To determine the stationary points for the given functions and also find the local minimum, local maximum, and inflection points for the functions, we need to use MATLAB and Eigenvalues.
The given functions are not provided in the question, hence we cannot solve the question completely. However, we can still provide an explanation on how to approach the given problem.To determine the stationary points for a function using MATLAB, we can use the "fminbnd" function. This function returns the minimum point for a function within a specified range. The stationary points of a function are where the gradient is equal to zero. Hence, we need to find the derivative of the function to find the stationary points.The local maximum or local minimum is determined by the second derivative of the function at the stationary points. If the second derivative is positive at the stationary point, then it is a local minimum, and if it is negative, then it is a local maximum. If the second derivative is zero, then the test is inconclusive, and we need to use higher-order derivatives or graphical methods to determine the nature of the stationary point. The inflection points of a function are where the second derivative changes sign. Hence, we need to find the second derivative of the function and solve for where it is equal to zero or changes sign. To find the eigenvalues of the Hessian matrix of the function at the stationary points, we can use the "eig" function in MATLAB. If both eigenvalues are positive, then it is a local minimum, if both eigenvalues are negative, then it is a local maximum, and if the eigenvalues are of opposite sign, then it is an inflection point. If one of the eigenvalues is zero, then the test is inconclusive, and we need to use higher-order derivatives or graphical methods to determine the nature of the stationary point. Hence, we need to apply these concepts using MATLAB to determine the stationary points, local minimum, local maximum, and inflection points of the given functions.
Learn more about Maximum:https://brainly.com/question/30236354
#SPJ11
Given f(x)=−6+x2, calculate the average rate of change on each of the given intervals. (a) The average rate of change of f(x) over the interval [−4,−3.9] is (b) The average rate of change of f(x) over the interval [−4,−3.99] is (c) The average rate of change of f(x) over the interval [−4,−3.999] is (d) Using (a) through (c) to estimate the instantaneous rate of change of f(x) at x=−4, we have
The average rate of change on each of the given intervals and the estimate of the instantaneous rate of change of f(x) at x = -4 is calculated and the answer is found to be -∞.
Given f(x)=−6+x², we have to calculate the average rate of change on each of the given intervals.
Using the formula, The average rate of change of f(x) over the interval [a,b] is given by: f(b) - f(a) / b - a
(a) The average rate of change of f(x) over the interval [-4, -3.9] is given by: f(-3.9) - f(-4) / -3.9 - (-4)f(-3.9) = -6 + (-3.9)² = -6 + 15.21 = 9.21f(-4) = -6 + (-4)² = -6 + 16 = 10
The average rate of change = 9.21 - 10 / -3.9 + 4 = -0.79 / 0.1 = -7.9
(b) The average rate of change of f(x) over the interval [-4, -3.99] is given by: f(-3.99) - f(-4) / -3.99 - (-4)f(-3.99) = -6 + (-3.99)² = -6 + 15.9601 = 9.9601
The average rate of change = 9.9601 - 10 / -3.99 + 4 = -0.0399 / 0.01 = -3.99
(c) The average rate of change of f(x) over the interval [-4, -3.999] is given by:f(-3.999) - f(-4) / -3.999 - (-4)f(-3.999) = -6 + (-3.999)² = -6 + 15.996001 = 9.996001
The average rate of change = 9.996001 - 10 / -3.999 + 4 = -0.003999 / 0.001 = -3.999
(d) Using (a) through (c) to estimate the instantaneous rate of change of f(x) at x = -4, we have
f'(-4) = lim h → 0 [f(-4 + h) - f(-4)] / h= lim h → 0 [(-6 + (-4 + h)²) - (-6 + 16)] / h= lim h → 0 [-6 + 16 - 8h - 6] / h= lim h → 0 [4 - 8h] / h= lim h → 0 4 / h - 8= -∞.
Learn more about instantaneous rate of change
https://brainly.com/question/30760748
#SPJ11
The average number of misprints per page in a magazine is whixch follows a Poisson's Probability distribution. What is the probability that the number of misprints on a particular page of that magazine is 2?
The probability that a particular book is free from misprints is 0.2231. option D is correct.
The average number of misprints per page (λ) is given as 1.5.
The probability of having no misprints (k = 0) can be calculated using the Poisson probability mass function:
[tex]P(X = 0) = (e^{-\lambda}\times \lambda^k) / k![/tex]
Substituting the values:
P(X = 0) = [tex](e^{-1.5} \times 1.5^0) / 0![/tex]
Since 0! (zero factorial) is equal to 1, we have:
P(X = 0) = [tex]e^{-1.5}[/tex]
Calculating this value, we find:
P(X = 0) = 0.2231
Therefore, the probability that a particular book is free from misprints is approximately 0.2231.
To learn more on probability click:
https://brainly.com/question/11234923
#SPJ4
Question 13: The average number of misprints per page of a book is 1.5.Assuming the distribution of number of misprints to be Poisson. The probability that a particular book is free from misprints,is B. 0.435 D. 0.2231 A. 0.329 C. 0.549
An organization drills 3 wells to provide access to clean drinking water. The cost (in dollars ) to drill and maintain the wells for n years is represented by 34,500+540n . Write and interpret an expr
This means that the total cost for drilling and maintaining the wells for 5 years would be $37,500.
The expression representing the cost (in dollars) to drill and maintain the wells for n years is given by:
34,500 + 540n
In the given expression, the constant term 34,500 represents the initial cost of drilling the wells, which includes expenses such as equipment, labor, and permits. The term 540n represents the cost of maintaining the wells for n years, with 540 being the annual maintenance cost per well.
Interpreting the expression:
The expression allows us to calculate the total cost of drilling and maintaining the wells for a given number of years, n. As the value of n increases, the cost will increase proportionally, reflecting the additional expenses incurred for maintenance over time.
For example, if we plug in n = 5 into the expression, we can calculate the cost of drilling and maintaining the wells for 5 years:
[tex]\(34,500 + 540 \times 5 = 37,500\).[/tex]
To know more about Expression visit-
brainly.com/question/14083225
#SPJ11
The weekly demand for Math Wars - Attack of the Limits video games is given by p=420/(x−6)+4000 where x is the number thousands of video games produced and sold, and p is in dollars. Using the Marginal Revenue function, R ′(x), approximate the marginal revenue when 12,000 video games have been produced and sold.
_____dollars
The marginal revenue when 12,000 video games have been produced and sold is 105 dollars.
Given function, p=420/(x-6)+4000
To find the marginal revenue function, R′(x)
As we know, Revenue, R = price x quantity
R = p * x (price, p and quantity, x are given in the function)
R = (420/(x-6) + 4000) x
Revenue function, R(x) = (420/(x-6) + 4000) x
Differentiating R(x) w.r.t x,
R′(x) = d(R(x))/dx
R′(x) = [d/dx] [(420/(x-6) + 4000) x]
On expanding and simplifying,
R′(x) = 420/(x-6)²
Now, to approximate the marginal revenue when 12,000 video games have been produced and sold, we need to put the value of x = 12
R′(12) = 420/(12-6)²
R′(12) = 105 dollars
Therefore, the marginal revenue when 12,000 video games have been produced and sold is 105 dollars.
To know more about marginal revenue function visit:
https://brainly.com/question/30764099
#SPJ11
Find the distance from the point (5,0,0) to the line
x=5+t, y=2t , z=12√5 +2t
The distance from the point (5,0,0) to the line x=5+t, y=2t, z=12√5 +2t is √55.
To find the distance between a point and a line in three-dimensional space, we can use the formula for the distance between a point and a line.
Given the point P(5,0,0) and the line L defined by the parametric equations x=5+t, y=2t, z=12√5 +2t.
We can calculate the distance by finding the perpendicular distance from the point P to the line L.
The vector representing the direction of the line L is d = <1, 2, 2>.
Let Q be the point on the line L closest to the point P. The vector from P to Q is given by PQ = <5+t-5, 2t-0, 12√5 +2t-0> = <t, 2t, 12√5 +2t>.
To find the distance between P and the line L, we need to find the length of the projection of PQ onto the direction vector d.
The projection of PQ onto d is given by (PQ · d) / |d|.
(PQ · d) = <t, 2t, 12√5 +2t> · <1, 2, 2> = t + 4t + 4(12√5 + 2t) = 25t + 48√5
|d| = |<1, 2, 2>| = √(1^2 + 2^2 + 2^2) = √9 = 3
Thus, the distance between P and the line L is |(PQ · d) / |d|| = |(25t + 48√5) / 3|
To find the minimum distance, we minimize the expression |(25t + 48√5) / 3|. This occurs when the numerator is minimized, which happens when t = -48√5 / 25.
Substituting this value of t back into the expression, we get |(25(-48√5 / 25) + 48√5) / 3| = |(-48√5 + 48√5) / 3| = |0 / 3| = 0.
Therefore, the minimum distance between the point (5,0,0) and the line x=5+t, y=2t, z=12√5 +2t is 0. This means that the point (5,0,0) lies on the line L.
Learn more about parametric equations here:
brainly.com/question/29275326
#SPJ11
Find all polynomial solutions p(t, x) of the wave equation utt=uzz with (a) deg p ≤ 2, (b) deg p = 3.
The polynomial solution for deg p = 3 is p(t, x) = At³ + Bx³ + Ct² + Dx² - 3At² - 2Ct - 3Bx² - 2Dx, where A, B, C, and D are constants.
(a) Case: deg p ≤ 2
Let's assume p(t, x) = At² + Bx² + Ct + Dx + E, where A, B, C, D, and E are constants.
Substituting p(t, x) into the wave equation, we have:
(p_tt) = 2A,
(p_zz) = 2B,
(p_t) = 2At + C,
(p_z) = 2Bx + D.
Therefore, the wave equation becomes:
2A = 2B.
This implies that A = B.
Next, we consider the terms involving t and x:
2At + C = 0,
2Bx + D = 0.
From the first equation, we get C = -2At. Substituting this into the second equation, we have D = -4Bx.
Finally, we have the constant term:
E = 0.
So, the polynomial solution for deg p ≤ 2 is p(t, x) = At² + Bx² - 2At - 4Bx, where A and B are constants.
(b) Case: deg p = 3
Let's assume p(t, x) = At³ + Bx³ + Ct² + Dx² + Et + Fx + G, where A, B, C, D, E, F, and G are constants.
Substituting p(t, x) into the wave equation, we have:
(p_tt) = 6At,
(p_zz) = 6Bx,
(p_t) = 3At² + 2Ct + E,
(p_z) = 3Bx² + 2Dx + F.
Therefore, the wave equation becomes:
6At = 6Bx.
This implies that A = Bx.
Next, we consider the terms involving t and x:
3At² + 2Ct + E = 0,
3Bx² + 2Dx + F = 0.
From the first equation, we get E = -3At² - 2Ct. Substituting this into the second equation, we have F = -3Bx² - 2Dx.
Finally, we have the constant term:
G = 0.
So, the polynomial solution for deg p = 3 is p(t, x) = At³ + Bx³ + Ct² + Dx² - 3At² - 2Ct - 3Bx² - 2Dx, where A, B, C, and D are constants.
Learn more about Polynomial Solution here:
https://brainly.com/question/29599975
#SPJ11
This test: 100 point (s) possible This question: 2 point (s) possible Find an equation for the line with the given properties. Express your answer using either the general form or the slope -intercept
The slope-intercept form of a linear equation is [tex]y = mx + b[/tex], where m is the slope of the line and b is the y-intercept.
A linear equation is of the form [tex]y = mx + b[/tex]. The slope-intercept form of a linear equation is [tex]y = mx + b[/tex], where m is the slope of the line and b is the y-intercept. The slope is the change in the y-coordinates divided by the change in the x-coordinates. For example, if the slope of the line is 2, then for every one unit that x increases, y increases by two units.
The general form of a linear equation is [tex]Ax + By = C[/tex], where A, B, and C are constants.
To convert the slope-intercept form to the general form, rearrange the equation to get [tex]-mx + y = b[/tex].
Multiply each term of the equation by -1 to get [tex]mx - y = -b[/tex].
Finally, rearrange the equation to get [tex]Ax + By = C[/tex], where [tex]A = m[/tex], [tex]B = -1[/tex], and[tex]C = -b[/tex].
Learn more about slope here:
https://brainly.com/question/27892019
#SPJ11
Hudson and Knox are in a race. Hudson is running at a speed of 8. 8 feet per second. Knox got a 30-foot head start and is running at a speed of 6. 3 feet per second. How many seconds will it take until Hudson and Knox have run the same number of feet? Write the equation
It will take 12 seconds for Hudson and Knox to have run the same number of feet.
Let's first write the equation to represent the situation described in the problem.
Let's assume it takes t seconds for Hudson and Knox to run the same number of feet. In that time, Hudson will have run a distance of 8.8t feet, and Knox will have run a distance of 30 + 6.3t feet. Since they are running the same distance, we can set these two expressions equal to each other:
8.8t = 30 + 6.3t
Now we can solve for t:
8.8t - 6.3t = 30
2.5t = 30
t = 12
Therefore, it will take 12 seconds for Hudson and Knox to have run the same number of feet.
Learn more about number from
https://brainly.com/question/27894163
#SPJ11
For a large sporting event the broadcasters sold 68 ad slots for a total revenue of $152 million. What was the mean price per ad slot? The mean price per ad slot was $2.2 million. (Round to one decimal place as needed.)
The broadcasters sold 68 ad slots for $152 million, resulting in a total revenue of $152 million. To find the mean price per ad slot, divide the total revenue by the number of ad slots sold. The formula is μ = Total Revenue / Number of Ad Slots sold, resulting in a mean price of $2.2 million.
For a large sporting event, the broadcasters sold 68 ad slots for a total revenue of $152 million. The task is to find the mean price per ad slot. The mean price per ad slot was $2.2 million. (Round to one decimal place as needed.)The formula for the mean of a sample is given below:
μ = (Σ xi) / n
Where,μ represents the mean of the sample.Σ xi represents the summation of values from i = 1 to i = n.n represents the total number of values in the sample.
The mean price per ad slot can be found by dividing the total revenue by the number of ad slots sold. We are given that the number of ad slots sold is 68 and the total revenue is $152 million.
Let's put these values in the formula.
μ = Total Revenue / Number of Ad Slots sold
μ = $152 million / 68= $2.23529411764
The mean price per ad slot is $2.2 million. (Round to one decimal place as needed.)
Therefore, the mean price per ad slot is $2.2 million.
To know more about mean Visit:
https://brainly.com/question/31101410
#SPJ11
Fill in the blank: When finding the difference between 74 and 112, a student might say, and then I added 2 more tens onto "First, I added 6 onto 74 to get a ______80 to get to 100 because that's another______
When finding the difference between 74 and 112, a student might say, "First, I added 6 onto 74 to get a number that ends in 0, specifically 80, to get to 100 because that's another ten."
To find the difference between 74 and 112, the student is using a strategy of breaking down the numbers into smaller parts and manipulating them to simplify the subtraction process. In this case, the student starts by adding 6 onto 74, resulting in 80. By doing so, the student is aiming to create a number that ends in 0, which is closer to 100 and represents another ten. This approach allows for an easier mental calculation when subtracting 80 from 112 since it involves subtracting whole tens instead of dealing with more complex digit-by-digit subtraction.
Learn more about subtracting here : brainly.com/question/13619104
#SPJ11
tanning parlor located in a major located in a major shopping center near a large new england city has the following history of customers over the last four years (data are in hundreds of customers) year feb may aug nov yearly totals 2012 3.5 2.9 2.0 3.2 11.6 2013 4.1 3.4 2.9 3.6 14 2014 5.2 4.5 3.1 4.5 17.3 2015 6.1 5.0 4.4 6.0 21.5
The Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.
Time series forecasting differs from supervised learning in their goal. One of the main variables in forecasting is the history of the very metric we are trying to predict. Supervised learning on the other hand usually seeks to predict using primarily exogenous variables.
A and B. The table is shown below with attached python code at the very end. To get this values simply use stats model as they have all the functions needed. Seasonal index is also in the table.
C and D: To forecast either of these, we will use tbats with a frequency of 4 which has proven to be better than an auto arima on average. Again code, is attached at end. Forecasts are below. It seems tabs though a naïve forecast was best for the cycle factor.
Cycle Factor Forecast: 0.13,0.13,0.13,0.13
Overall Forecast: 6.3,5.4,4.9,6.3
E:0.324
Again I simply created a function in python to calculate the RMSE of any two time series.
F.
CODE:
import pandas as pd
from statsmodels.tsa.seasonal import seasonal_decompose
import numpy as np
import matplotlib.pyplot as plt
data=3.5,2.9,2.0,3.2,4.1,3.4,2.9,2.6,5.2,4.5,3.1,4.5,6.1,5,4.4,6,6.8,5.1,4.7,6.5
df=pd.DataFrame()
df"actual"=data
df.index=pd.date_range(start='1/1/2004', periods=20, freq='3M')
df"mv_avg"=df"actual".rolling(4).mean()
df"trend"=seasonal_decompose(df"actual",two_sided=False).trend
df"seasonal"=seasonal_decompose(df"actual",two_sided=False).seasonal
df"cycle"=seasonal_decompose(df"actual",two_sided=False).resid
def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())
rmse_values=rmse(np.array(6.3,5.4,4.9,6.3),np.array(6.8,5.1,4.7,6.5))
plt.style.use("bmh")
plot_df=df.ilocNo InterWiki reference defined in properties for Wiki called ""!
plt.plot(plot_df.index,plot_df"actual")
plt.plot(plot_df.index,plot_df"mv_avg")
plt.plot(plot_df.index,plot_df"trend")
plt.plot(df.ilocNo InterWiki reference defined in properties for Wiki called "-4"!.index,6.3,5.4,4.9,6.3)
plt.legend("actual","mv_avg","trend","predictions")
Therefore, the Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.
Learn more about the Cycle Factor Forecast here:
https://brainly.com/question/32348366.
#SPJ4
"Your question is incomplete, probably the complete question/missing part is:"
A tanning parlor located in a major shopping center near a large New England city has the following history of customers over the last four years (data are in hundreds of customers):
a. Construct a table in which you show the actual data (given in the table), the centered moving average, the centered moving-average trend, the seasonal factors, and the cycle factors for every quarter for which they can be calculated in years 1 through 4.
b. Determine the seasonal index for each quarter.
c. Project the cycle factor through 2008.
d. Make a forecast for each quarter of 2008.
e. The actual numbers of customers served per quarter in 2008 were 6.8, 5.1, 4.7 and 6.5 for quarters 1 through 4, respectively (numbers are in hundreds). Calculate the RMSE for 2008.
f. Prepare a time-series plot of the actual data, the centered moving averages, the long-term trend, and the values predicted by your model for 2004 through 2008 (where data are available).
Question 13 of 25
The graph of a certain quadratic function has no x-intercepts. Which of the
following are possible values for the discriminant? Check all that apply.
A. -18
B. 0
C. 3
D. -1
SUBMIT
Answer:
Since the graph of a certain quadratic function has no x-intercepts, the discriminant has to be negative, so A and D are possible values for the discriminant.
Which of the following maps are symmetries of the specified D?
Explain your reasoning.
(a) D = [0, 1], f (x) = x3;
(b) D = {x ∈R, 0 < y < 1}, f (x, y) = (x + 1, 1 −y);
The map which is symmetries of the specified D is D = {x ∈R, 0 < y < 1},
f (x, y) = (x + 1, 1 −y).
Symmetry in mathematics is a measure of how symmetric an object is. An object is symmetric if there is a transformation or mapping that leaves it unchanged. The concept of symmetry is prevalent in several fields, such as science, art, and architecture. Let's see which of the following maps are symmetries of the specified D:
(a) D = [0, 1],
f (x) = x3
The domain of the function is [0, 1], which is a one-dimensional space. The mapping will be a reflection or rotation if it is a symmetry. It's easy to see that x^3 is not symmetric around any axis of reflection, nor is it symmetric around the origin. Thus, this function has no symmetries.
(b) D = {x ∈R, 0 < y < 1},
f (x, y) = (x + 1, 1 −y)
This mapping is a reflection in the line x = −1, and it's symmetric. The reason for this is because it maps points on one side of the line to their mirror image on the other side of the line, leaving points on the line unchanged.
The mapping (x,y) -> (x+1,1-y) maps a point (x,y) to the point (x+1,1-y). We can see that the image of a point is the reflection of the point in the line x=-1.
Therefore, the mapping is a symmetry of D = {x ∈R, 0 < y < 1}.
Hence, the map which is symmetries of the specified D is D = {x ∈R, 0 < y < 1},
f (x, y) = (x + 1, 1 −y).
To know more about symmetries visit
https://brainly.com/question/14966585
#SPJ11
Substitute (x_(1),y_(1))=(2,4) and m=-2 into the point -slope form, y=m(x-x_(1))+y_(1). Determine the point -slope form of the line.
Therefore, the point-slope form of the line is y = -2x + 8.
To determine the point-slope form of the line using the given point (x₁, y₁) = (2, 4) and slope (m) = -2, we can substitute these values into the point-slope form equation:
y = m(x - x₁) + y₁
Substituting the values:
y = -2(x - 2) + 4
Simplifying:
y = -2x + 4 + 4
y = -2x + 8
To know more about point-slope form,
https://brainly.com/question/30589002
#SPJ11
Consider the line y=-(1)/(5)x+3 (a) What is the slope of a line perpendicular to this line? (b) What is the slope of a line parallel to this line?
For a line to be parallel to the given line, it must have the same slope. The slope of the given line is -1/5, so a line parallel to it will also have a slope of -1/5. The slope of a line perpendicular to the given line is 5.
a) The slope of a line perpendicular to y=-(1)/(5)x+3 is 5. b) The slope of a line parallel to y=-(1)/(5)x+3 is -1/5.
The given equation is y = -(1/5)x + 3.
The slope of the given line is -1/5.
For a line to be perpendicular to the given line, the slope of the line must be the negative reciprocal of -1/5, which is 5.
Thus, the slope of a line perpendicular to the given line is 5.
For a line to be parallel to the given line, the slope of the line must be the same as the slope of the given line, which is -1/5.
Thus, the slope of a line parallel to the given line is -1/5.
To understand the concept of slope in detail, let us consider the equation of the line y = mx + c, where m is the slope of the line. In the given equation, y=-(1)/(5)x+3, the coefficient of x is the slope of the line, which is -1/5.
Now, let's find the slope of a line perpendicular to this line. To find the slope of a line perpendicular to the given line, we must take the negative reciprocal of the given slope. Therefore, the slope of a line perpendicular to y=-(1)/(5)x+3 is the negative reciprocal of -1/5, which is 5.
To find the slope of a line parallel to the given line, we must recognize that parallel lines have the same slope. Hence, the slope of a line parallel to y=-(1)/(5)x+3 is the same as the slope of the given line, which is -1/5. Therefore, the slope of a line parallel to y=-(1)/(5)x+3 is -1/5. Hence, the slope of a line perpendicular to the given line is 5, and the slope of a line parallel to the given line is -1/5.
To know more about slope, visit:
https://brainly.com/question/29044610
#SPJ11
Solve and graph -3 x-10>5
Answer: x < -5
The graph has an open hole at -5 and shading to the left
The graph is below.
=====================================================
Work Shown:
-3x - 10 > 5
-3x > 5+10
-3x > 15
x < 15/(-3) ... inequality sign flips
x < -5
The inequality sign flips whenever we divide both sides by a negative number.
The graph has an open hole at -5 with shading to the left.
The open hole means "exclude this endpoint from the solution set".
vertex at (4,3), axis of symmetry with equation y=3, length of latus rectums 4, and 4p>0
The given information describes a parabola with vertex at (4,3), axis of symmetry with equation y=3, and a latus rectum length of 4. The value of 4p is positive.
1. The axis of symmetry is a horizontal line passing through the vertex, so the equation y=3 represents the axis of symmetry.
2. Since the latus rectum length is 4, we know that the distance between the focus and the directrix is also 4.
3. The focus is located on the axis of symmetry and is equidistant from the vertex and directrix, so it has coordinates (4+2, 3) = (6,3).
4. The directrix is also a horizontal line and is located 4 units below the vertex, so it has the equation y = 3-4 = -1.
5. The distance between the vertex and focus is p, so we can use the distance formula to find that p = 2.
6. Since 4p>0, we know that p is positive and thus the parabola opens to the right.
7. Finally, the equation of the parabola in standard form is (y-3)^2 = 8(x-4).
Learn more about parabola : brainly.com/question/11911877
#SPJ11
What is the equation of the following line? Be sure to scroll down first to see all answer options. (-2,-8) ( 0,0)
Answer:
y = -4x
Step-by-step explanation:
We can find the equation of the line in slope-intercept form, whose general equation is given by:
y = mx + b, where
m is the slope,and b is the y-intercept.Finding the slope (m):
We can find the slope (m) using the slope formula, which is given by:m = (y2 - y1) / (x2 - x1), where
(x1, y1) is one point on the line,and (x2, y2) is another point on the line.Thus, we can plug in (0, 0) for (x1, y1) and (2, -8) for (x2, y2) to find m, the slope of the line:
m = (-8 - 0) / (2 - 0)
m = -8/2
m = -4
Thus, the slope of the line is-4.
Finding the y-intercept (b):
We see that the point (0, 0) lies on the line so the y-intercept is 0 since the line intersects the y-axis at (0, 0).When the y-intercept is 0, we don't write it in the equation.Thus, the equation of the line is y = -4x.
a reporter bought hamburgers at randomly selected stores of two different restaurant chains, and had the number of calories in each hamburger measured. can the reporter conclude, at
Where the above conditions are given then the correct answer is -Yes, because the test value –3.90 is outside the noncritical region (Option C)
How is this so?To determine if the hamburgers from the two chains have a different number of calories, we can conduct an independent t-test.
Given -
Chain A -
- Sample size (n1) = 5
- Sample mean (x1) = 230 Cal
- Sample standard deviation (s1) = 23 Cal
Chain B -
- Sample size (n2) = 9
- Sample mean (x2) = 285 Cal
- Sample standard deviation (s2) = 29 Cal
The null hypothesis (H0) is that the two chains have the same number of calories, and the alternative hypothesis (Ha) is that they have a different number of calories.
Using an independent t-test, we calculate the test statistic -
t = (x1 - x2) / √((s1² / n1) + (s2² / n2))
Plugging in the values -
t = (230 - 285) / √((23² / 5) + (29² / 9))
t ≈ -3.90
To determine the critical region, we need to compare the test statistic to the critical value at a significance level of α = 0.05 with degrees of freedom df = smaller of (n1 - 1) or (n2 - 1).
The degrees of freedom in this case would be df = min(4, 8) = 4.
Looking up the critical value for a two-tailed t-test with df = 4 at α = 0.05, we find that it is approximately ±2.776.
Since the test statistic (-3.90) is outside the critical region (±2.776), we reject the null hypothesis.
Therefore, the reporter can conclude, at α = 0.05, that the hamburgers from the two chains have a different number of calories.
This means that the correct answer is -" Yes, because the test value –3.90 is outside the noncritical region" (Option C)
Learn more about t-test at:
https://brainly.com/question/6589776
#SPJ4
Full Question:
Although part of your question is missing, you might be referring to this full question:
A reporter bought hamburgers at randomly selected stores of two different restaurant chains, and had the number of Calories in each hamburger measured. Can the reporter conclude, at α = 0.05, that the hamburgers from the two chains have a different number of Calories? Use an independent t-test. df = smaller of n1 - 1 or n2 - 1.
Chain A Chain B
Sample Size 5 9
Sample Mean 230 Cal 285 Cal
Sample SD 23 Cal 29 Cal
A) No, because the test value –0.28 is inside the noncritical region.
B) Yes, because the test value –0.28 is inside the noncritical region
C) Yes, because the test value –3.90 is outside the noncritical region
D) No, because the test value –1.26 is inside the noncritical region
According to a company's websife, the top 10% of the candidates who take the entrance test will be called for an interview. The reported mean and standard deviation of the test scores are 63 and 9 , respectively. If test scores are normolly distributed, what is the minimum score required for an interview? (You may find it useful to reference the Z table. Round your final answer to 2 decimal places.)
The minimum score required for an interview is approximately 74.52 (rounded to 2 decimal places). To find the minimum score required for an interview, we need to determine the score that corresponds to the top 10% of the distribution.
Since the test scores are normally distributed, we can use the Z-table to find the Z-score that corresponds to the top 10% of the distribution.
The Z-score represents the number of standard deviations a particular score is away from the mean. In this case, we want to find the Z-score that corresponds to the cumulative probability of 0.90 (since we are interested in the top 10%).
Using the Z-table, we find that the Z-score corresponding to a cumulative probability of 0.90 is approximately 1.28.
Once we have the Z-score, we can use the formula:
Z = (X - μ) / σ
where X is the test score, μ is the mean, and σ is the standard deviation.
Rearranging the formula, we can solve for X:
X = Z * σ + μ
Substituting the values, we have:
X = 1.28 * 9 + 63
Calculating this expression, we find:
X ≈ 74.52
Therefore, the minimum score required for an interview is approximately 74.52 (rounded to 2 decimal places).
Learn more about cumulative probability here:
https://brainly.com/question/31714928
#SPJ11
An empty shipping box weighs 250 grams. The box is then filled with T-shirts. Each T-shirt weighs 132. 5 grams. The equation W = 250 + 132. 5T represents the relationship between the quantities in this situation, where W is the weight, in grams, of the filled box and T the number of shirts in the box. Select two possible solutions to the equation W = 250 + 132. 5T.
Two possible solutions to the equation W = 250 + 132.5T are:
T = 2, W = 515
T = 5, W = 912.5
To find possible solutions to the equation W = 250 + 132.5T, we need to substitute values for T and calculate the corresponding value of W.
Let's consider two possible values for T:
Solution 1: T = 2 (indicating 2 T-shirts in the box)
W = 250 + 132.5 * 2
W = 250 + 265
W = 515
So, one possible solution is T = 2 and W = 515.
Solution 2: T = 5 (indicating 5 T-shirts in the box)
W = 250 + 132.5 * 5
W = 250 + 662.5
W = 912.5
Therefore, another possible solution is T = 5 and W = 912.5.
Hence, two possible solutions to the equation W = 250 + 132.5T are:
T = 2, W = 515
T = 5, W = 912.5
Learn more about equation from
https://brainly.com/question/29174899
#SPJ11
Find all the values of the following. (1) (−16) ^1/4Place all answers in the following blank, separated by commas: (2) 1 ^1/5 Place all answers in the followina blank. sebarated bv commas: (3) i ^1/4 Place all answers in the followina blank. sebarated bv commas:
The required roots of the given expressions are:
(1) (1/√2 + i/√2), (-1/√2 + i/√2), (-1/√2 - i/√2), (1/√2 - i/√2).
(2)1
(3) [cos(π/8) + isin(π/8)], [cos(5π/8) + isin(5π/8)], [cos(9π/8) + isin(9π/8)], [cos(13π/8) + isin(13π/8)].
Formula used:For finding roots of a complex number `a+bi`,where `a` and `b` are real numbers and `i` is an imaginary unit with property `i^2=-1`.
If `r(cosθ + isinθ)` is the polar form of the complex number `a+bi`, then its roots are given by:r^(1/n) [cos(θ+2kπ)/n + isin(θ+2kπ)/n],where `n` is a positive integer and `k = 0,1,2,...,n-1.
Calculations:
(1) (-16)^(1/4)
This expression (-16)^(1/4) can be written as [16 × (-1)]^(1/4).
Therefore (-16)^(1/4) = [16 × (-1)]^(1/4) = 2^(1/4) × [(−1)^(1/4)] = 2^(1/4) × [cos((π + 2kπ)/4) + isin((π + 2kπ)/4)],where k = 0,1,2,3.
Therefore (-16)^(1/4) = 2^(1/4) × [(1/√2) + i(1/√2)], 2^(1/4) × [(−1/√2) + i(1/√2)],2^(1/4) × [(−1/√2) − i(1/√2)], 2^(1/4) × [(1/√2) − i(1/√2)].
Hence, the roots of (-16)^(1/4) are (1/√2 + i/√2), (-1/√2 + i/√2), (-1/√2 - i/√2), (1/√2 - i/√2).
(2) 1^(1/5)
This expression 1^(1/5) can be written as 1^[1/(2×5)] = 1^(1/10).
Now, 1^(1/10) = 1 because any number raised to power 0 equals 1.
Hence, the only root of 1^(1/5) is 1.
(3) i^(1/4).
Now, i^(1/4) can be written as (cos(π/2) + isin(π/2))^(1/4).Now, the modulus of i is 1 and its argument is π/2.
Therefore, its polar form is: 1(cosπ/2 + isinπ/2).
Therefore i^(1/4) = 1^(1/4)[cos(π/2 + 2kπ)/4 + isin(π/2 + 2kπ)/4], where k = 0, 1,2,3.
Therefore i^(1/4) = [cos(π/8) + isin(π/8)], [cos(5π/8) + isin(5π/8)], [cos(9π/8) + isin(9π/8)], [cos(13π/8) + isin(13π/8)].
Therefore, the roots of i^(1/4) are [cos(π/8) + isin(π/8)], [cos(5π/8) + isin(5π/8)], [cos(9π/8) + isin(9π/8)], [cos(13π/8) + isin(13π/8)].
To know more about roots click here:
https://brainly.com/question/32597645
#SPJ11
Find the solution to initial value problem dt 2d2y−2dt dy+1y=0,y(0)=4,y ′(0)=1 Find the solution of y ′′−2y ′ +y=343e 8t with u(0)=8 and u ′(0)=6. y
Solution to initial value problem is u = (125/19)e^(20t) + (53/19)e^(-18t)
Given differential equation is
2d²y/dt² - 2dy/dt + y = 0;
y(0) = 4; y'(0) = 1.
And another differential equation is
y'' - 2y' + y = 343e^(8t);
u(0) = 8,
u'(0) = 6.
For the first differential equation,Let us find the characteristic equation by assuming
y = e^(mt).d²y/dt²
= m²e^(mt),
dy/dt = me^(mt)
Substituting these values in the given differential equation, we get
2m²e^(mt) - 2me^(mt) + e^(mt) = 0
Factorizing, we get
e^(mt)(2m - 1)² = 0
The characteristic equation is 2m - 1 = 0 or m = 1/2
Taking the first case 2m - 1 = 0
m = 1/2
Since this root is repeated twice, the general solution is
y = (c1 + c2t)e^(1/2t)
Differentiating the above equation, we get
dy/dt = c2e^(1/2t) + (c1/2 + c2/2)te^(1/2t)
Applying the initial conditions,
y(0) = 4c1 = 4c2 = 4
The solution is y = (4 + 4t)e^(1/2t)
For the second differential equation,
Let us find the characteristic equation by assuming
u = e^(mt).
u'' = m²e^(mt);
u' = me^(mt)
Substituting these values in the given differential equation, we get
m²e^(mt) - 2me^(mt) + e^(mt) = 343e^(8t)
We have e^(mt) commonm² - 2m + 1 = 343e^(8t - mt)
Dividing throughout by e^(8t), we get
m²e^(-8t) - 2me^(-8t) + e^(-8t) = 343e^(mt - 8t)
Setting t = 0, we get
m² - 2m + 1 = 343
Taking square roots, we get
(m - 1) = ±19
Taking first case m - 1 = 19 or m = 20
Taking the second case m - 1 = -19 or m = -18
Substituting the roots in the characteristic equation, we get
u1 = e^(20t); u2 = e^(-18t)
The general solution is
u = c1e^(20t) + c2e^(-18t)
Differentiating the above equation, we get
u' = 20c1e^(20t) - 18c2e^(-18t)
Applying the initial conditions,
u(0) = c1 + c2 = 8u'(0) = 20c1 - 18c2 = 6
Solving the above equations, we get
c1 = 125/19 and c2 = 53/19
Hence, the solution is
u = (125/19)e^(20t) + (53/19)e^(-18t)
To know more about differential visit :
brainly.com/question/32645495
#SPJ11
The Brady family received 27 pieces of mail on December 25 . The mail consisted of letters, magazines, bills, and ads. How many letters did they receive if they received three more magazines than bill
The Brady family received 12 letters on December 25th.
They received 9 magazines.
They received 3 bills.
They received 3 ads.
To solve this problem, we can use algebra. Let x be the number of bills the Brady family received. We know that they received three more magazines than bills, so the number of magazines they received is x + 3.
We also know that they received a total of 27 pieces of mail, so we can set up an equation:
x + (x + 3) + 12 + 3 = 27
Simplifying this equation, we get:
2x + 18 = 27
Subtracting 18 from both sides, we get:
2x = 9
Dividing by 2, we get:
x = 3
So the Brady family received 3 bills. Using x + 3, we know that they received 3 + 3 = 6 magazines. We also know that they received 12 letters and 3 ads. Therefore, the Brady family received 12 letters on December 25th.
Know more about algebra here:
https://brainly.com/question/953809
#SPJ11
(a) Find the closed area determined by the graphs of \( x=2-y^{2} \) and \( y=x \) by following the \( y \) axis when integrating. (b) Express the same area in terms of integral(s) on the \( x \)-axis
(a) To find the area determined by the graphs of ( x=2-y^{2} ) and ( y=x ), we first need to determine the limits of integration. Since the two curves intersect at ( (1,1) ) and ( (-3,-3) ), we can integrate with respect to ( y ) from ( y=-3 ) to ( y=1 ).
The equation of the line ( y=x ) can be written as ( x-y=0 ). The equation of the parabola ( x=2-y^2 ) can be rewritten as ( y^2+x-2=0 ). At the points of intersection, these two equations must hold simultaneously, so we have:
[y^2+x-2=0]
[x-y=0]
Substituting ( x=y ) into the first equation, we get:
[y^2+y-2=0]
This equation factors as:
[(y-1)(y+2)=0]
So the two points of intersection are ( (1,1) ) and ( (-2,-2) ). Therefore, the area of the region enclosed by the two curves is given by:
[\int_{-3}^{1} [(2-y^2)-y] dy]
Simplifying this expression, we get:
[\int_{-3}^{1} (2-y^2-y) dy = \int_{-3}^{1} (1-y^2-y) dy = [y-\frac{1}{3}y^3 - \frac{1}{2}y^2]_{-3}^{1}]
Evaluating this expression, we get:
[(1-\frac{1}{3}-\frac{1}{2}) - (-3+9-\frac{27}{2}) = \frac{23}{6}]
Therefore, the area enclosed by the two curves is ( \frac{23}{6} ).
(b) To express the same area in terms of an integral on the ( x )-axis, we need to solve for ( y ) in terms of ( x ) for each equation. For ( y=x ), we have ( y=x ). For ( x=2-y^2 ), we have:
[y^2+(-x+2)=0]
Solving for ( y ), we get:
[y=\pm\sqrt{x-2}]
Note that we only want the positive square root since we are looking at the region above the ( x )-axis. Therefore, the area enclosed by the two curves is given by:
[\int_{-2}^{2} [x-\sqrt{x-2}] dx]
We integrate from ( x=-2 ) to ( x=2 ) since these are the values where the two curves intersect. Simplifying this expression, we get:
[\int_{-2}^{2} (x-\sqrt{x-2}) dx = [\frac{1}{2}x^2-\frac{2}{3}(x-2)^{\frac{3}{2}}]_{-2}^{2}]
Evaluating this expression, we get:
[(2-\frac{8}{3}) - (-2-\frac{8}{3}) = \frac{16}{3}]
Therefore, the area enclosed by the two curves is ( \frac{16}{3} ) when integrating with respect to the ( x )-axis.
learn more about integration here
https://brainly.com/question/31744185
#SPJ11
n={n/2,3×n+1, if n is even if n is odd The conjecture states that when this algorithm is continually applied, all positive integers will eventually reach i. For example, if n=35, the secguence is 35, 106,53,160,60,40,20,10,5,16,4,4,2,1 Write a C program using the forki) systen call that generates this sequence in the child process. The starting number will be provided from the command line. For example, if 8 is passed as a parameter on the command line, the child process will output 8,4,2,1. Hecause the parent and child processes have their own copies of the data, it will be necessary for the child to outpat the sequence. Have the parent invoke the vaite() call to wait for the child process to complete before exiting the program. Perform necessary error checking to ensure that a positive integer is passed on the command line
The C program described generates a sequence of numbers based on a conjecture. The program takes a positive integer as input and uses the fork system call to create a child process.
The C program uses the fork system call to create a child process. The program takes a positive integer, the starting number, as a parameter from the command line. The child process then applies the given algorithm to generate a sequence of numbers.
The algorithm checks if the current number is even or odd. If it is even, the next number is obtained by dividing it by 2. If it is odd, the next number is obtained by multiplying it by 3 and adding 1.
The child process continues applying the algorithm to the current number until it reaches the value of 1. During each iteration, the sequence is printed.
Meanwhile, the parent process uses the wait() call to wait for the child process to complete before exiting the program.
To ensure that a positive integer is passed on the command line, the program performs necessary error checking. If an invalid input is provided, an error message is displayed, and the program terminates.
For more information on sequences visit: brainly.com/question/15648134
#SPJ11
(ii) At any party, the number of people who have shaken the hand of an odd number of people is even. [30Que 5. Give examples of the following: (i) a connected simple graph with 6 vertices such that each vertex has degree 3 (ii) a graph with 3 components and 4 loops. 6. Prove the following: if a graph has a closed walk of odd length, then it has a cycle of odd length. How many edges does the complete bipartite graph K m,n
have? Justify your answer.
Let G be a graph with a closed walk of odd length, say v_0, v_1, ..., v_{2k+1}, v_0. We want to show that G has a cycle of odd length.
Let W = {v_i : 0 ≤ i ≤ 2k+1} be the set of vertices in the closed walk. Since the walk is closed, the first and last vertices are the same, so we can write:
w_0 = w_{2k+1}
Let C be the subgraph of G induced by the vertices in W. That is, the vertices of C are the vertices in W and the edges of C are the edges of G that have both endpoints in W.
Since W is a closed walk, every vertex in W has even degree in C (because it has two incident edges). Therefore, the sum of degrees of vertices in C is even.
However, since C is a subgraph of G, the sum of degrees of vertices in C is also equal to twice the number of edges in C. Therefore, the number of edges in C is even.
Now consider the subgraph H of G obtained by removing all edges in C. This graph has no edges between vertices in W, because those edges were removed. Therefore, each connected component of H either contains a single vertex from W, or is a path whose endpoints are in W.
Since G has a closed walk of odd length, there must be some vertex in W that appears an odd number of times in the walk (because the number of vertices in the walk is odd). Let v be such a vertex.
If v appears only once in the walk, then it is a connected component of H and we are done, because a single vertex is a cycle of odd length.
Otherwise, let v = w_i for some even i. Then w_{i+1}, w_{i+2}, ..., w_{i-1} also appear in the walk, and they form a path in H. Since this path has odd length (because i is even), it is a cycle of odd length in G.
Therefore, we have shown that if G has a closed walk of odd length, then it has a cycle of odd length.
The complete bipartite graph K_m,n has m+n vertices, with m vertices on one side and n on the other side. Each vertex on one side is connected to every vertex on the other side, so the degree of each vertex on the first side is n and the degree of each vertex on the second side is m. Therefore, the total number of edges in K_m,n is mn, since there are mn possible pairs of vertices from the two sides that can be connected by an edge.
learn more about odd length here
https://brainly.com/question/4232467
#SPJ11
Let E, F and G be three events in S with P(E) = 0.48, P(F) =
0.52, P(G) = 0.52, P(E ∩ F) = 0.32, P(E ∩ G) = 0.29, P(F ∩ G) =
0.26, and P(E ∩ F ∩ G) = 0.2.
Find P(EC ∪ FC ∪ GC).
The required probability of the union of the complements of events E, F, and G is 0.9631.
Given, the events E, F, and G in a sample space S are defined with their respective probabilities as follows: P(E) = 0.48, P(F) = 0.52, P(G) = 0.52, P(E ∩ F) = 0.32, P(E ∩ G) = 0.29, P(F ∩ G) = 0.26, and P(E ∩ F ∩ G) = 0.2. We need to calculate the probability of the union of their complements.
Let's first calculate the probabilities of the complements of E, F, and G.P(E') = 1 - P(E) = 1 - 0.48 = 0.52P(F') = 1 - P(F) = 1 - 0.52 = 0.48P(G') = 1 - P(G) = 1 - 0.52 = 0.48We know that P(E ∩ F) = 0.32. Hence, using the formula of probability of the union of events, we can find the probability of the intersection of the complements of E and F.P(E' ∩ F') = 1 - P(E ∪ F) = 1 - (P(E) + P(F) - P(E ∩ F))= 1 - (0.48 + 0.52 - 0.32) = 1 - 0.68 = 0.32We also know that P(E ∩ G) = 0.29. Similarly, we can find the probability of the intersection of the complements of E and G.P(E' ∩ G') = 1 - P(E ∪ G) = 1 - (P(E) + P(G) - P(E ∩ G))= 1 - (0.48 + 0.52 - 0.29) = 1 - 0.29 = 0.71We also know that P(F ∩ G) = 0.26.
Similarly, we can find the probability of the intersection of the complements of F and G.P(F' ∩ G') = 1 - P(F ∪ G) = 1 - (P(F) + P(G) - P(F ∩ G))= 1 - (0.52 + 0.52 - 0.26) = 1 - 0.76 = 0.24Now, we can calculate the probability of the union of the complements of E, F, and G as follows: P(E' ∪ F' ∪ G')= P((E' ∩ F' ∩ G')') {De Morgan's law}= 1 - P(E' ∩ F' ∩ G') {complement of a set}= 1 - P(E' ∩ F' ∩ G') {by definition of the intersection of sets}= 1 - P(E' ∩ F') ⋅ P(G') {product rule of probability}= 1 - 0.32 ⋅ 0.48 ⋅ 0.24= 1 - 0.0369= 0.9631.
Let's learn more about union:
https://brainly.com/question/28278437
#SPJ11
15, 6, 14, 7, 14, 5, 15, 14, 14, 12, 11, 10, 8, 13, 13, 14, 4, 13, 3, 11, 14, 14, 12
compute the standard deviation for both sample and population
The sample standard deviation of the given data is approximately 4.0 while the population standard deviation is approximately 3.94.
The formula for computing standard deviation is as follows:
[tex]\[\large\sigma = \sqrt{\frac{\sum_{i=1}^{n}(x_i-\mu)^2}{n-1}}\][/tex]
where:x is the individual value.μ is the mean (average).n is the number of values.[tex]\(\sigma\)[/tex] is the standard deviation.
A standard deviation is the difference between the average and the square root of the variance of a set of data. Standard deviation measures the amount of variability or dispersion for a subject set of data. We will compute both the sample standard deviation and the population standard deviation.
To calculate the sample standard deviation, we can use the same formula as we did in the population standard deviation, but we must divide by n - 1 instead of n. Thus:
[tex]\[\large s = \sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}}\][/tex]
where:[tex]\(\sigma\)[/tex] is the standard deviation.x is the individual value.μ is the mean (average).n is the number of values. [tex]\(\sigma\)[/tex] is the standard deviation.
For the given data 15, 6, 14, 7, 14, 5, 15, 14, 14, 12, 11, 10, 8, 13, 13, 14, 4, 13, 3, 11, 14, 14, 12
we first calculate the mean.
µ = (15+6+14+7+14+5+15+14+14+12+11+10+8+13+13+14+4+13+3+11+14+14+12) / 23=10.6
After that, we compute the standard deviation (sample).
s = √ [ (15-10.6)² + (6-10.6)² + (14-10.6)² + (7-10.6)² + (14-10.6)² + (5-10.6)² + (15-10.6)² + (14-10.6)² + (14-10.6)² + (12-10.6)² + (11-10.6)² + (10-10.6)² + (8-10.6)² + (13-10.6)² + (13-10.6)² + (14-10.6)² + (4-10.6)² + (13-10.6)² + (3-10.6)² + (11-10.6)² + (14-10.6)² + (14-10.6)² + (12-10.6)² ] / 22
s = 4.0
The sample standard deviation is approximately 4.0.
For the population standard deviation, we should replace n-1 by n in the above formula. Thus:
σ = √ [ (15-10.6)² + (6-10.6)² + (14-10.6)² + (7-10.6)² + (14-10.6)² + (5-10.6)² + (15-10.6)² + (14-10.6)² + (14-10.6)² + (12-10.6)² + (11-10.6)² + (10-10.6)² + (8-10.6)² + (13-10.6)² + (13-10.6)² + (14-10.6)² + (4-10.6)² + (13-10.6)² + (3-10.6)² + (11-10.6)² + (14-10.6)² + (14-10.6)² + (12-10.6)² ] / 23
σ = 3.94 (approximately)
Therefore, the population standard deviation is approximately 3.94.
The sample standard deviation of the given data is approximately 4.0 while the population standard deviation is approximately 3.94.
To know more about mean visit:
brainly.com/question/29727198
#SPJ11
simplify the following expression 3 2/5 mulitply 3(-7/5)
Answer:
1/3
Step-by-step explanation:
I assume that 2/5 and -7/5 are exponents.
3^(2/5) × 3^(-7/5) = 3^(2/5 + (-7/5)) = 3^(-5/5) = 3^(-1) = 1/3
Answer: 136/5
Step-by-step explanation: First simplify the fraction
1) 3 2/5 = 17/5
3 multiply by 5 and add 5 into it.
2) 3(-7/5) = 8/5
3 multiply by 5 and add _7 in it.
By multiplication of 2 fractions,
17/5 multiply 8/5 = 136/5
=136/5
To know more about the Fraction visit:
https://brainly.com/question/33620873