The third term (a3) of the sequence is -8, the fourth term (a4) is 35, and the fifth term (a5) is -183. These values are obtained by applying the given formula recursively and substituting the previous terms accordingly. The calculations follow a specific pattern and are derived using the provided formula.
The sequence is defined by the following formula:
a1 = 1, a2 = 3,
and
an = (-1)nan - 1 + an - 2 for n ≥ 3.
To find the third term (a3), we substitute n = 3 into the formula:
a3 = (-1)(3)(a3 - 1) + a3 - 2.
Next, we simplify the equation:
a3 = -3(a2) + a1.
Since we know a1 = 1 and a2 = 3, we substitute these values into the equation:
a3 = -3(3) + 1.
Simplifying further:
a3 = -9 + 1.
Therefore, the third term (a3) is equal to -8.
To find the fourth term (a4), we substitute n = 4 into the formula:
a4 = (-1)(4)(a4 - 1) + a4 - 2.
Simplifying the equation:
a4 = -4(a3) + a2.
Since we know a2 = 3 and a3 = -8, we substitute these values into the equation:
a4 = -4(-8) + 3.
Simplifying further:
a4 = 32 + 3.
Therefore, the fourth term (a4) is equal to 35.
To find the fifth term (a5), we substitute n = 5 into the formula:
a5 = (-1)(5)(a5 - 1) + a5 - 2.
Simplifying the equation:
a5 = -5(a4) + a3.
Since we know a4 = 35 and a3 = -8, we substitute these values into the equation:
a5 = -5(35) + (-8).
Simplifying further:
a5 = -175 - 8.
Therefore, the fifth term (a5) is equal to -183.
In summary, the third term (a3) is -8, the fourth term (a4) is 35, and the fifth term (a5) is -183.
For more such questions sequence,Click on
https://brainly.com/question/7882626
#SPJ8
1. A target is divided into 100 squares colored in dark blue, white, and light blue. Amber throws a beanbag that lands on the target.
co
9 25
dark blue
What is the probability that it will land on a dark blue square?
26
white
light blue
The probability of landing on the dark blue target is 2/5.
Finding probabilityProbability is the ratio of required to the total possible outcomes of an event.
The required outcome = dark blue= 25Total possible outcomes= entire sample Space = 100P(dark blue ) = 40/100
divide through by 20
P(dark blue ) = 2/5
Therefore, the probability of landing on target is 2/5
Learn more on probability:https://brainly.com/question/24756209
#SPJ1
Is the expression quadratic 3x+5y-2
No, the expression 3x + 5y - 2200 is not a quadratic expression.
A quadratic expression is an expression of the form ax² + bx + c, where a, b, and c are constants and x is a variable raised to the power of 2.
It is a second-degree polynomial, meaning that the highest power of the variable is 2.Quadratic expressions often have a graph that is a parabola.
"3x + 5y - 2" is a linear expression, not a quadratic expression.
In a quadratic expression, the highest power of the variable(s) is 2, whereas in this expression, the highest power is 1.
The expression 3x + 5y - 2200 is a linear expression since it does not contain a term with a variable raised to the power of 2.
It is a first-degree polynomial, meaning that the highest power of the variable is 1.
Linear expressions often have a graph that is a straight line.
For more related questions on quadratic expression.:
https://brainly.com/question/10025464
#SPJ8
No. The expression, 3x + 5y - 2, is not quadratic.
What are quadratic expressions?The expression "3x+5y-2" is a linear expression, not quadratic.
Quadratic expressions contain a squared term, like "[tex]ax^2 + bx + c[/tex]." In the given expression, there are no squared terms, only linear terms with variables "x" and "y" raised to the power of 1.
The coefficients for "x" and "y" are 3 and 5, respectively, and there is a constant term of -2. Therefore, it represents a linear relationship between "x" and "y" rather than a quadratic one.
More on quadratic expressions can be found here: https://brainly.com/question/14680354
#SPJ1
the base of a square pyramid is 229 meters long, each slant height is 186 meters. what is the surface area
Answer:
The total surface area is given by: base area + 4 * triangular face area
Substituting the values we calculated: 52441 + 4 * 10424.4 ≈ 91588.4 square meters.
Therefore, the surface area of the square pyramid is approximately 91588.4 square meters.
The wholesale price for a chair is $114 A certain furniture store marks up the wholesale price by 33% Find the price of the chair in the furniture store. Round your answer to the nearest cent, as necessary.
Answer:
Step-by-step explanation:
144*33/
c) A company is considering expanding its business. The expansion will cost 350million initially for the premises and a further sh150 million to refurbish the premises with new equipment. Cash flow projections from the project show the
following cash flows over the next six years.
Year Net cash flows
Sh 000
1 70000
2 70000
3 80000
4 100000
5 100000
6 120000
The equipment will be depreciated to a zero resale value over the same period and after the sixth year, it is expected that the new business could be sold for sh350 million.
Required:
Calculate:
i. The payback period for the project. (5 marks)
ii. The accounting rate of Return (ARR) , using the average investment method.
(5 marks)
iii. The net present value (NPV) of the project. Assume the relevant cost of capital is 12%.
(5 marks)
iv. The internal Rate of Return (IRR) of the project. (5 marks)
i. The payback period for the project is 6 years.
ii. The accounting rate of return (ARR) using the average investment method is 21.18%.
iii. The net present value (NPV) of the project is -165,143.
iv. The internal rate of return (IRR) of the project is approximately 19.61%.
i. The payback period for the project:
To calculate the payback period, we need to determine how long it takes for the cumulative net cash flows to equal or exceed the initial investment of 350 million + 150 million.
Year 1: 70,000, Year 2: 70,000, Year 3: 80,000, Year 4: 100,000, Year 5: 100,000, Year 6: 120,000.
Cumulative Cash Flow:
Year 1: 70,000
Year 2: 70,000 + 70,000 = 140,000
Year 3: 140,000 + 80,000 = 220,000
Year 4: 220,000 + 100,000 = 320,000
Year 5: 320,000 + 100,000 = 420,000
Year 6: 420,000 + 120,000 = 540,000.
The cumulative cash flows exceed the initial investment of 500 million (350 million + 150 million) in Year 6.
So, the payback period for the project is 6 years.
ii. The accounting rate of return (ARR) using the average investment method:
ARR = Average Annual Profit / Average Investment
Average Annual Profit = Sum of Net Cash Flows / Number of Years
Average Annual Profit = (70,000 + 70,000 + 80,000 + 100,000 + 100,000 + 120,000) / 6
Average Annual Profit = 540,000 / 6
Average Annual Profit = 90,000
Average Investment = (Initial Investment + Residual Value) / 2
Average Investment = (500 million + 350 million) / 2
Average Investment = 425 million.
ARR = 90,000 / 425,000 = 0.2118 or 21.18%
iii. The net present value (NPV) of the project:
To calculate NPV, we discount each cash flow to its present value using the cost of capital of 12%.
NPV = (Net Cash Flow1 / [tex](1 + r)^1)[/tex] + (Net Cash Flow2 / [tex](1 + r)^2)[/tex] + ... + (Net Cash Flow6 / (1 + r)^6) - Initial Investment.
[tex]NPV = (70,000 / (1 + 0.12)^1) + (70,000 / (1 + 0.12)^2) + (80,000 / (1 + 0.12)^3) + (100,000 / (1 + 0.12)^4) + (100,000 / (1 + 0.12)^5) + (120,000 / (1 + 0.12)^6) -[/tex] (350 million + 150 million)
Calculating each term and summing them up:
NPV = 54,017 + 48,234 + 54,497 + 62,313 + 55,631 + 60,165 - 500 million
NPV = -165,143
Therefore, the net present value (NPV) of the project is -165,143.
iv. The internal rate of return (IRR) of the project:
To calculate the IRR, we find the discount rate that makes the NPV equal to zero. Using a financial calculator or Excel, we can determine that the IRR for this project is approximately 19.61%.
For similar question on average investment.
https://brainly.com/question/14057852
#SPJ8
Jennifer Aniston bought a property for $2,000,000. One year later, she sold it for $2,200,000. Jennifer invested only $1,000,000 of her own money and borrowed the rest interest-free from her friend, Brad Pitt. What was her return on this investment?
This means that she made a 20% return on the money she invested in the property. For every dollar she invested, she earned 20 cents in profit.
To calculate Jennifer Aniston's return on investment (ROI), we can use the formula:
ROI = (Net Profit / Initial Investment) * 100
First, let's calculate the net profit. The net profit is the selling price minus the initial investment:
Net Profit = Selling Price - Initial Investment
Net Profit = $2,200,000 - $2,000,000
Net Profit = $200,000
Next, we calculate the ROI:
ROI = (Net Profit / Initial Investment) * 100
ROI = ($200,000 / $1,000,000) * 100
ROI = 0.2 * 100
ROI = 20%
Jennifer Aniston's return on investment for this property is 20%.
For more such questions on invested visit:
https://brainly.com/question/25893158
#SPJ8
H
6:00 PM
What is a frostbite?
A race car driver won a 200 mile race with a speed of 159.5 miles per hour. Find the driver's time.
Answer:
1.255 seconds
Step-by-step explanation:
We can use the formula:
time = distance ÷ speed
to find the driver's time. Here, the distance is 200 miles and the speed is 159.5 miles per hour. Substituting these values into the formula, we get:
time = 200 miles ÷ 159.5 miles per hour
time = 1.255 seconds
(12²-15+17)+16= what is the answer
162
Step-by-step explanation:
(12 square - 15 + 17) + 16
=(144 - 15 + 17) + 16
=146 + 16
=162
Find the area of the parallelogram
The area of the parallelogram is 189 square units
How to determine the areaFirst, we have the determine the length of the base and height.
The distance between the lines x = 9 and f(x) = 9 + 2x is the height
We have that the line parallel to f(x) passes through (4, 11)
The equation in point-slope form is;
y - 11 = 2(x - 4
y = 2x + 3
Substitute x = 9 in the equation, y = 2x + 3.
y = 2(9) + 3 = 21
The points are then (9, 21) and (9, 0).
The distance between the y-axis and the line x = 9 is the base.
Base = 9 units.
The formula for calculating area of a parallelogram is given by ;
= base × height
= 9 × 21
= 189 square units.
Learn more about parallelograms at: https://brainly.com/question/10744696
#SPJ1
there are 50 people in a coffee shop fourteen are tourist.what percent of people in the shop are tourist and non tourist
Answer:
tourist: 28%
non-tourist: 72%
Step-by-step explanation:
total: 50
tourists: 14
non-tourists:50 - 14 = 36
tourist percentage: 14/50 × 100% = 28%
non-tourist percentage: 36/50 × 100 = 72%
4) AD is a common internal tangent to circles B and C. Find the length of the radius
of circle B. Round to the nearest hundredth. (Hint: Prove that the two triangles
are similar and use proportions to find missing lengths.) (10 points)
I
B
E
6
D
Both triangles in the image are similar based on the AAA similarity theorem. The radius of the circle B is therefore calculated as: AB = 12.
What are similar triangles?Similar triangles are geometric figures that have the same shape but may differ in size. They have corresponding angles that are equal and corresponding sides that are in proportion to each other.
Since AD serves as a common tangent, angle BAE is equal to 90 degrees, which is also equal to angle CDE due to being opposite angles.
By the Angle-Angle-Angle (AAA) similarity criterion, triangles ABE and DCE are similar.
Therefore:
AB/EA = DC/ED
Substitute:
AB/18 = 4/6
Cross multiply:
AB = 18 * 4/6
AB = 12
Therefore, the radius of the circle B is: 12.
Learn more about Similar triangles on:
https://brainly.com/question/27996834
#SPJ1
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.
Find the average rate of change of each function over the interval (0, 3). Match each representation with its respective average rate of change.
-1
-2
X
0
6
= 2² + 2x - 5
1
3
2
3 4
-3
The correct matches are:
-1: 0
-2: 0
X: 14/3
0: 0
6: Not used
= 2² + 2x - 5: Not used
To match the representations with their respective average rates of change, we need to calculate the average rate of change for each function over the interval (0, 3) and compare it to the given values.
Let's calculate the average rate of change for each function:
Function: 2² + 2x - 5
To find the average rate of change, we need to calculate the difference in function values divided by the difference in x-values:
Average rate of change = (f(3) - f(0)) / (3 - 0)
Average rate of change = ((2² + 2(3) - 5) - (2² + 2(0) - 5)) / 3
Average rate of change = (13 - (-1)) / 3
Average rate of change = 14 / 3
Match: X = 14/3
Function: -1
Since the function is constant, the average rate of change is 0.
Match: 0
Function: 2
Since the function is constant, the average rate of change is 0.
Match: 0
Function: 3
Since the function is constant, the average rate of change is 0.
Match: 0
Function: -2
Since the function is constant, the average rate of change is 0.
Match: 0
Function: -3
Since the function is constant, the average rate of change is 0.
Match: 0
Therefore, the correct matches are:
-1: 0
-2: 0
X: 14/3
0: 0
6: Not used
= 2² + 2x - 5: Not used
for such more question on average rates
https://brainly.com/question/23377525
#SPJ8
find the value of x and the measure of angle axc
Answer:
x = 4
m<AXC = 150
Step-by-step explanation:
m<1 + m<2 = m<AXC
102 + 10x + 8 = 6(6x + 1)
10x + 110 = 36x + 6
26x = 104
x = 4
m<AXC = 6(6x + 1)
m<AXC = 6(24 + 1)
m<AXC = 150
Determine the period.
NAV
8 10 12 14
3
2
1
-1
-2
-3
2
Answer:
7
Step-by-step explanation:
V looking shape has ends at 1 & 8
8 - 1 = 7
brainly
How many gallons of a 50% antifreeze solution must be mixed with 70 gallons of 10% antifreeze to get a mixture that is 40% antifreeze?
Answer: 180 gallons needed
Step-by-step explanation:
Zykeith,
Assume x gallons of 50% antifreeze is needed
Final mixture is x + 60 gallons
Amount of antifreeze in mixture is 0.4*(x+60)
Amount of antifreeze added is .5x + .1*60 = .5x + 6
so .5x + 6 = .4(x + 60)
.5x -.4x = 24 -6
.1x = 18
x = 180
Let x be the number of gallons of the 50% antifreeze solution needed. We know that the resulting mixture will be 70 + x gallons. To get a 40% antifreeze mixture, we can set up the following equation:
[tex]{\implies 0.5x + 0.1(70) = 0.4(70 + x)}[/tex]
Simplifying the equation:
[tex]\qquad\implies 0.5x + 7 = 28 + 0.4x[/tex]
[tex]\qquad\quad\implies 0.1x = 21[/tex]
[tex]\qquad\qquad\implies \bold{x = 210}[/tex]
[tex]\therefore[/tex] We need 210 gallons of the 50% antifreeze solution to mix with 70 gallons of 10% antifreeze to get a mixture that is 40% antifreeze.
[tex]\blue{\overline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
Can someone help me with this question?
Answer: - 27
Step-by-step explanation:
Plug in for x = 3 and y = -6
I'll start with x to make it easier.
Plugging in x =3
[tex]\sqrt{x^4}[/tex]
Means that first we find x^4, and take the square root of that result.
1. Find x^4
x = 3
3^4 = 3 * 3 * 3 *3 = 81
2. Take the square root of x^4
Square root of 81 = 9
So [tex]\sqrt{x^4}[/tex] = 9
Plugging in y = -6
Let's move onto plugging in y, which appears in the expression as y²
y = -6
so y² = -6 * -6 = 36
Putting this together into the expression
[tex]\sqrt{x^4}[/tex] - y²
9 - 36 = -27
Jade decided to rent movies for a movie marathon over the weekend. The function g(x) represents the amount of money spent in dollars, where x is the number of movies. Does a possible solution of (6.5, $17.50) make sense for this function? Explain your answer.
Yes. The input and output are both feasible.
No. The input is not feasible.
No. The output is not feasible.
No. Neither the input nor output is feasible.
The output value is feasible. The input value is not feasible, the possible solution of (6.5, $17.50) does not make sense for this function. The correct answer is No. The input is not feasible.
Jade decided to rent movies for a movie marathon over the weekend.
The function g(x) represents the amount of money spent in dollars, where x is the number of movies.
The given function is g(x) which represents the amount of money spent in dollars, where x is the number of movies.
The solution given is (6.5, $17.50).
We need to find whether the solution makes sense for the given function or not.
The input is given as 6.5 and the output is given as $17.50.
This means that Jade rented 6.5 movies and spent $17.50 on renting those movies.
To check whether the solution makes sense or not, we need to see if the input and output values are feasible or not.
The input value 6.5 is not a feasible value because it is not possible to rent half a movie.
Jade can rent 6 movies or 7 movies but not 6.5 movies.
Therefore, the input value is not feasible.
On the other hand, the output value $17.50 is a feasible value because it is possible for Jade to spend $17.50 on renting 6 movies.
The output value is feasible.
Since the input value is not feasible, the possible solution of (6.5, $17.50) does not make sense for this function. The correct answer is No. The input is not feasible.
For more related questions on feasible:
https://brainly.com/question/32957392
#SPJ8
The Hernandez family orders 3 large pizzas. They cut the pizzas so that each pizza has the same number of slices, giving them a total of 24 slices.
The Wilson family also orders several large pizzas from the same pizza restaurant. They also cut the pizzas so that all their pizzas have the same number of slices. For the Wilson family, the equation y = 10x represents the relationship, where x represents the number of pizzas and y represents the number of total slices.
Which statements best describe the pizzas bought by the Hernandez and Wilson families? Select two options.
Rewrite 9 2/7 as an improper fraction. 25/2 65/7 25/7 23/7 Rewrite 2 4/5 as an improper fraction. 10/4 13/5 14/5 22/5 Find the product of 9 2/7 and 2 4/5. Express your answer in simplest form. 26 130/5 910/35 15
Answer:
1. 9 2/7 = (63+2)/7 = 65/7
2. 2 4/5 = (10+4)/5 = 14/5
3. 65/7 * 14/5 = 910/35 = 26
Which of the following gives the correct range for the piecewise graph?
A coordinate plane with a segment going from the point negative 3 comma 2 to 0 comma 1 and another segment going from the point 0 comma 1 to 5 comma negative 4.
The correct range for the piecewise graph is [-4, 2].
To solve this problemWe need to find the minimum and maximum values of the y-coordinates.
The first segment goes from (-3, 2) to (0, 1), so the range for this segment is from 1 to 2.
The second segment goes from (0, 1) to (5, -4), so the range for this segment is from -4 to 1.
We must take into account the minimum and maximum values from each segments in order to determine the overall range. The minimum and highest values are -4 and 2, respectively.
Therefore, the correct range for the piecewise graph is [-4, 2].
Learn more about piecewise graph here : brainly.com/question/3628123
#SPJ1
Simplify the expression by combining
like terms:
2y + 2 + 3y + 5
Enter the number that belongs in the green box.
[?]y + [ ]
A grain su nas a cylindrical shape. Its diameter is 19 ft, and
its height is 50 ft.
Answer the parts below. Make sure that you use the correct
units in your answers. If necessary, refer to the
list of geometry formulas.
(a) Find the exact volume of the silo. Write your answer in terms of
Exact volume:
Approximate volume:
(b) Using the ALEKS calculator, approximate the volume of the silo.
To do the approximation, use your answer to part (a) and the button on the calculator. Round
your answer to nearest hundredth.
a. The exact volume is V = π(9.5 ft)²(50 ft) = 225π ft³.
b. Rounding the answer to the nearest hundredth, the approximate volume of the silo is 706.50 ft³.
(a) The exact volume of the silo can be found using the formula for the volume of a cylinder, which is V = πr²h,
where r is the radius and h is the height.
Since the diameter is given, we can divide it by 2 to find the radius.
The radius of the silo is 19 ft / 2 = 9.5 ft.
The height of the silo is 50 ft.
Using these values, the exact volume of the silo is:
V = π(9.5 ft)²(50 ft) = 225π ft³.
The approximate volume can be found using the ALEKS calculator, which is not available in this text-based interface.
However, you can use the exact volume calculated above to manually approximate the volume to the nearest hundredth by evaluating the expression using the value of π as approximately 3.14 or 22/7.
(b) Approximate volume using the ALEKS calculator: [Please use an online calculator or a scientific calculator to approximate the value to the nearest hundredth].
For similar question on exact volume.
https://brainly.com/question/27535498
#SPJ8
2) Looking at your average from question 1, with an expected weight of 4 ounces, what is the % error in actual weights? (Assume you think the answer is 10%. Find 10% of 4 ounces to check to see if that answer is reasonable!) Do not round!
A) 17.5%
B) .128%
C) 10%
D) 0.175%
The calculated percentage error with the assumed answer of 10%
To find the percentage error in actual weights, we can use the formula:
Percentage Error = [(|Measured Value - Expected Value|) / Expected Value] * 100%
In this case, the expected weight is 4 ounces. Let's assume the measured value is 10% off from the expected value. So the measured value would be:
Measured Value = Expected Value + (10% of Expected Value)
= 4 ounces + (10/100) * 4 ounces
= 4 ounces + 0.4 ounces
= 4.4 ounces
Now we can calculate the percentage error:
Percentage Error = [(|4.4 ounces - 4 ounces|) / 4 ounces] * 100%
= [(0.4 ounces) / 4 ounces] * 100%
= (0.4/4) * 100%
= 0.1 * 100%
= 10%
Comparing the calculated percentage error with the assumed answer of 10%, we can see that they are the same.
The percentage error represents the deviation from the expected value as a percentage of the expected value itself. In this case, it indicates that the actual weights deviate by 10% from the expected weight of 4 ounces. The calculated percentage error with the assumed answer of 10%
For more such questions on percentage error
https://brainly.com/question/30760250
#SPJ8
What is the mixed number or the fraction?? Please help
Drag each shape and value to the correct location on the image. Not all labels will be used.
The tower has a base that is 24 meters wide. The height is shown for the separate sections of the tower.
What is an appropriate shape to model each section of the tower? What is an approximate surface area if each of those shapes?
The appropriate shape to model each section of the tower are the cone and the cylinder.
The approximate surface area of each shape would be =
For cone = 1,041.27m²
For cylinder = 3,543.72m².
How to calculate the surface area of each shape given above?The first shape is a cone and the formula for the surface area = A = πr(r+√h²+r²)
where;
Radius = 24/2 = 12
height = 10m
Area = 1,041.27m²
For cylinder:
A = 2πrh+2πr²
where:
r = 12m
h = 35m
A = 3,543.72m²
Learn more about area here:
https://brainly.com/question/28470545
#SPJ1
A marble is rolling up an inclined plane. The distance (in cm) the marble has rolled after t seconds is given by s(t)=100t/t+1
a. What is the initial velocity of the marble?
b. How fast is the marble rolling at time 4 seconds?
c. At what time is the velocity 50 cm/s?
d. How fast is the marble rolling when it is 90 cm from its starting point?
e. Find and interpret lim s(t) t-> infinity and lim v(t) lim t-> infinity. Do you think this model is valid for large values of t?
Explain.
a. The initial velocity of the marble is 0 cm/s.
b. The marble is rolling at a speed of 80 cm/s at 4 seconds.
c. The velocity is 50 cm/s at approximately t = 2√2 - 1 seconds.
d. The marble is rolling at a speed of 90 cm/s when it is 90 cm from its starting point at t = 9 seconds.
e. lim s(t) as t approaches infinity is 100 cm and lim v(t) as t approaches infinity is 0 cm/s; the model may not be valid for large values of t as it assumes the marble is rolling up an inclined plane without considering other factors such as friction.
a. To find the initial velocity of the marble, we need to calculate the limit of the function s(t) as t approaches 0:
lim (t->0) s(t) = lim (t->0) (100t / (t + 1))
By substituting 0 into the expression, we get:
lim (t->0) (0 / (0 + 1)) = 0 / 1 = 0.
Therefore, the initial velocity of the marble is 0 cm/s.
b. To find the speed of the marble at time 4 seconds, we substitute t = 4 into the expression for s(t):
s(4) = 100(4) / (4 + 1) = 400 / 5 = 80 cm/s
The marble is rolling at a speed of 80 cm/s at 4 seconds.
c. To find the time at which the velocity is 50 cm/s, we set s'(t) (the derivative of s(t)) equal to 50 and solve for t:
s'(t) = 50
[tex](100 / (t + 1))^2 = 50[/tex]
100 / (t + 1) = ±√50
100 = ±√50(t + 1)
±√50(t + 1) = 100
t + 1 = 100 / ±√50
t + 1 = ±2√2
Since time cannot be negative, we take t + 1 = 2√2:
t = 2√2 - 1
The velocity is 50 cm/s at approximately t = 2√2 - 1 seconds.
d. To find the speed of the marble when it is 90 cm from its starting point, we need to solve the equation s(t) = 90 for t:
100t / (t + 1) = 90
100t = 90(t + 1)
100t = 90t + 90
10t = 90
t = 9
The marble is rolling at a speed of 90 cm/s when it is 90 cm from its starting point, which occurs at t = 9 seconds.
e. The limit of s(t) as t approaches infinity (lim s(t) as t->∞) is calculated by considering the dominant term in the numerator and denominator:
lim (t->∞) (100t / (t + 1))
≈ lim (t->∞) (100t / t)
= lim (t->∞) 100
= 100
Therefore, lim s(t) as t approaches infinity is 100 cm.
Similarly, the limit of v(t) (velocity) as t approaches infinity (lim v(t) as t->∞) can be found by taking the derivative of s(t) and evaluating the limit:
[tex]v(t) = s'(t) = 100 / (t + 1)^2[/tex]
lim (t->∞) v(t) = lim (t->∞) (100 / [tex](t + 1)^2)[/tex]
≈ lim (t->∞)[tex](100 / t^2)[/tex]
= lim (t->∞) [tex](100 / t^2)[/tex]
= 0.
The limit of v(t) as t approaches infinity is 0 cm/s.
As for the validity of the model for large values of t, it is important to note that the given model assumes that the marble is rolling up an inclined plane.
However, without further information about the nature of the inclined plane (e.g., its slope, frictional forces), it is difficult to determine the accuracy.
For similar question on initial velocity.
https://brainly.com/question/29110645
#SPJ8
A rocket is launched from 168 feet above the ground at the time t=0. The function that model thsi situation is given by h =-16t^2+96t+168 where t is the time in seconds and h is the height of the position of the rocket above the ground level in feet. what is the reasonable domain restriction for t in this context?
The domain for the time in this context is (0, 7.4)
What is an equation?An equation is an expression that shows how numbers and variables are related to each other using mathematical operators.
Let h represent the height of the ball after spending t seconds. A ball is thrown straight up from the top of a building that is 168 ft high with an initial velocity of 96 ft/s.
Given the equation:
h(t) = -16t² + 96t + 168
The reasonable domain restriction for t, is when the height of the rocket is above the ground. Hence the domain for the time in this context is (0, 7.4)
Find out more on equation at: https://brainly.com/question/29174899
#SPJ1
What does 13 round to the nearest thousandth
Part of the graph of the function f(x) = (x – 1)(x + 7) is shown below.
Which statements about the function are true? Select three options.
The vertex of the function is at (–4,–15).
The vertex of the function is at (–3,–16).
The graph is increasing on the interval x > –3.
The graph is positive only on the intervals where x < –7 and where
x > 1.
The graph is negative on the interval x < –4.
Answer:
The vertex of the function is at (–3,–16)
The graph is increasing on the interval x > –3
The graph is positive only on the intervals where x < –7 and where
x > 1.
Step-by-step explanation:
The graph of [tex]f(x)=(x-1)(x+7)[/tex] has clear zeroes at [tex]x=1[/tex] and [tex]x=-7[/tex], showing that [tex]f(x) > 0[/tex] when [tex]x < -7[/tex] and [tex]x > 1[/tex]. To determine where the vertex is, we can complete the square:
[tex]f(x)=(x-1)(x+7)\\y=x^2+6x-7\\y+16=x^2+6x-7+16\\y+16=x^2+6x+9\\y+16=(x+3)^2\\y=(x+3)^2-16[/tex]
So, we can see the vertex is (-3,-16), meaning that where [tex]x > -3[/tex], the function will be increasing on that interval