(2-x)^2\right)\,\mathrm dx[/tex]

[tex]=\displaystyle\int_0^2\left(7-7x+\frac74 x^2\right)\,\mathrm dx=\boxed{\frac{14}3}[/tex]


Related Questions

¿Cuál serie numérica tiene como regla general Xn = 2n +1?
a. 3, 5, 7, 9
b. 2, 4, 5, 8
c. 4, 6, 8,10
d. 2, 3, 4, 5

Answers

Answer:

The series of numbers that correspond to the general rule of  [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.

Step-by-step explanation:

We are given with the following series options below;

a. 3, 5, 7, 9

b. 2, 4, 5, 8

c. 4, 6, 8,10

d. 2, 3, 4, 5

And we have to identify what number series has a general rule as [tex]X_n=2n+1[/tex].

For this, we will put the values of n in the above expression and then will see which series is obtained as a result.

So, the given expression is ; [tex]X_n=2n+1[/tex]

If we put n = 1, then;

[tex]X_1=(2\times 1)+1[/tex]

[tex]X_1 = 2+1 = 3[/tex]

If we put n = 2, then;

[tex]X_2=(2\times 2)+1[/tex]

[tex]X_2 = 4+1 = 5[/tex]

If we put n = 3, then;

[tex]X_3=(2\times 3)+1[/tex]

[tex]X_3 = 6+1 = 7[/tex]

If we put n = 4, then;

[tex]X_4=(2\times 4)+1[/tex]

[tex]X_4 = 8+1 = 9[/tex]

Hence, the series of numbers that correspond to the general rule of  [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.

The Aluminum Association reports that the average American uses 56.8 pounds of aluminum in a year. A random sample of 51 households is monitored for one year to determine aluminum usage. If the population standard deviation of annual usage is 12.2 pounds, what is the probability that the sample mean will be each of the following? Appendix A Statistical Tables a. More than 61 pounds

Answers

Answer:

0.007

Step-by-step explanation:

We were told in the above question that a random sample of 51 households is monitored for one year to determine aluminum usage

Step 1

We would have to find the sample standard deviation.

We use the formula = σ/√n

σ = 12.2 pounds

n = number of house holds = 51

= 12.2/√51

Sample Standard deviation = 1.7083417025.

Step 2

We find the z score for when the sample mean is more than 61

z-score formula is z = (x-μ)/σ

where:

x = raw score = 61 pounds

μ = the population mean = 56.8 pounds

σ = the sample standard deviation = 1.7083417025

z = (x-μ)/σ

z = (61 - 56.8)/ 1.7083417025

z = 2.45852

Finding the Probability using the z score table

P(z = 2.45852) = 0.99302

P(x>61) = 1 - P(z = 2.45852) = 0.0069755

≈ 0.007

Therefore,the probability that the sample mean will be more than 61 pounds is 0.007

helpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

0.25 = 1/4 because 25/100 = 1/4

▹ Step-by-Step Explanation

0.25 to a fraction → 25/100

25/100 = 1/4

Therefore, this statement is true. (0.25 = 1/4 because 25/100 = 1/4)

Hope this helps!

- CloutAnswers ❁

Brainliest is greatly appreciated!

━━━━━━━☆☆━━━━━━━

Two balls are drawn in succession out of a box containing 2 red and 5 white balls. Find the probability that at least 1 ball was​ red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw.

Answers

Answer:

With replacement = 14/49without replacement = 3/7

Step-by-step explanation:

Since there are  2 red and 5 white balls in the box, the total number of balls in the bag = 2+5 = 7balls.

Probability that at least 1 ball was​ red, given that the first ball was replaced before the second can be calculated as shown;

Since at least 1 ball picked at random, was red, this means the selection can either be a red ball first then a white ball or two red balls.

Probability of selecting a red ball first then a white ball with replacement = (2/7*5/7) = 10/49

Probability of selecting two red balls with replacement = 2/7*2/7 = 4/49

The probability that at least 1 ball was​ red given that the first ball was replaced before the second draw= 10/49+4/49 = 14/49

If the balls were not replaced before the second draw

Probability of selecting a red ball first then a white ball without replacement = (2/7*5/6) = 10/42 = 5/21

Probability of selecting two red balls without replacement = 2/7*2/6 = 4/42 = 2/21

The probability that at least 1 ball was​ red given that the first ball was not replaced before the second draw = 5/21+4/21 = 9/21 = 3/7

The probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.

Since two balls are drawn in succession out of a box containing 2 red and 5 white balls, to find the probability that at least 1 ball was red, given that the first ball was A) replaced before the second draw; and B) not replaced before the second draw; the following calculations must be performed:

2 + 5 = X7 = X

(2/7 + 2/7) / 2 = X (0.285 + 0.285) / 2 = X 0.285 = X

(2/7 + 1/6) / 2 = X (0.28 + 0.16) / 2 = X 0.451 / 2 = X 0.225 = X

Therefore, the probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.

Learn more about probability in https://brainly.com/question/14393430

By what percent will the fraction increase if its numerator is increased by 60% and denominator is decreased by 20% ?

Answers

Answer:

100%

Step-by-step explanation:

Start with x.

x = x/1

Increase the numerator by 60% to 1.6x.

Decrease the numerator by 20% to 0.8.

The new fraction is

1.6x/0.8

Do the division.

1.6x/0.8 = 2x

The fraction increased from x to 2x. It became double of what it was. From x to 2x, the increase is x. Since x was the original number x is 100%.

The increase is 100%.

Answer:

33%

Step-by-step explanation:

let fraction be x/y

numerator increased by 60%

=x+60%ofx

=8x

denominator increased by 20%

=y+20%of y

so the increased fraction is 4x/3y

let the fraction is increased by a%

then

x/y +a%of (x/y)=4x/3y

or, a%of(x/y)=x/3y

[tex]a\% = \frac{x}{3y} \times \frac{y}{x} [/tex]

therefore a=33

anda%=33%

For the triangle show, what are the values of x and y (urgent help needed)

Answers

we just have to use the Pythagoras theorem and then calculate the value of x and y.

A fair die is rolled repeatedly. Calculate to at least two decimal places:__________
a) the chance that the first 6 appears before the tenth roll
b) the chance that the third 6 appears on the tenth roll
c) the chance of seeing three 6's among the first ten rolls given that there were six 6's among the first twenty roles.
d) the expected number of rolls until six 6's appear
e) the expected number of rolls until all six faces appear

Answers

Answer:

a. 0.34885

b. 0.04651

c. 0.02404

d. 36

e. 14.7, say 15 trials

Step-by-step explanation:

Q17070205

Note:  

1. In order to be applicable to established probability distributions, each roll is considered a Bernouilli trial, i.e. has only two outcomes, success or failure, and are all independent of each other.

2. use R to find the probability values from the respective distributions.

a) the chance that the first 6 appears before the tenth roll

This means that a six appears exactly once between the first and the nineth roll.

Using binomial distribution, p=1/6, n=9, x=1

dbinom(1,9,1/6) = 0.34885

b) the chance that the third 6 appears on the tenth roll

This means exactly two six's appear between the first and 9th rolls, and the tenth roll is a six.

Again, we have a binomial distribution of p=1/6, n=9, x=2

p1 = dbinom(2,9,1/6) = 0.27908

The probability of the tenth roll being a 6 is, evidently, p2 = 1/6.

Thus the probability of both happening, by the multiplication rule, assuming independence  

P(third on the tenth roll) = p1*p2 = 0.04651

c) the chance of seeing three 6's among the first ten rolls given that there were six 6's among the first twenty roles.

Again, using binomial distribution, probability of 3-6's in the first 10 rolls,

p1 = dbinom(3,10,1/6) = 0.15504

Probability of 3-6's in the NEXT 10 rolls

p1 = dbinom(3,10,1/6) = 0.15504

Probability of both happening  (multiplication rule, assuming both events are independent)

= p1 *  p1 = 0.02404

d) the expected number of rolls until six 6's appear

Using the negative binomial distribution, the expected number of failures before n=6 successes, with probability p = 1/6

=  n(1-p)/p

Total number of rolls by adding n  

= n(1-p)/p + n = n(1-p+p)/p = n/p = 6/(1/6) = 36

e) the expected number of rolls until all six faces appear

P1 = 6/6 because the firs trial (roll) can be any face with probability 1

P2 = 6/5 because the second trial for a different face has probability 5/6, so requires 6/5 trials

P3 = 6/4 ...

P4 = 6/3

P5 = 6/2

P6 = 6/1

So the total mean (expected) number of trials is 6/6+6/5+6/4+6/3+6/2+6/1 = 14.7, say 15 trials

my dad is designing a new garden. he has 21 feet of fencing to go around the garden. he wants the length of the garden to be 1 1/2 feet longer than the width. how wide should he make the garden?

Answers

Answer:

21=2w+2w+3    18=4w     w=4.5

Estimate the area under the graph of f(x)=2x^2-12x+22 over the interval [0,2] using four approximating rectangles and right endpoints.

Answers

Answer:

The right Riemann sum is 21.5.

The left Riemann sum is 29.5.

Step-by-step explanation:

The right Riemann sum (also known as the right endpoint approximation) uses the right endpoints of a sub-interval:

[tex]\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_1)+f(x_2)+f(x_3)+...+f(x_{n-1})+f(x_{n})\right)[/tex], where [tex]\Delta{x}=\frac{b-a}{n}[/tex].

To find the Riemann sum for [tex]\int_{0}^{2}\left(2 x^{2} - 12 x + 22\right)\ dx[/tex] with 4 rectangles, using right endpoints you must:

We have that a = 0, b = 2, n = 4. Therefore, [tex]\Delta{x}=\frac{2-0}{4}=\frac{1}{2}[/tex].

Divide the interval [0,2] into n = 4 sub-intervals of length [tex]\Delta{x}=\frac{1}{2}[/tex]:

[tex]\left[0, \frac{1}{2}\right], \left[\frac{1}{2}, 1\right], \left[1, \frac{3}{2}\right], \left[\frac{3}{2}, 2\right][/tex]

Now, we just evaluate the function at the right endpoints:

[tex]f\left(x_{1}\right)=f\left(\frac{1}{2}\right)=\frac{33}{2}=16.5\\\\f\left(x_{2}\right)=f\left(1\right)=12\\\\f\left(x_{3}\right)=f\left(\frac{3}{2}\right)=\frac{17}{2}=8.5\\\\f\left(x_{4}\right)=f(b)=f\left(2\right)=6[/tex]

Finally, just sum up the above values and multiply by [tex]\Delta{x}=\frac{1}{2}[/tex]:

[tex]\frac{1}{2}(16.5+12+8.5+6)=21.5[/tex]

The left Riemann sum (also known as the left endpoint approximation) uses the left endpoints of a sub-interval:

[tex]\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f(x_0)+f(x_1)+2f(x_2)+...+f(x_{n-2})+f(x_{n-1})\right)[/tex], where [tex]\Delta{x}=\frac{b-a}{n}[/tex].

To find the Riemann sum for [tex]\int_{0}^{2}\left(2 x^{2} - 12 x + 22\right)\ dx[/tex] with 4 rectangles, using left endpoints you must:

We have that a = 0, b = 2, n = 4. Therefore, [tex]\Delta{x}=\frac{2-0}{4}=\frac{1}{2}[/tex].

Divide the interval [0,2] into n = 4 sub-intervals of length [tex]\Delta{x}=\frac{1}{2}[/tex]:

[tex]\left[0, \frac{1}{2}\right], \left[\frac{1}{2}, 1\right], \left[1, \frac{3}{2}\right], \left[\frac{3}{2}, 2\right][/tex]

Now, we just evaluate the function at the left endpoints:

[tex]f\left(x_{0}\right)=f(a)=f\left(0\right)=22\\\\f\left(x_{1}\right)=f\left(\frac{1}{2}\right)=\frac{33}{2}=16.5\\\\f\left(x_{2}\right)=f\left(1\\\right)=12\\\\f\left(x_{3}\right)=f\left(\frac{3}{2}\right)=\frac{17}{2}=8.5[/tex]

Finally, just sum up the above values and multiply by [tex]\Delta{x}=\frac{1}{2}[/tex]:

[tex]\frac{1}{2}(22+16.5+12+8.5)=29.5[/tex]

Perform the operation 3/a^2+2/ab^2

Answers

Answer:

Step-by-step explanation:

Least common denominator = a²b²

[tex]\frac{3}{a^{2}}+\frac{2}{ab^{2}}=\frac{3*b^{2}}{a^{2}*b^{2}}+\frac{2*a}{ab^{2}*a}\\\\=\frac{3b^{2}}{a^{2}b^{2}}+\frac{2a}{a^{2}b^{2}}\\\\=\frac{3b^{2}+2a}{a^{2}b^{2}}[/tex]

Find the indicated conditional probability
using the following two-way table:
P( Drive to school | Sophomore ) = [?]
Round to the nearest hundredth.

Answers

Answer:

0.07

Step-by-step explanation:

The number of sophmores is 2+25+3 = 30.

Of these sophmores, 2 drive to school.

So the probability that a student drives to school, given that they are a sophmore, is 2/30, or approximately 0.07.

Answer:

[tex]\large \boxed{0.07}[/tex]

Step-by-step explanation:

The usual question is, "What is the probability of A, given B?"

They are asking, "What is the probability that you are driving to school if you are a sophomore (rather than taking the bus or walking)?"

We must first complete your frequency table by calculating the totals for each row and column.

The table shows that there are 30 students, two of whom drive to school.

[tex]P = \dfrac{2}{30}= \mathbf{0.07}\\\\\text{The conditional probability is $\large \boxed{\mathbf{0.07}}$}[/tex]

Find the area of this parallelogram.
6 cm
11 cm

Answers

Step-by-step explanation:

given,

base( b) = 6cm

height (h)= 11cm

now, area of parallelogram (a)= b×h

or, a = 6cm ×11cm

therefore the area of parallelogram (p) is 66cm^2.

hope it helps...

Suppose 150 students are randomly sampled from a population of college students. Among sampled students, the average IQ score is 115 with a standard deviation of 10. What is the 99% confidence interval for the average IQ of college students? Possible Answers: 1) A) E =1.21 B) E = 1.25 C) E =2.52 D) E = 2.11 2) A) 112.48 < μ < 117.52 B) 113.79 < μ < 116.21 C) 112.9 < μ < 117.10 D) 113.75 < μ < 116.3

Answers

Answer:

99% confidence interval for the mean of college students

A) 112.48 < μ < 117.52

Step-by-step explanation:

step(i):-

Given sample size 'n' =150

mean of the sample = 115

Standard deviation of the sample = 10

99% confidence interval for the mean of college students are determined by

[tex](x^{-} -t_{0.01} \frac{S}{\sqrt{n} } , x^{-} + t_{0.01} \frac{S}{\sqrt{n} } )[/tex]

Step(ii):-

Degrees of freedom

ν = n-1 = 150-1 =149

t₁₄₉,₀.₀₁ =  2.8494

99% confidence interval for the mean of college students are determined by

[tex](115 -2.8494 \frac{10}{\sqrt{150} } , 115 + 2.8494\frac{10}{\sqrt{150} } )[/tex]

on calculation , we get

(115 - 2.326 , 115 +2.326 )

(112.67 , 117.326)  

Determine what type of study is described. Explain. Researchers wanted to determine whether there was an association between high blood pressure and the suppression of emotions. The researchers looked at 1800 adults enrolled in a Health Initiative Observational Study. Each person was interviewed and asked about their response to emotions. In particular they were asked whether their tendency was to express or to hold in anger and other emotions. The degree of suppression of emotions was rated on a scale of 1 to 10. Each person's blood pressure was also measured. The researchers analyzed the results to determine whether there was an association between high blood pressure and the suppression of emotions.

Answers

Answer:

Experimental Study

Step-by-step explanation:

In an experimental study, the researchers involve always produce and intervention (in this case they were asked whether their tendency was to express or to hold in anger and other emotions. The degree of suppression of emotions was rated on a scale of 1 to 10) and study the effects taking measurements.

These studies are usually randomized ie subjects are group by chance.

As opposed to observation studies, where the researchers only measures what was observed, seen or hear without any intervention on their parts.

Pls help with this area question

Answers

Answer:

  1

Step-by-step explanation:

The lateral area of a cylinder is ...

  LA = 2πrh

The total area is that added to the areas of the two circular bases:

  A = 2πr² +2πrh

We want the ratio of these to be 1/2:

  LA/A = (2πrh)/(2πr² +2πrh) = h/(r+h) = 1/2 . . . . cancel factors of 2πr

Multiplying by 2(r+h) gives ...

  2h = r+h

  h = r . . . . . subtract h

So, the desired ratio is ...

  h/r = h/h = 1

The ratio between height and radius is 1.

heres a list of numbers 3 6 9 7 4 6 7 0 7 Find median,mean,range and mode

Answers

Answer:

median=order them and find the middle=6

mean=add them all up and divide by the amount of numbers=(3+6+9+7+4+6+7+0 +7)/9=5.4

range= the difference between the smallest and largest number=9-3=6

mode= the one that appears the most= 7

The median, mean, range and mode will be 6, 5.4, 9 and 7.

The median is the number in the middle when arranged in an ascending order. The numbers will be:

0, 3, 4, 6, 6, 7, 7, 7, 9.

The median is 6.

The range is the difference between the highest and lowest number which is: = 9 - 0 = 9

The mode is the number that appears most which is 7.

The mean will be the average which will be:

= (0 + 3 + 4 + 6 + 6 + 7 + 7 + 7 + 9) / 9.

= 49/9

= 5.4

Read related link on:

https://brainly.com/question/9426296

Help me please! I need an answer!

Answers

Answer:  [tex]\bold{\dfrac{b_1}{b_2}=\dfrac{3}{2}}[/tex]

Step-by-step explanation:

Inversely proportional means a x b = k   --> b = k/a

Given that a₁ = 2   --> b₁ = k/2

Given that a₂ = 3   -->  b₂ = k/3

[tex]\dfrac{b_1}{b_2}=\dfrac{\frac{k}{2}}{\frac{k}{3}}=\large\boxed{\dfrac{3}{2}}[/tex]

Would this be correct even though I didn’t use the chain rule to solve?

Answers

Answer:

Dy/Dx=1/√ (2x+3)

Yeah it's correct

Step-by-step explanation:

Applying differential by chain differentiation method.

The differential of y = √(2x+3) with respect to x

y = √(2x+3)

Let y = √u

Y = u^½

U = 2x +3

The formula for chain differentiation is

Dy/Dx = Dy/Du *Du/Dx

So

Dy/Dx = Dy/Du *Du/Dx

Dy/Du= 1/2u^-½

Du/Dx = 2

Dy/Dx =( 1/2u^-½)2

Dy/Dx= u^-½

Dy/Dx=1/√ u

But u = 2x+3

Dy/Dx=1/√ (2x+3)

If 2x+9<32 then x could be

Answers

Answer:

x < 11.5

Step-by-step explanation:

2x + 9 < 32

(2x + 9) - 9  < 32 - 9

2x < 23

2x/2 < 23/2

x < 11.5

Answer:

x < 11 1/2

Step-by-step explanation:

2x+9<32

Subtract 9 from each side

2x+9-9 < 32-9

2x<23

Divide by 2

2x/2 <23/2

x < 11 1/2

X is any number less than 11 1/2

Please help! V^2 = 25/81

Answers

Answer:

C and D

Step-by-step explanation:

khan acedemy

An equation is formed when two equal expressions. The solutions to the given equation are A, B, and C.

What is an equation?

An equation is formed when two equal expressions are equated together with the help of an equal sign '='.

The solution of the given equation v²=25/81 can be found as shown below.

v²=25/81

Taking the square root of both sides of the equation,

√(v²) = √(25/81)

v = √(25/81)

v = √(5² / 9²)

v = ± 5/9

Hence, the solutions of the given equation are A, B, and C.

Learn more about Equation here:

https://brainly.com/question/2263981

#SPJ2

Profit Function for Producing Thermometers The Mexican subsidiary of ThermoMaster manufactures an indoor-outdoor thermometer. Management estimates that the profit (in dollars) realizable by the company for the manufacture and sale of x units of thermometers each week is represented by the function below, where x ≥ 0. Find the interval where the profit function P is increasing and the interval where P is decreasing. (Enter your answer using interval notation.) P(x) = −0.004x2 + 6x − 5,000 Increasing: Decreasing:

Answers

Answer:

Increasing: [tex](0, 750)[/tex]

Decreasing: [tex](750, \infty)[/tex]

Step-by-step explanation:

Critical points:

The critical points of a function f(x) are the values of x for which:

[tex]f'(x) = 0[/tex]

For any value of x, if f'(x) > 0, the function is increasing. Otherwise, if f'(x) < 0, the function is decreasing.

The critical points help us find these intervals.

In this question:

[tex]P(x) = -0.004x^{2} + 6x - 5000[/tex]

So

[tex]P'(x) = -0.008x + 6[/tex]

Critical point:

[tex]P'(x) = 0[/tex]

[tex]-0.008x + 6 = 0[/tex]

[tex]0.008x = 6[/tex]

[tex]x = \frac{6}{0.008}[/tex]

[tex]x = 750[/tex]

We have two intervals:

(0, 750) and [tex](750, \infty)[/tex]

(0, 750)

Will find P'(x) when x = 1

[tex]P'(x) = -0.008x + 6 = -0.008*1 + 6 = 5.992[/tex]

Positive, so increasing.

Interval [tex](750, \infty)[/tex]

Will find P'(x) when x = 800

[tex]P'(x) = -0.008x + 6 = -0.008*800 + 6 = -0.4[/tex]

Negative, then decreasing.

Answer:

Increasing: [tex](0, 750)[/tex]

Decreasing: [tex](750, \infty)[/tex]

please please please please help i need to pass please

Answers

Answer:

D

Step-by-step explanation:

Solution:-

The standard sinusoidal waveform defined over the domain [ 0 , 2π ] is given as:

                                   f ( x ) = sin ( w*x ± k ) ± b

Where,

                 w: The frequency of the cycle

                 k: The phase difference

                 b: The vertical shift of center line from origin

We are given that the function completes 2 cycles over the domain of [ 0 , 2π ]. The number of cycles of a sinusoidal wave is given by the frequency parameter ( w ).

We will plug in w = 2. No information is given regarding the phase difference ( k ) and the position of waveform from the origin. So we can set these parameters to zero. k = b = 0.

The resulting sinusoidal waveform can be expressed as:

                           f ( x ) = sin ( 2x )  ... Answer

An industrial psychologist conducted an experiment in which 40 employees that were identified as "chronically tardy" by their managers were divided into two groups of size 20. Group 1 participated in the new "It's Great to be Awake!" program, while Group 2 had their pay docked. The following data represent the number of minutes that employees in Group 1 were late for work after participating in the program.

Does the probability plot suggest that the sample was obtained from a population that is normally distributed? Provide TWO reasons for your classification.

Answers

Answer:

The probability plot of this distribution shows that it is approximately normally distributed..

Check explanation for the reasons.

Step-by-step explanation:

The complete question is attached to this solution provided.

From the cumulative probability plot for this question, we can see that the plot is almost linear with no points outside the band (the fat pencil test).

The cumulative probability plot for a normal distribution isn't normally linear. It's usually fairly S shaped. But, when the probability plot satisfies the fat pencil test, we can conclude that the distribution is approximately linear. This is the first proof that this distribution is approximately normal.

Also, the p-value for the plot was obtained to be 0.541.

For this question, we are trying to check the notmality of the distribution, hence, the null hypothesis would be that the distribution is normal and the alternative hypothesis would be that the distribution isn't normal.

The interpretation of p-valies is that

When the p-value is greater than the significance level, we fail to reject the null hypothesis (normal hypothesis) and but if the p-value is less than the significance level, we reject the null hypothesis (normal hypothesis).

For this distribution,

p-value = 0.541

Significance level = 0.05 (Evident from the plot)

Hence,

p-value > significance level

So, we fail to reject the null or normality hypothesis. Hence, we can conclude that this distribution is approximately normal.

Hope this Helps!!!

find the value of k if x minus 2 is a factor of P of X that is X square + X + k​

Answers

Answer:

k = -6

Step-by-step explanation:

hello

saying that (x-2) is a factor of [tex]x^2+x+k[/tex]

means that 2 is a zero of

[tex]x^2+x+k=0 \ so\\2^2+2+k=0\\<=> 4+2+k=0\\<=> 6+k =0\\<=> k = -6[/tex]

and we can verify as

[tex](x^2+x-6)=(x-2)(x+3)[/tex]

so it is all good

hope this helps

The length of a rectangle is 5M more than twice the width and the area of the rectangle is 63M to find the dimension of the rectangle

Answers

Answer:

width = 4.5 m

length = 14 m

Step-by-step explanation:

okay so first you right down that L = 5 + 2w

then as you know that Area = length * width so you replace the length with 5 + 2w

so it's A = (5 +2w) * w = 63

then 2 w^2 + 5w - 63 =0

so we solve for w which equals 4.5 after that you solve for length : 5+ 2*4.5 = 14

Determine the area (in units2) of the region between the two curves by integrating over the x-axis. y = x2 − 24 and y = 1

Answers

The area bounded by region between the curve [tex]y = x^2- 24[/tex]  and [tex]y = 1[/tex] is

[tex]0[/tex] square units.

To find the Area,

Integrate the difference between the two curves over the interval of intersection.

Find the points of intersection between the curves [tex]y = x^2- 24[/tex] and [tex]y = 1[/tex] .

The point of Intersection is the common point between the two curve.

Value of [tex]x[/tex] and [tex]y[/tex] coordinate  will be equal for both curve at point of intersection

In the equation [tex]y = x^2- 24[/tex], Put the value of [tex]y = 1[/tex].

[tex]1 = x^2-24[/tex]

Rearrange, like and unlike terms:

[tex]25 = x^2[/tex]

[tex]x =[/tex]  ±5

The point of intersection for two curves are:

[tex]x = +5[/tex]  and  [tex]x = -5[/tex]

Integrate the difference between the two curve over the interval [-5,5] to calculate the area.

Area =   [tex]\int\limits^5_{-5} {x^2-24-1} \, dx[/tex]

Simplify,

[tex]= \int\limits^5_{-5} {x^2-25} \, dx[/tex]

Integrate,

[tex]= [\dfrac{1}{3}x^3 - 25x]^{5} _{-5}[/tex]

Put value of limits in [tex]x[/tex] and subtract upper limit from lower limit.

[tex]= [\dfrac{1}{3}(5)^3 - 25(5)] - [\dfrac{1}{3}(-5)^3 - 25(-5)][/tex]

= [tex]= [\dfrac{125}{3} - 125] - [\dfrac{-125}{3} + 125][/tex]

[tex]= [\dfrac{-250}{3}] - [\dfrac{-250}{3}]\\\\\\= \dfrac{-250}{3} + \dfrac{250}{3}\\\\\\[/tex]

[tex]= 0[/tex]

The Area between the two curves is [tex]0[/tex] square  units.

Learn more about Integration here:

https://brainly.com/question/30402524

#SPJ4

The dimensions of a closed rectangular box are measured as 96 cm, 58 cm, and 48 cm, respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.

Answers

Answer:

161.6 cm²

Step-by-step explanation:

Surface Area of the rectangular box = 2(LW+LH+WH)

L is the length of the box

W is the width of the box

H is the height of the box

let dL, dW and dH be the possible error in the dimensions L, W and H respectively.

Since there is a possible error of 0.2cm in each dimension, then dL = dW = dH = 0.2cm

The surface Area of the rectangular box using the differentials is expressed as shown;

S = 2{(LdW+WdL)+(LdH+HdL)+(WdH+HdW)]

Also given L = 96cm W = 58cm and H = 48cm, on substituting this given values and the differential error, we will have;

S = 2{(96*0.2+58*0.2) + (96*0.2+48*0.2)+(58*0.2+48*0.2)}

S = 2{19.2+11.6+19.2+9.6+11.6+9.6}

S = 2(80.8)

S = 161.6 cm²

Hence, the surface area of the box is 161.6 cm²

Which value of x makes 7+5(x-3)=227+5(x−3)=227, plus, 5, left parenthesis, x, minus, 3, right parenthesis, equals, 22 a true statement? Choose 1 answer:

Answers

Answer:

7 + 5(x - 3) = 22

5(x - 3) = 15

x - 3 = 3

x = 6

Answer:

x = 6

Step-by-step explanation:

Step 1: Distribute 5

7 + 5x - 15 = 22

Step 2: Combine like terms

5x - 8 = 22

Step 3: Add 8 to both sides

5x = 30

Step 4: Divide both sides by 5

x = 6

The number of degrees of freedom for the appropriate chi-square distribution in a test of independence is a. k – 1. b. A chi-square distribution is not used. c. number of rows minus 1 times number of columns minus 1. d. n – 1.

Answers

Answer:

Option C

Step-by-step explanation:

The chi square test of independence is used to determine if there is a significant association between two categorical variables from a population.

It tests the claim that the row and column variables are independent of each other.

The degrees of freedom for the chi-square are calculated using the following formula: df = (r-1) (c-1) where r is the number of rows and c is the number of columns.

The three-dimensional figure below is a cylinder with a hole in the shape of a rectangular prism going through the center of it.
The radius is 10 yards. Find the volume of the solid in cubic yards, rounded to the nearest ten. Use 3.14 for pie.
A. 1,980
B. 1,788
C. 1,034
D. 1,884

Answers

Answer:

B. 1788

Step-by-step explanation:

The volume of solid shaped is expressed in cubic yards. The sides of the shape are multiplied or powered as 3 for the volume determination. Volume is the total space covered by the object. It includes height, length, width. The three dimensional objects volume is found by

length * height * width

The volume for current object is :

12 * 28 * 5

= 1788 cubic yards.

Answer: 1778

Step-by-step explanation:

because Ik I had the question

Other Questions
1. Growth of Functions (11 points) (1) (4 points) Determine whether each of these functions is O(x 2 ). Proof is not required but it may be good to try to justify it (a) 100x + 1000 (b) 100x 2 + 1000 Find the volume of the composite figure below Define vegetation distribution In an essay that talks about ways to reduce carbon dioxide, these maps would most likely be used as Determine the measure of obtuse angle A. answers: A) 130 B) 122 C) 58 D) 7 You spend 6,380.00 a year for rent. This is 22% of your income. What is your income? Please help with this What is the y-intercept of the graph of the function f(x) = x^2 + 3x + 5? Helppp!!!! please!!! The expression 14s(s - 1) can be used to findthe total number of cards created by the ninthgrade students. Based on the given information,which of the following statements must be true?Select all that apply. When individuals do not regulate their hunting in order to reduce the possible collective effects of endangering a particular species, ___________ can result.Please select the best answer from the choices provideddistorted perceptionsfrustrationdehumanizationa social trap I NEED HELP ASAP!!!!! WILL MARK BRAINLIEST!!!!!! Tournament scores for 92 golfers are distributed normally. Twostatistics from this tournament are given below.mean score 74standard deviation 2.5What is the approximate percentage of golfers that scoredbetween 69 and 79?A. 27%B. 68%C. 74%D. 95% A stock has an expected return of 12.6 percent, the risk-free rate is 7 percent, and the market risk premium is 10 percent. What must the beta of this stock be Explain how, in late winter, with snow covered ground and a southeasterly wind, advection fog could develop at Atlantas International Airport (located in the US Southeast, over 200 miles from the ocean) to create low visibility and flight delays. The calculated cost of trade credit for a firm that buys on terms of 2/10, net 30, is lower (other things held constant) if the firm plans to pay in 40 days than in 30 days.A. True B. False Suppose you want to use the cross training program to train for a particular sport. Which sports could the program most benefit and why? Which sports might the program least benefit? Many biochemical reactions that occur in the cell are nonspontaneous when measured at the biochemical standard state, but are spontaneous inside of the cell. What is the most likely explanation for this difference in spontaneity for the same reaction measured under different conditions What factor determines how much linoleic acid can twist and bend its shape?A. The weight of the moleculeB. The number of carbon-hydrogen bondsC. The length of the moleculeD. The number of carbon-carbon double bonds HELPPPP Enter the ratio as a fraction in lowest terms (2 ft to 24 in.)Enter the ratio as a fraction in lowest terms(27 minutes to 24 minutes) Enter the ratio as a fraction in lowest terms (no decimals).(8.0 calories to 5.6 calories)