Find the value of s(t(-2)):
s(x)= - 3x-2
t(x)=5x-4

Answers

Answer 1
Answer: s(t(-2)) is 40
Explanation: first let’s find figure out t(-2) first before we move on to the next one

t(x) = 5x-4
t(-2)= 5(-2)-4= -14

Now that we know t(-2) = -14
Then let’s find s(x) where x is -14

s(x)= -3x-2
s(-14)= -3(-14)-2= 42-2=40

And s(t(-2)) = 40

Related Questions

Consider the function represented by 9x + 3y = 12 with x as the independent variable. How can this function be
written using function notation?
Of) = -
O F(x) = - 3x + 4
Of(x) = -x +
O fb) = - 3y+ 4

Answers

Answer:

f(x) = -3x + 4

Step-by-step explanation:

Step 1: Move the 9x over

3y = 12 - 9x

Step 2: Divide everything by 3

y = 4 - 3x

Step 3: Rearrange

y = -3x + 4

Step 4: Change y to f(x)

f(x) = -3x + 4

find the circumference of a circle with a diameter of 6 cm

Answers

Circumference = πd

~substitute (π)(6 cm)

~simplify → 6π cm.

So the circumference of the circle shown here is 6π cm.

Answer:

18.85 cm

Step-by-step explanation:

The circumference of a circle has a formula.

Circumference = π × diameter

The diameter is 6 centimeters.

Circumference = π × 6

Circumference ≈ 18.85

The circumference of the circle is 18.85 centimeters.

Please answer this correctly without making mistakes

Answers

Answer:

Question 2

Step-by-step explanation:

2) The time when she woke up was -  3° C

During nature walk, temperature got 3° C warmer than when she woke up.

So, temperature during nature walk = - 3 + 3 = 0° C

In order to study the color preferences of people in his town, Andrew samples the population by dividing the residents by regions and randomly selecting 7 of the regions. He collects data from all residents in the selected regions. Which type of sampling is used?

Answers

Answer:

Cluster sampling

Step-by-step explanation:

Cluster sampling refers to the sampling that is used in market analysis. It is used when a researcher can not obtain information as a whole for the population but may obtain information through the groups or clusters

In the given case since andrew divides the residents through regions so this reflected the cluster sampling method

The average life a manufacturer's blender is 5 years, with a standard deviation of 1 year. Assuming that the lives of these blenders follow approximately a normal distribution, find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Answers

Answer:

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

[tex]\mu = 5, \sigma = 1, n = 9, s = \frac{1}{\sqrt{9}} = 0.3333[/tex]

Find the probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

This is the pvalue of Z when X = 5.1 subtracted by the pvalue of Z when X = 4.5. So

X = 5.1

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{5.1 - 5}{0.3333}[/tex]

[tex]Z = 0.3[/tex]

[tex]Z = 0.3[/tex] has a pvalue of 0.6179

X = 4.5

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{4.5 - 5}{0.3333}[/tex]

[tex]Z = -1.5[/tex]

[tex]Z = -1.5[/tex] has a pvalue of 0.0668

0.6179 - 0.0668 = 0.5511

55.11% probability that the mean life a random sample of 9 such blenders falls between 4.5 and 5.1 years.

An instructor asks students to rate their anxiety level on a scale of 1 to 100 (1 being low anxiety and 100 being high anxiety) just before the students take their final exam. The responses are shown below. Construct a relative frequency table for the instructor using five classes. Use the minimum value from the data set as the lower class limit for the first row, and use the lowest possible whole-number class width that will allow the table to account for all of the responses. Use integers or decimals for all answers.
48,50,71,58,56,55,53,70,63,74,64,33,34,39,49,60,65,84,54,58
Provide your answer below:
Lower Class Limit Upper Class Limit Relative Frequency

Answers

Answer:

The frequency table is shown below.

Step-by-step explanation:

The data set arranged ascending order is:

S = {33 , 34 , 39 , 48 , 49 , 50 , 53 , 54 , 55 , 56 , 58 , 58,  60 , 63 , 64 , 65 , 70 , 71 , 74 , 84}

It is asked to use the minimum value from the data set as the lower class limit for the first row.

So, the lower class limit for the first class interval is 33.

To determine the class width compute the range as follows:

[tex]\text{Range}=\text{Maximum}-\text{Minimum}[/tex]

          [tex]=84-33\\=51[/tex]

The number of classes requires is 5.

The class width is:

[tex]\text{Class width}=\frac{Range}{5}=\frac{51}{2}=10.2\approx 10[/tex]

So, the class width is 10.

The classes are:

33 - 42

43 - 52

53 - 62

63 - 72

73 - 82

83 - 92

Compute the frequencies of each class as follows:

Class Interval                  Values                        Frequency

   33 - 42                      33 , 34 , 39                             3

   43 - 52                      48 , 49 , 50                            3

   53 - 62          53 , 54 , 55 , 56 , 58 , 58,  60              7

   63 - 72                 63 , 64 , 65 , 70 , 71                      5

   73 - 82                              74                                  1

   83 - 92                             84                                   1

   TOTAL                                                                   20

Compute the relative frequencies as follows:

Class Interval          Frequency        Relative Frequency

   33 - 42                        3                   [tex]\frac{3}{20}\times 100\%=15\%[/tex]

   43 - 52                        3                   [tex]\frac{3}{20}\times 100\%=15\%[/tex]

   53 - 62                        7                   [tex]\frac{7}{20}\times 100\%=35\%[/tex]

   63 - 72                        5                   [tex]\frac{5}{20}\times 100\%=25\%[/tex]

   73 - 82                         1                   [tex]\frac{1}{20}\times 100\%=5\%[/tex]

   83 - 92                         1                   [tex]\frac{1}{20}\times 100\%=5\%[/tex]

   TOTAL                        20                          100%

According to insurance records, a car with a certain protection system will be recovered 87% of the time. If 600 stolen cars are randomly selected, what is the mean and standard deviation of the number of cars recovered after being stolen?

Answers

Answer:

The mean and standard deviation of the number of cars recovered after being stolen is 522 and 8.24 respectively.

Step-by-step explanation:

We are given that according to insurance records, a car with a certain protection system will be recovered 87% of the time.

Also, 600 stolen cars are randomly selected.

Let X = Number of cars recovered after being stolen

The above situation can be represented through binomial distribution;

[tex]P(X=r)=\binom{n}{r}\times p^{r} \times (1-p)^{n-r} ;x=01,2,3,......[/tex]

where, n = number of trials = 600 cars

            r = number of success

            p = probability of success which in our question is the probability

                    that car with a certain protection system will be recovered,

                     i.e. p = 87%.

So, X ~ Binom(n = 600, p = 0.87)

Now, the mean of X, E(X) =  [tex]n \times p[/tex]

                                          =  [tex]600 \times 0.87[/tex] = 522

Also, the standard deviation of X, S.D.(X)  =  [tex]\sqrt{n \times p \times (1-p)}[/tex]

                                                                     =  [tex]\sqrt{600 \times 0.87 \times (1-0.87)}[/tex]

                                                                     =  8.24

a) Al usar un microscopio el microscopio se amplía una célula 400 veces. Escribe el factor de ampliación como cociente o como escala.
b) La imagen de una célula usando dicho microscopio mide 1,5 mm ¿ Cuánto mide la célula en la realidad?

Answers

Answer:

x = 0,00375 mm

Step-by-step explanation:

a) El factor de ampliación es 400/1   es decir el tamaño real se verá ampliado 400 veces mediante el uso del microscopio

b) De acuerdo a lo establecido en la respuesta a la pregunta referida en a (anterior) podemos establecer una regla de tres, según:

Si al microscopio el tamaño de la célula es 1,5 mm, cual será el tamaño verdadero ( que es reducido 400 en relación al que veo en el microscopio)

Es decir     1,5 mm      ⇒    400

                    x (mm)    ⇒       1 (tamaño real de la célula)

Entonces

x  =  1,5 /400

x = 0,00375 mm

how many solution does this equation have LOOK AT SCREENSHOT ATTACHED

Answers

Answer:

One solution

Step-by-step explanation:

99% of the time, linear equations (equations that have the first degree) have only one solution. However, it's always good to check.

6 - 3x = 12 - 6x

6 = 12 - 3x

-3x = -6

x = 2

As you can see, only one solution. Hope this helps!

Five thousand tickets are sold at​ $1 each for a charity raffle. Tickets are to be drawn at random and monetary prizes awarded as​ follows: 1 prize of ​$800​, 3 prizes of ​$200​, 5 prizes of ​$50​, and 20 prizes of​ $5. What is the expected value of this raffle if you buy 1​ ticket?

Answers

Answer:

The expected value of this raffle if you buy 1​ ticket is $0.41.

Step-by-step explanation:

The expected value of the raffle if we buy one ticket is the sum of the prizes multiplied by each of its probabilities.

This can be written as:

[tex]E(X)=\sum p_iX_i[/tex]

For example, the first prize is $800 and we have only 1 prize, that divided by the number of tickets gives us a probability of 1/5000.

If we do this with all the prizes, we can calculate the expected value of a ticket.

[tex]E(X)=\sum p_iX_i\\\\\\E(X)=\dfrac{1\cdot800+3\cdot200+5\cdot50+20\cdot20}{5000}\\\\\\E(X)=\dfrac{800+600+250+400}{5000}=\dfrac{2050}{5000}=0.41[/tex]

M/J Grade 8 Pre-Algebra-PT-FL-1205070-003

Answers

Answer:

Following are the description of the given course code:

Step-by-step explanation:

The given course code is Pre-Algebra, which is just an introduction arithmetic course programs to train high school in the Algebra 1. This course aims to strengthen required problem solving skills, datatypes, equations, as well as graphing.

In this course students start to see the "big picture" of maths but also understand that mathematical, algorithmic, and angular principles are intertwined to form a basis for higher mathematics education.The duration of this code is in year and it is divided into two levels. In this, code it includes PreK to 12 Education Courses , with the general mathematics .

Answer:

A

Step-by-step explanation:

In 2009, a school population was 1,700. By 2017 the population had grown to 2,500. Assume the population is changing linearly. What is the average population growth per year?

Answers

Answer:

100

Step-by-step explanation:

The population is changing linearly. This means that the population is increasing by a particular value n every year.

From 2009 to 2017, there are 8 increases and so, the population increases by 8n.

The population increased from 1700 to 2500. Therefore, the population increase is:

2500 - 1700 = 800

This implies that:

8n = 800

=> n = 800/8 = 100

The average population growth per year is 100.

Determine the slope-intercept form of the equation of the line parallel to y = -4/3 x + 11 that passes through the point (–6, 2). y = x +

Answers

Answer: -4/3x - 6

Step-by-step explanation:

First, let's find the slope of the line

y=- -4/3x+11

As the equation is already in slope-intercept form y=mx+c ,

Slope = -4/3

Let a point (x,y) be on the new line.

By finding the slope again,

y−2/x+6= -4/3

y−2= -4/3(x+6)

y−2= -4/3x−8

y = -4/3x - 6

Find the missing side. Round your answer to the nearest tenth.

Answers

Use sin cos or tan
Please also mark brainliest

A small regional carrier accepted 16 reservations for a particular flight with 12 seats. 8 reservations went to regular customers who will arrive for the flight. Each of the remaining passengers will arrive for the flight with a 48% chance, independently of each other.
A) Find the probability that overbooking occurs.
B) Find the probability that the flight has empty seats.

Answers

Answer:

a) 32.04% probability that overbooking occurs.

b) 40.79% probability that the flight has empty seats.

Step-by-step explanation:

For each booked passenger, there are only two possible outcomes. Either they arrive for the flight, or they do not arrive. The probability of a passenger arriving is independent of other passengers. So we use the binomial probability distribution to solve this question.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

And p is the probability of X happening.

Our variable of interest are the 8 reservations that went for the passengers with a 48% probability of arriving.

This means that [tex]n = 8, p = 0.48[/tex]

A) Find the probability that overbooking occurs.

12 seats, 8 of which are already occupied. So overbooking occurs if more than 4 of the reservated arrive.

[tex]P(X > 4) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)[/tex]

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]P(X = 5) = C_{8,5}.(0.48)^{5}.(0.52)^{3} = 0.2006[/tex]

[tex]P(X = 6) = C_{8,6}.(0.48)^{6}.(0.52)^{2} = 0.0926[/tex]

[tex]P(X = 7) = C_{8,7}.(0.48)^{7}.(0.52)^{7} = 0.0244[/tex]

[tex]P(X = 8) = C_{8,5}.(0.48)^{8}.(0.52)^{0} = 0.0028[/tex]

[tex]P(X > 4) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) = 0.2006 + 0.0926 + 0.0244 + 0.0028 = 0.3204[/tex]

32.04% probability that overbooking occurs.

B) Find the probability that the flight has empty seats.

Less than 4 of the booked passengers arrive.

To make it easier, i will use

[tex]P(X < 4) = 1 - (P(X = 4) + P(X > 4))[/tex]

From a), P(X > 4) = 0.3204

[tex]P(X = 4) = C_{8,4}.(0.48)^{4}.(0.52)^{4} = 0.2717[/tex]

[tex]P(X < 4) = 1 - (P(X = 4) + P(X > 4)) = 1 - (0.2717 + 0.3204) = 1 - 0.5921 = 0.4079[/tex]

40.79% probability that the flight has empty seats.

what is the equation of the line that is parallel to the given line and passes through the point (2, 3) ? a. x + 2y = 4 b. x + 2y = 8 c. 2x + y =4 d. 2x + y = 8

Answers

Answer:

see explanations

Step-by-step explanation:

The given blue line has a slope of m = -1/2.

The line parallel to the given line passing through point (x0,y0)=(2,3) is given by the point-slope form:

(y-y0)=m(x-x0)

substitute values

(y-3) = (-1/2)(x-2)

Expand and transpose

y = (-1/2)x + 1 + 3

y = (-1/2)x + 4  ....................(1)

We choose the second equation b. x+2y=8 and convert to slope-intercept form:

2y=-x+8

y = (-1/2)x + 4, which is exactly equation (1)

So

b. x+2y=8 is the correct answer.

Answer:

b. x + 2y = 8

Step-by-step explanation:

Conde Nast Traveler publishes a Gold List of the top hotels all over the world. The Broadmoor Hotel in Colorado Springs contains 700 rooms and is on the 2004 Gold List (Conde Nast Traveler, January 2004). Suppose Broadmoor's marketing group forecasts a demand of 670 rooms for the coming weekend. Assume that demand for the upcoming weekend is normally distributed with a standard deviation of 30.

a.What is the probability all the hotel's rooms will be rented (to 4 decimals)?

b. What is the probability 50 or more rooms will not be rented (to 4 decimals)?

Answers

Answer:

(a) The probability that all the hotel's rooms will be rented is 0.1587.

(b) The probability that 50 or more rooms will not be rented is 0.2514.

Step-by-step explanation:

We are given that the Broadmoor Hotel in Colorado Springs contains 700 rooms and is on the 2004 Gold List.

Suppose Broadmoor's marketing group forecasts a mean demand of 670 rooms for the coming weekend. Assume that demand for the upcoming weekend is normally distributed with a standard deviation of 30.

Let X = demand for rooms in the hotel

So, X ~ Normal([tex]\mu=670,\sigma^{2} =30^{2}[/tex])

The z-score probability distribution for the normal distribution is given by;

                           Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean demand for the rooms = 670

            [tex]\sigma[/tex] = standard deviation = 30

(a) The probability that all the hotel's rooms will be rented means that the demand is at least 700 = P(X [tex]\geq[/tex] 700)

          P(X [tex]\geq[/tex] 700) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\geq[/tex] [tex]\frac{700-670}{30}[/tex] ) = P(Z [tex]\geq[/tex] 1) = 1 - P(Z < 1)

                                                             = 1 - 0.8413 = 0.1587

The above probability is calculated by looking at the value of x = 1 in the z table which has an area of 0.8413.

(b) The probability that 50 or more rooms will not be rented is given by = P(X [tex]\leq[/tex] 650)

         P(X [tex]\leq[/tex] 650) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{650-670}{30}[/tex] ) = P(Z [tex]\leq[/tex] -0.67) = 1 - P(Z < 0.67)

                                                             = 1 - 0.7486 = 0.2514

The above probability is calculated by looking at the value of x = 0.67 in the z table which has an area of 0.7486.

What is the solution to the system of equations? please explain I really need help

Answers

Answer:

The solution is the point where the lines intersect.

The answer is (-3 , -8)

The number of people arriving for treatment at an emergency room can be modeled by a Poisson process with a rate parameter of six per hour.
(a) What is the probability that exactly three arrivals occur during a particular hour? (Round your answer to three decimal places.)
(b) What Is the probability that at least three people arrive during a particular hour? (Round your answer to three decimal places.)
(c) How many people do you expect to arrive during a 15-min period?

Answers

Answer:

a) P(x=3)=0.089

b) P(x≥3)=0.938

c) 1.5 arrivals

Step-by-step explanation:

Let t be the time (in hours), then random variable X is the number of people arriving for treatment at an emergency room.

The variable X is modeled by a Poisson process with a rate parameter of λ=6.

The probability of exactly k arrivals in a particular hour can be written as:

[tex]P(x=k)=\lambda^{k} \cdot e^{-\lambda}/k!\\\\P(x=k)=6^k\cdot e^{-6}/k![/tex]

a) The probability that exactly 3 arrivals occur during a particular hour is:

[tex]P(x=3)=6^{3} \cdot e^{-6}/3!=216*0.0025/6=0.089\\\\[/tex]

b) The probability that at least 3 people arrive during a particular hour is:

[tex]P(x\geq3)=1-[P(x=0)+P(x=1)+P(x=2)]\\\\\\P(0)=6^{0} \cdot e^{-6}/0!=1*0.0025/1=0.002\\\\P(1)=6^{1} \cdot e^{-6}/1!=6*0.0025/1=0.015\\\\P(2)=6^{2} \cdot e^{-6}/2!=36*0.0025/2=0.045\\\\\\P(x\geq3)=1-[0.002+0.015+0.045]=1-0.062=0.938[/tex]

c) In this case, t=0.25, so we recalculate the parameter as:

[tex]\lambda =r\cdot t=6\;h^{-1}\cdot 0.25 h=1.5[/tex]

The expected value for a Poisson distribution is equal to its parameter λ, so in this case we expect 1.5 arrivals in a period of 15 minutes.

[tex]E(x)=\lambda=1.5[/tex]

4.48 Same observation, difference sample size: Suppose you conduct a hypothesis test based on a sample where the sample size is n = 50, and arrive at a p-value of 0.08. You then refer back to your notes and discover that you made a careless mistake, the sample size should have been n = 500. Will your p-value increase, decrease, or stay the same?

Answers

Answer:

P-value is lesser in the case when n = 500.

Step-by-step explanation:

The formula for z-test statistic can be written as

[tex]z=\frac{x-\mu}{\frac{\sigma}{\sqrt{n} } } =\frac{(x-\mu)\sqrt{n}}{\sigma}[/tex]

here, μ = mean

σ= standard deviation, n= sample size, x= variable.

From the relation we can clearly observe that n is directly proportional to test statistic. Thus, as the value of n increases the corresponding test statistic value also increases.

We can also observe that as the test statistic's numerical value increases it is more likely to go into rejection region or in other words its P-value decreases.

Now, for  first case when our n is 50 we will have a relatively low chance of accurately representing the population compared to the case when n= 500. Therefore,  the P-value will be lesser in the case when n = 500.

A cardboard box without a lid is to have a volume of 8,788 cm3. Find the dimensions that minimize the amount of cardboard used.

Answers

Answer:

x = y = 26 cm; z = 13 cm

Step-by-step explanation:

We can calculate the dimensions of the square base as

∛(2·8788) = 26 cm

the height of the box will be half of 26/2 which is 13 cm.

x = y = 26 cm; z = 13 cm

then the minimum area for the given volume can be calculated using what we call Lagrange multipliers, this makes it easier

area = xy +2(xz +yz)

But we were given the volume as 8788

Now we will make the partial derivatives of L to be in respect to the cordinates x, y, z, as well as λ to be equal to zero, then

L = xy +2(xz +yz) +λ(xyz -8788)

For x: we have

y+2z +λyz=0

For y we have

y: x +2z +λxz=0

For z we have 2x+2y +λxy=0............eqn(*)

For we have xyz -8788=0

If we simplify the partial derivative equation of y and x above then we have

λ = (y +2z)/(yz).

= 1/z +2/y............eqn(1)

λ = (x +2z)/(xz)

= 1/z +2/x.............eqn(2)

Set eqn(1 and 2) to equate we have

1/z +2/y = 1/z +2/x

x = y

From eqn(*) we can get z

λ = (2x +2y)/(xy) = 2/y +2/x

If we simplify we have

1/z +2y = 2/x +2/y

Then z = x/2

26/2 =13

Therefore,

x = y = 2z = ∛(2·8788)

X= 26

y = 26 cm

z = 13 cm

I NEED HELP PLEASE, THANKS! :)
A rock is tossed from a height of 2 meters at an initial velocity of 30 m/s at an angle of 20° with the ground. Write parametric equations to represent the path of the rock. (Show work)

Answers

Answer:

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

Step-by-step explanation:

If we are given that an object is thrown with an initial velocity of say, v1 m / s at a height of h meters, at an angle of theta ( θ ), these parametric equations would be in the following format -

x = ( 30 cos 20° )( time ),

y = - 4.9t^2 + ( 30 cos 20° )( time ) + 2

To determine " ( 30 cos 20° )( time ) " you would do the following calculations -

( x = 30 * 0.93... = ( About ) 28.01t

This represents our horizontal distance, respectively the vertical distance should be the following -

y = 30 * 0.34 - 4.9t^2,

( y = ( About ) 10.26t - 4.9t^2 + 2

In other words, our solution should be,

x = 28.01t,

y = 10.26t - 4.9t^2 + 2

These are are parametric equations

The width of a casing for a door is normally distributed with a mean of 24 inches and a standard deviation of 1/8 inch. The width of a door is normally distributed with a mean of 23 7/8 inches and a standard deviation of 1/16 inch. Assume independence. a. Determine the mean and standard deviation of the difference between the width of the casing and the width of the door. b. What is the probability that the width of the casing minus the width of the door exceeds 1/4 inch? c. What is the probability that the door does not fit in the casing?

Answers

Answer:

a) Mean = 0.125 inch

Standard deviation = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25) = 0.18673

c) Probability that the door does not fit in the casing = P(X < 0) = 0.18673

Step-by-step explanation:

Let the distribution of the width of the casing be X₁ (μ₁, σ₁²)

Let the distribution of the width of the door be X₂ (μ₂, σ₂²)

The distribution of the difference between the width of the casing and the width of the door = X = X₁ - X₂

when two independent normal distributions are combined in any manner, the resulting distribution is also a normal distribution with

Mean = Σλᵢμᵢ

λᵢ = coefficient of each disteibution in the manner that they are combined

μᵢ = Mean of each distribution

Combined variance = σ² = Σλᵢ²σᵢ²

λ₁ = 1, λ₂ = -1

μ₁ = 24 inches

μ₂ = 23 7/8 inches = 23.875 inches

σ₁² = (1/8)² = (1/64) = 0.015625

σ₂ ² = (1/16)² = (1/256) = 0.00390625

Combined mean = μ = 24 - 23.875 = 0.125 inch

Combined variance = σ² = (1² × 0.015625) + [(-1)² × 0.00390625] = 0.01953125

Standard deviation = √(Variance) = √(0.01953125) = 0.1397542486 = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25)

This is a normal distribution problem

Mean = μ = 0.125 inch

Standard deviation = σ = 0.13975 inch

We first normalize/standardize 0.25 inch

The standardized score of any value is that value minus the mean divided by the standard deviation.

z = (x - μ)/σ = (0.25 - 0.125)/0.13975 = 0.89

P(X > 0.25) = P(z > 0.89)

Checking the tables

P(x > 0.25) = P(z > 0.89) = 1 - P(z ≤ 0.89) = 1 - 0.81327 = 0.18673

c) Probability that the door does not fit in the casing

If X₂ > X₁, X < 0

P(X < 0)

We first normalize/standardize 0 inch

z = (x - μ)/σ = (0 - 0.125)/0.13975 = -0.89

P(X < 0) = P(z < -0.89)

Checking the tables

P(X < 0) = P(z < -0.89) = 0.18673

Hope this Helps!!!

Pleaase help me..........

Answers

Answer: 12/25

Steps:

1. Turn 0.48 into 48/100

2. Divide the numerator and denominator of 48/100 by 4, which ends up as 12/25.

0.48 as a fraction is 48/100

We can simplify this fraction.

48÷2/100÷2 → 24/50

24÷2/50÷2 → 12/25

Therefore, the answer is A.

Best of Luck!

A regular hexagonal prism has a height of 7 cm and base edge length of 4 cm. Identify its lateral area and surface area. HELP ASAP

Answers

Answer:

Lateral Surface Area = 168 [tex]cm^2[/tex]

Total Surface Area = 209.57 [tex]cm^2[/tex]

Step-by-step explanation:

Given:

There is a regular hexagonal prism with

Height, h = 7 cm

Base edge length, a = 4 cm

To find:

Lateral surface area and total surface area = ?

Solution:

Formula for lateral surface area is given as:

[tex]LSA = \text{Perimeter of Base}\times Height[/tex]

Perimeter of a hexagon is given as:

[tex]P = 6 \times Edge\ Length\\\Rightarrow P = 6\times 4=24\ cm[/tex]

Now, LSA = 24 [tex]\times[/tex] 7 = 168 [tex]cm^2[/tex]

Total Surface area of prism is given by the formula:

[tex]TSA = LSA + B[/tex]

where B is the area of base.

Base is a regular hexagon, formula for area of a regular hexagon is given by:

[tex]B =6\times \dfrac{\sqrt3}4\times Edge^2\\\Rightarrow B =6\times \dfrac{\sqrt3}4\times 4^2 = 24\sqrt3\ cm^2\\\Rightarrow B = 41.57 cm^2[/tex]

So, Total Surface Area = 168 + 41.57 = 209.57[tex]cm^2[/tex]

So, answer is :

Lateral Surface Area = 168 [tex]cm^2[/tex]

Total Surface Area = 209.57 [tex]cm^2[/tex]

Answer: It' actually:

Lateral Area: 168cm²
Surface Area: 251.1cm²

Hope this helps ya!

Which of the following best describes the algebraic expression 5(x + 2) - 3 ?
bre

Answers

Answer:

D

Step-by-step explanation:

Mia, Maya, and Maria are sisters. Mia's age is twice Maya's age and Maria is seven years younger than Mia. If Maria is 3 years old, how old are Mia and Maya?

Answers

Answer:

Mia:10 Maya:5 Maria:3

Step-by-step explanation:

3+7= 10= Mia's age

10÷2=5= Maya's age

Answer:

Mia - 10

Maya - 5

Maria - 3

The base of a triangle is three times
the height. If the area is 150msquare,find the height.

Answers

Answer:

10m

Step-by-step explanation:

area = 1/2 base times height

x=height

3x=base

so

150=1/2(3x^2)

300=3x^2

100=x^2

10=x

so the height is 10 and the base is 30

Answer:

h = 10

Step-by-step explanation:

Hiiiiiii

confused on question in screenshot

Answers

Answer:

right triangle

Step-by-step explanation:

We can use the Pythagorean theorem to determine if this is a right triangle

a^2 + b^2 = c^2

13^2 + ( 8 sqrt(13)) ^2 = (sqrt(1001))^2

169 + 8^2 * 13 = 1001

169+64*13 = 1001

169+832=1001

1001 = 1001

Since this is true, this is a right triangle

Joe hypothesizes that the students of an elite school will score higher than the general population. He records a sample mean equal to 568 and states the hypothesis as μ = 568 vs μ > 568. What type of test should Joe do?

Answers

Answer:

The test to be used is the right tailed test.

Step-by-step explanation:

The type of test joe should do would be a right tailed test. This is because;

A right tailed test which we sometimes call an upper test is where the hypothesis statement contains the greater than (>) symbol. This means that, the inequality points to the right. For example, we want to compare the the life of batteries before and after a manufacturing change.

If we want to know if the battery life of maybe 90 hours would be greater than the original, then our hypothesis statements might be:

Null hypothesis: (H0 = 90).

Alternative hypothesis: (H1) > 90.

In the null hypothesis, there are no changes, but in the alternative hypothesis, the battery life in hours has increased.

So, the most important factor here is that the alternative hypothesis (H1) is what determines if we have a right tailed test, not the null hypothesis.

Thus, the test to be used is the right tailed test.

Answer:

right tailed test.

Step-by-step explanation:

Other Questions
What is the length of line segment ABin the triangle shown below?B=8 inchesA=17 inches which point is between the other two points? find coordinates of D and F If the reaction CH4(g) O2(g) CO2(g) 2H2O(g) is in equilibrium, what is the effect of adding a catalyst The half-life of a certain substance is 5.9 days. How many days will it take for 30g of the substance to decay to 12g? Can you guys answer thiss... plisss 0.0000302 in scientific notation Find the missing segment Your smartphone, digital camera, and printer are all part of a network in your workspace. What type of network is likely in use The most important details in a text point to the A copper transmission cable 180 km long and 11.0 cm in diameter carries a current of 135 A.Required:a. What is the potential drop across the cable? b. How much electrical energy is dissipated as thermal energy every hour? Please show all work. solve for the variable. x28=1 Complete the table of values below:x-3-2-10123How the graph relates to y=2xy=2xAnswerAnswer Answer Answer Answer AnswerAnswer Not applicabley=-2xAnswer Answer AnswerAnswer AnswerAnswerAnswer multiplied by Answery=(3)(2x) A bike store marks up the wholesale cost of all bikes they sell by 30%. Calvin wants to buy a bike that has a price tag of $125. What was the wholesale cost of this bike? 11. Which of these patterns follows the suggested order of parts in bad news messages using theindirect strategy?I(Select only one)Buffer, bad news, and closingExplanation, bad news, buffer, and closingBad news, explanation, and closingBuffer, reasons, bad news, and closing A bag contains 16 cards numbered 1 through 16. A card is randomly chosen from the bag. What is the probability that the card has a multiple of 3 on it? Read and write a paragraph. Write a short description, using complete sentences in Spanish, telling your teacher about a class you have. Use the vocabulary from this lesson and the following instructions as a guide. You may copy and paste the accented and special characters from this list if needed: , , , , , , , , , , , , , , . *Note: The sample sentences in parentheses are just a guide to help you form your sentences. You must come up with your own original answers keeping academic integrity intact. In one sentence, state a class you have in the afternoon. Remember to use the yo form of the verb tener. (e.g., I have physical education in the afternoon.) State at what time the class starts. Remember to use the correct form of the verb empezar and that the numbers used to tell the time should be in words. (e.g., The class starts at twelve fifteen p.m.) State at what time the class ends. Remember to use the correct form of the verb terminar and that the numbers used to tell the time should be in words. (e.g., The class ends at one fifteen p.m.) State whether you are early, on time, or late for the class. (e.g., I am late.) As a result of very poor travel conditions of enslaved Africans died during the middle passage voyage across the Atlantic The pic is here , just the question wouldnt show up right. Any help ? A car is traveling on Michigan Street towards Ward Street. The car planes to turn right into Ward Street. what is the angle measure of the turn.Pls help ASAP Adidas decides to invest $100,000,000 into a shoe factory in Vietnam from its money market account. The money market account was earning 1% in interest per year or $1,000,000. Adidas could have also earned $400,000 from investing the $100,000,000 in a watch factory. What is its opportunity cost for Adidas based off of the information in presented this situation