find the solution using integrating factor method
dy/dx=(x^2-y)/x

Answers

Answer 1

The general solution to the given differential equation is y = (1/3)|x| + C/|x|

To solve the differential equation dy/dx = (x^2 - y)/x using the integrating factor method, we follow these steps:

Rewrite the equation in the standard form: dy/dx + (1/x)y = x.

Identify the integrating factor (IF), which is defined as IF = e^(∫(1/x)dx).

In this case, the integrating factor is IF = e^(∫(1/x)dx) = e^(ln|x|) = |x|.

Multiply both sides of the equation by the integrating factor:

|x|dy/dx + |x|(1/x)y = |x|^2.

This simplifies to: |x|dy/dx + y = |x|^2.

Recognize the left side of the equation as the derivative of the product of the integrating factor and y:

d/dx (|x|y) = |x|^2.

Integrate both sides with respect to x:

∫d/dx (|x|y) dx = ∫|x|^2 dx.

|x|y = (1/3)|x|^3 + C, where C is the constant of integration.

Solve for y:

y = (1/3)|x| + C/|x|.

Therefore, the general solution to the given differential equation is y = (1/3)|x| + C/|x|, where C is an arbitrary constant.

Learn more about differential equation at

brainly.com/question/2273154

#SPJ11


Related Questions

Let AB be the line segment beginning at point A(2, 1) and ending at point B(-11, -13). Find the point P on the line segment that is of the distance from A to B.

Answers

The point P on the line segment AB that is equidistant from A and B is approximately (-287/30, 571/210).

To find the point P on the line segment AB that is of the same distance from point A as it is from point B, we can use the concept of midpoint.

Point A(2, 1)

Point B(-11, -13)

To find the midpoint of the line segment AB, we can use the formula:

Midpoint = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)

Let's substitute the coordinates of A and B into the formula to find the midpoint:

Midpoint = ((2 + (-11)) / 2, (1 + (-13)) / 2)

Midpoint = (-9/2, -12/2)

Midpoint = (-9/2, -6)

Now, we want to find the point P on the line segment AB that is of the same distance from point A as it is from point B.

Since P is equidistant from both A and B, it will lie on the perpendicular bisector of AB, passing through the midpoint.

To find the equation of the perpendicular bisector, we need the slope of AB.

The slope of AB can be calculated using the formula:

Slope = (y₂ - y₁) / (x₂ - x₁)

Slope of AB = (-13 - 1) / (-11 - 2)

Slope of AB = -14 / -13

Slope of AB = 14/13 (or approximately 1.08)

The slope of the perpendicular bisector will be the negative reciprocal of the slope of AB:

Slope of perpendicular bisector = -1 / (14/13)

Slope of perpendicular bisector = -13/14 (or approximately -0.93)

Now, we have the slope of the perpendicular bisector and a point it passes through (the midpoint).

We can use the point-slope form of a line to find the equation of the perpendicular bisector:

y - y₁ = m(x - x₁)

Using the midpoint (-9/2, -6) as (x₁, y₁) and the slope -13/14 as m, we can write the equation of the perpendicular bisector:

y - (-6) = (-13/14)(x - (-9/2))

y + 6 = (-13/14)(x + 9/2)

Simplifying the equation:

14(y + 6) = -13(x + 9/2)

14y + 84 = -13x - 117/2

14y = -13x - 117/2 - 84

14y = -13x - 117/2 - 168/2

14y = -13x - 285/2

Now, we have the equation of the perpendicular bisector.

To find the point P on the line segment AB that is equidistant from A and B, we need to find the intersection of the perpendicular bisector and the line segment AB.

Substituting the x-coordinate of P into the equation, we can solve for y:

-13x - 285/2 = 2x + 1

-15x = 1 + 285/2

-15x = 2/2 + 285/2

-15x = 287/2

x = (287/2)(-1/15)

x = -287/30

Substituting the y-coordinate of P into the equation, we can solve for x:

14y = -13(-287/30) - 285/2

14y = 287/30 + 285/2

14y = (287 + 855)/30

14y = 1142/30

y = (1142/30)(1/14)

y = 571/210

For similar question on segment.

https://brainly.com/question/28322552  

#SPJ8

(c) find the area of the pentagon with vertices (0, 0), (3, 1), (1, 2), (0, 1), and (−2, 1).

Answers

The area of the pentagon with vertices (0, 0), (3, 1), (1, 2), (0, 1), and (-2, 1) is 6 square units.

To find the area of a pentagon given its vertices, we can divide it into triangles and then calculate the area of each triangle separately.

Let's label the given vertices as A(0, 0), B(3, 1), C(1, 2), D(0, 1), and E(-2, 1). We can divide the pentagon into three triangles: ABD, BCD, and CDE.

To calculate the area of a triangle, we can use the shoelace formula. Let's apply it to each triangle:

Triangle ABD: Coordinates: A(0, 0), B(3, 1), D(0, 1)

Area(ABD) = |(0 * 1 + 3 * 1 + 0 * 0) - (0 * 3 + 1 * 0 + 1 * 0)| / 2

= |(0 + 3 + 0) - (0 + 0 + 0)| / 2

= |3 - 0| / 2

= 3 / 2

= 1.5 square units

Triangle BCD: Coordinates: B(3, 1), C(1, 2), D(0, 1)

Area(BCD) = |(3 * 2 + 1 * 0 + 0 * 1) - (1 * 1 + 2 * 0 + 3 * 0)| / 2

= |(6 + 0 + 0) - (1 + 0 + 0)| / 2

= |6 - 1| / 2

= 5 / 2

= 2.5 square units

Triangle CDE: Coordinates: C(1, 2), D(0, 1), E(-2, 1)

Area(CDE) = |(1 * 1 + 2 * 1 + (-2) * 0) - (2 * 0 + 1 * (-2) + 1 * 1)| / 2

= |(1 + 2 + 0) - (0 - 2 + 1)| / 2

= |3 - (-1)| / 2

= 4 / 2

= 2 square units

Now, we can sum up the areas of the three triangles to find the total area of the pentagon:

Total area = Area(ABD) + Area(BCD) + Area(CDE)

= 1.5 + 2.5 + 2

= 6 square units

Therefore, the area of the pentagon with vertices (0, 0), (3, 1), (1, 2), (0, 1), and (-2, 1) is 6 square units.

To know more about area check the below link:

https://brainly.com/question/25292087

#SPJ4

In one design being considered for the containers shaped like a rectangular
prism, each container will have a height of 11½ inches and length of 7.
7/1/2
inches. What will be the width, in inches, of the container?
O A. 3
4.
OB.
OC. 14
O D. 15

Answers

 In one design being considered for the containers shaped like a rectangular O.D. of 15 inches,Therefore, l = w.

the volume of the container is 0.0076 m³. Let us determine the height of the container using the given information.

The volume of the container can be expressed using the formula V = lwh where V is the volume, l is the length,

w is the width and h is the height.Substituting the given values into the formula,

we have;V = lwh0.0076 = (15 × w) × h... equation [1]

Since the container is shaped like a rectangular O.D,

the length and width are equal.

Substituting l = w into equation [1]

0.0076 = (15 × l) × h0.0076 = 15l × h... equation [2]

From equation [2],

h can be expressed as:

h = 0.0076/(15l)

Hence, the height of the container is given by h = 0.0076/(15l).

To learn more about : rectangular

https://brainly.com/question/25292087

#SPJ8

Assume the probability of Lukas Podolski scores in a soccer match is 25%.
a) Assuming that Lukas performs independently in different matches, what is the probability that Lukas will score in world cup quarter final match and semifinal match? Use 4 decimal places _______
b) Assume again that Lukas performs independently in different games, what is the probability of Lukas scoring in quarter final OR semi final? Use 4 decimal places _______

Answers

(a) The probability that Lukas Podolski will score in both the World Cup quarter-final and semi-final matches is 0.0625 (or 6.25%).

(b) The probability of Lukas Podolski scoring in either the World Cup quarter-final OR the semi-final match is 0.5 (or 50%).

What is Probability?

Probability is a branch of mathematics in which the chances of experiments occurring are calculated.

a) To find the probability that Lukas Podolski will score in both the World Cup quarter-final and semi-final matches, we multiply the probabilities of him scoring in each match since the events are independent.

Probability of scoring in the quarter-final match = 0.25 (or 25%)

Probability of scoring in the semi-final match = 0.25 (or 25%)

Probability of scoring in both matches = 0.25 * 0.25 = 0.0625

Therefore, the probability that Lukas Podolski will score in both the World Cup quarter-final and semi-final matches is 0.0625 (or 6.25%).

b) To find the probability of Lukas Podolski scoring in either the quarter-final OR the semi-final match, we can use the principle of addition. Since the events are mutually exclusive (he can't score in both matches simultaneously), we can simply add the probabilities of scoring in each match.

Probability of scoring in the quarter-final match = 0.25 (or 25%)

Probability of scoring in the semi-final match = 0.25 (or 25%)

Probability of scoring in either match = 0.25 + 0.25 = 0.5

Therefore, the probability of Lukas Podolski scoring in either the World Cup quarter-final OR the semi-final match is 0.5 (or 50%).

To learn more about Probability from the given link

https://brainly.com/question/31828911

#SPJ4

DETAILS JEACT 7.4.007. MY NOT Calculate the consumers' surplus at the indicated unit price p for the demand equation. HINT (See Example 1.] (Round your answer to the nearest cent.) 9 = 130 2p; p = 17

Answers

We must first determine the amount required at that price in order to calculate the consumer surplus at the unit price p for the demand equation 9 = 130 - 2p, where p = 17.

This suggests that 96 units are needed to satisfy demand at the price of p = 17.Finding the region between the demand curve and the price line up to the quantity demanded is necessary to determine the consumer surplus. In this instance, the consumer surplus can be represented by a triangle, and the demand equation is a linear equation.

The triangle's base is the 96-unit quantity requested, and its height is the difference between the

learn more about consumer here :

https://brainly.com/question/27773546

#SPJ11

Which graphic presentation of data displays its categories as rectangles of equal width with their height proportional to the frequency or percentage of the category. a. time series chart. b. proportion. c. cumulative frequency distribution. d. bar graph

Answers

Bar graphs can be used to display both discrete and continuous data, making them a versatile tool for visualizing a wide range of information.

The graphic presentation of data that displays its categories as rectangles of equal width with their height proportional to the frequency or percentage of the category is called a bar graph.

In a bar graph, the bars represent the categories being compared and are arranged along the horizontal axis, with the height of each bar representing the frequency or percentage of the category being displayed.

Bar graphs are a useful tool for presenting numerical data in a visually appealing way, making it easy for viewers to compare different categories and draw conclusions from the data.

To learn more about : Bar graphs

https://brainly.com/question/30243333

#SPJ8

Find the indefinite integral. (Remember to use absolute values where appropriate. Use for the constant of integration) | Cacax mtan(2x)+ c

Answers

The indefinite integral of |cosec(x) tan(2x)| dx is |cosec(x)| + C.

To find the indefinite integral of |cosec(x) tan(2x)| dx, we can split the absolute value into two cases based on the sign of cosec(x).Case 1: If cosec(x) > 0, then the integral becomes ∫(cosec(x) tan(2x)) dx. By using the substitution u = cos(x), du = -sin(x) dx, we can rewrite the integral as ∫(-du/tan(2x)). The integral of -du/tan(2x) can be evaluated using the substitution v = 2x, dv = 2dx. Substituting these values, we get -∫(du/tan(v)) = -ln|sec(v)| + C = -ln|sec(2x)| + C.Case 2: If cosec(x) < 0, then the integral becomes ∫(-cosec(x) tan(2x)) dx.

By using the substitution u = -cos(x), du = sin(x) dx, we can rewrite the integral as ∫(du/tan(2x)). Using the same substitution v = 2x, dv = 2dx, we get ∫(du/tan(v)) = ln|sec(v)| + C = ln|sec(2x)| + C.Combining the results from both cases, the indefinite integral of |cosec(x) tan(2x)| dx is |cosec(x)| + C, where C is the constant of integration.

Learn more about indefinite here:

https://brainly.com/question/28036871

#SPJ11

11) f(x) = 2x² + 1 and dy find Ay dy a x= 1 and dx=0.1 a

Answers

Ay dy at x = 1 and dx = 0.f(x) = 2x² + 1 and dy Ay dy a x= 1 and dx=0.1 a

based on the given information, it appears that you want to find the approximate change in the function f(x) = 2x² + 1

when x changes from 1 to 1.1 (a change of dx = 0.1) and dy is the notation for this change.

to calculate ay dy, we can use the formula for the differential of a function:

ay dy = f'(x) * dx

first, let's find the derivative of f(x):

f'(x) = d/dx (2x² + 1)       = 4x

now, we can substitute the values into the formula:

ay dy = f'(x) * dx

     = 4x * dx

at x = 1 and dx = 0.1:

ay dy = 4(1) * 0.1      = 0.4 1 is equal to 0.4.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

Find the derivative. V s sin 13t dt dx 2 a. by evaluating the integral and differentiating the result. b. by differentiating the integral directly. . a. Evaluate the definite integral. x d sin 13t dt

Answers

The derivative of the integral ∫[0, x] sin(13t) dt with respect to x is -sin(13x), in both the cases.

To find the derivative, we can evaluate the integral and then differentiate the result, as follows:

a. Evaluating the definite integral ∫[0, x] sin(13t) dt, we substitute the upper limit x and the lower limit 0 into the antiderivative of sin(13t), which is -cos(13t)/13.

Therefore, the result of the integral is (-cos(13x)/13) - (-cos(0)/13) = (-cos(13x) + 1)/13.

Next, we differentiate this result with respect to x. The derivative of (-cos(13x) + 1)/13 is given by (-13sin(13x))/13, which simplifies to -sin(13x).

Therefore, the derivative of the integral ∫[0, x] sin(13t) dt with respect to x is -sin(13x).

b. Alternatively, we can differentiate the integral directly using the Fundamental Theorem of Calculus. According to the theorem, if F(x) is the antiderivative of f(x), then the derivative of the integral ∫[a, x] f(t) dt with respect to x is F(x).

In this case, the antiderivative of sin(13t) is -cos(13t)/13. Therefore, the derivative of the integral ∫[0, x] sin(13t) dt with respect to x is -cos(13x)/13.

However, notice that -cos(13x)/13 can be further simplified to -sin(13x). Therefore, the derivative obtained by differentiating the integral directly is also -sin(13x). In both cases, we arrive at the same result, which is -sin(13x).

To know more about derivative, refer here:

https://brainly.com/question/28144387#

#SPJ11

Complete question:

Find the derivative. ∫[0, x] sin(13t) dt

a. by evaluating the integral and differentiating the result.

b. by differentiating the integral directly Evaluate the definite integral ∫[a, x] f(t) dt

Question 2(Multiple Choice Worth 6 points) (05.02 MC) The function f is defined by f(x) = 3x² - 4x + 2. The application of the Mean Value Theorem to f on the interval 2 < x < 4 guarantees the existen

Answers

The application of the Mean Value Theorem to the function f(x) = 3x² - 4x + 2 on the interval 2 < x < 4 guarantees the existence of at least one point c in the interval (2, 4) where the instantaneous rate of change (or slope) is equal to the average rate of change over the interval.

The Mean Value Theorem states that if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one point c in the interval (a, b) where the instantaneous rate of change (or derivative) of f at c is equal to the average rate of change of f over the interval [a, b].

In this case, the function f(x) = 3x² - 4x + 2 is a polynomial function, which is continuous and differentiable for all real numbers. Therefore, the conditions of the Mean Value Theorem are satisfied.

The interval given is 2 < x < 4. This interval lies within the domain of the function, and since f(x) is differentiable for all values of x, the Mean Value Theorem guarantees the existence of at least one point c in the interval (2, 4) where the instantaneous rate of change of f(x) is equal to the average rate of change over the interval [2, 4].

In other words, there exists a point c in the interval (2, 4) such that f'(c) = (f(4) - f(2))/(4 - 2), where f'(c) represents the derivative of f at c.

The Mean Value Theorem is a powerful tool that guarantees the existence of certain points with specific properties in a given interval, and it has various applications in calculus and real-world problems involving rates of change.

Learn more about Mean Value Theorem here:

https://brainly.com/question/30403137

#SPJ11

x2 + 2x = 2x + x2 what property does this demonstrate

Answers

The equation x² + 2x = 2x + x² demonstrates the commutative property of addition.

The commutative property of addition states that the order of the terms does not affect the result when adding.

In this case, the terms x² and 2x on the left side of the equation are switched to 2x and x² on the right side of the equation, and the equation still holds true.

This shows that the terms can be rearranged without changing the sum.

To learn more on Commutative property click:

https://brainly.com/question/28762453

#SPJ1


please solve
1 3. If r(t)= (1.-1 ) find the curvature of 7(1) at * = .

Answers

To find the

curvature

of a curve at a given point, we can use the formula for curvature: K = |dT/ds| / |ds/dt|, where T is the unit

tangent vector

, s is the arc length parameter, and t is the parameter of the curve.

To find the curvature, we first need to compute the unit tangent vector T. The unit tangent vector T is given by T = dr/ds, where dr/ds is the derivative of the

vector function

r(t) with respect to the arc length parameter s. Since we are not given the arc

length

parameter, we need to find it first.

To find the arc length parameter s, we integrate the

magnitude

of the

derivative

of r(t) with respect to t. In this case, r(t) = (1, -1), so dr/dt = (0, 0), and the magnitude of dr/dt is 0. Therefore, the arc length parameter is simply s = t.

Now that we have the arc length parameter s, we can find the unit tangent vector T = dr/ds. Since dr/ds = dr/dt = (1, -1), the unit tangent vector T is (1, -1)/sqrt(2).

Next, we need to find ds/dt. Since s = t, ds/dt = 1.

Finally, we can calculate the curvature K using the formula K = |dT/ds| / |ds/dt|. In this case, dT/ds = 0, and |ds/dt| = 1. Therefore, the curvature at t = 1 is K = |dT/ds| / |ds/dt| = 0/1 = 0.

Hence, the curvature of the

curve

at t = 1 is 0.

To learn more about

curvature

click here :

brainly.com/question/32215102

#SPJ11

If two events A and B are independent, then which of the following must be true? Choose all of the answers below that are correct. There may be more than one correct
answer.
Choosing incorrect statements will lower your score on this question.
OA. P(AIB)=P(A)
O b. P(A or B) = P(A)P(B)
O c. P(A/B)-P(B)
• d. P(A and B) = P(A)+P(B)

Answers

If two events A and B are independent, the following statements must be true. If two events A and B are independent, then the occurrence of one event does not affect the occurrence of the other event.

In other words, the probability of one event does not influence the probability of the other event. Based on this definition, we can analyze each statement and determine which one(s) must be true.
a. P(AIB)=P(A): This statement is true for independent events. It means that the probability of event A occurring given that event B has occurred is equal to the probability of event A occurring. Therefore, statement a is correct.
b. P(A or B) = P(A)P(B): This statement is not always true for independent events. It is only true if events A and B are also mutually exclusive. In other words, if events A and B cannot occur at the same time. Therefore, statement b is incorrect.
c. P(A/B)-P(B): This statement does not make sense for independent events since the probability of event A does not depend on the occurrence of event B. Therefore, statement c is incorrect.
d. P(A and B) = P(A)+P(B): This statement is not always true for independent events. It is only true if events A and B are also mutually exclusive. In other words, if events A and B cannot occur at the same time. Therefore, statement d is incorrect.
To know more about score visit:

https://brainly.com/question/29285947

#SPJ11




Use the equation x = p + tv to find the vector equation and parametric equations of the line through the points 0(0,0,0) and B(3,3,-1). letting p = 0 and v=OB. 0 o H The vector equation of the line is

Answers

The vector equation of the line passing through the points A(0, 0, 0) and B(3, 3, -1), using the equation x = p + tv, where p = 0 and v = OB, is:r = p + tv

Determine the vector equation?

The vector equation x = p + tv represents a line in three-dimensional space, where r is a position vector on the line, p is a position vector of a point on the line, t is a scalar parameter, and v is the direction vector of the line.

In this case, we are given point A(0, 0, 0) as the origin and point B(3, 3, -1) as the second point on the line. To find the direction vector v, we can calculate OB (vector OB = OB₁i + OB₂j + OB₃k) by subtracting the coordinates of point A from the coordinates of point B: OB = (3 - 0)i + (3 - 0)j + (-1 - 0)k = 3i + 3j - k.

Since p = 0 and v = OB, we can substitute these values into the vector equation to obtain r = 0 + t(3i + 3j - k), which simplifies to r = 3ti + 3tj - tk. Thus, the vector equation of the line is r = 3ti + 3tj - tk.

Additionally, we can write the parametric equations of the line by separating the components of r: x = 3t, y = 3t, and z = -t. These equations provide a way to express the coordinates of any point on the line using the parameter t.

Therefore, the line passing through points A(0, 0, 0) and B(3, 3, -1) can be represented by the vector equation r = p + tv, where p = 0 and v = OB.

To know more about vector, refer here:

https://brainly.com/question/24256726#

#SPJ4

For a Goodness of Fit Test for a fair dice, does the following
code produce?
(throws2a, p = c(1/6, 1/6, 1/6, 1/6, 1/6, 1/6))
a. the alternative hypothesis
b. the p-value
c. the test statist

Answers

The given code does not directly produce the alternative hypothesis, p-value, or test statistic for a Goodness of Fit Test for a fair dice. Additional steps and code are required to perform the test and obtain these values.

To conduct a Goodness of Fit Test for a fair dice, you need to compare the observed frequencies of each outcome (throws2a) with the expected probabilities (p) assuming a fair dice. The code provided only defines the expected probabilities for a fair dice, but it does not include the observed frequencies or perform the actual test.

To obtain the alternative hypothesis, p-value, and test statistic, you would need to use a statistical test specifically designed for Goodness of Fit, such as the chi-squared test. This test compares the observed frequencies with the expected frequencies and calculates a test statistic and p-value.

The code for conducting a chi-squared test would involve additional steps, such as calculating the observed frequencies, creating a contingency table, and using a statistical function or package to perform the test. The output of the test would include the alternative hypothesis, p-value, and test statistic, which can be interpreted to determine if the observed data significantly deviate from the expected probabilities for a fair dice.

Learn more about Goodness of Fit Test here:

https://brainly.com/question/32668212

#SPJ11

select all expressions that are equivalent to 64 1/3

Answers

We can express the Fraction as a percentage by multiplying it by 100 and adding a percent sign, which gives us 643.33%.

To find expressions that are equivalent to 64 1/3, we need to look for other ways of representing the same value. One way to do this is to convert the mixed number into an improper fraction.

To do this, we multiply the whole number by the denominator and add the numerator. So 64 1/3 is equivalent to (64*3 + 1)/3 or 193/3. Now we can use this fraction to create other equivalent expressions.

For example, we can convert it back to a mixed number, which would be 64 1/3. We can also write it as a decimal, which is approximately 64.333. Additionally,

we can simplify the fraction by dividing both the numerator and denominator by their greatest common factor, which is 1. This gives us the simplified fraction 193/3.

To learn more about : Fraction

https://brainly.com/question/78672

#SPJ8

Note the full question may be :

Select all the expressions that are equivalent to 64 1/3:

A. 63.33

B. 64.3

C. 64.333

D. 192/3

E. 64 + 0.33

F. 63.333

G. 65 - 1/3

H. 128/2

I. 193/3

Choose all the correct expressions that represent the same value as 64 1/3.

Use left and right endpoints and the given number of rectangles to find two approximations of the area of the region between the graph of the function and the axis over the given interval 0(x)-2x-x-1,

Answers

Using left and right endpoints, we can approximate the area of the region between the graph of the function f(x) = 2x - x² - 1 and the x-axis over the interval [0, x]. By dividing the interval into subintervals and evaluating the function at either the left or right endpoint of each subinterval, we can calculate the areas of the corresponding rectangles. Summing up these areas gives us two approximations of the total area.

To approximate the area using left endpoints, we divide the interval [0, x] into n subintervals of equal width. Each subinterval has a width of Δx = (x - 0)/n. We evaluate the function at the left endpoint of each subinterval and calculate the corresponding rectangle's area by multiplying the function value by the width Δx. The sum of these areas gives an approximation of the total area.

To approximate the area using right endpoints, we follow the same process but evaluate the function at the right endpoint of each subinterval. Again, we calculate the areas of the rectangles formed and sum them up to obtain an approximation of the total area.

By increasing the number of subintervals (n) and taking the limit as n approaches infinity, we can improve the accuracy of the approximations and approach the actual area of the region between the function and the x-axis over the interval [0, x].

Learn more about corresponding rectangles here:

https://brainly.com/question/28165848

#SPJ11

Compute the determinant using cofactor expansion along the first row and along the first column.
1 2 3
4 5 6
7 8 9

Answers

The determinant of the given matrix using cofactor expansion along the first row and first column is 0.

To compute the determinant of the matrix using cofactor expansion along the first row, we multiply each element of the first row by its cofactor and sum the results. The cofactor of each element is determined by the sign (-1)^(i+j) multiplied by the determinant of the submatrix obtained by removing the row and column containing that element. In this case, the first row elements are 1, 2, and 3. The cofactor of 1 is 5*(-1)^(2+2) = 5, the cofactor of 2 is 6*(-1)^(2+3) = -6, and the cofactor of 3 is 0*(-1)^(2+4) = 0. Therefore, the determinant using cofactor expansion along the first row is 1*5 + 2*(-6) + 3*0 = 0.

Similarly, to compute the determinant using cofactor expansion along the first column, we multiply each element of the first column by its cofactor and sum the results. The cofactor of each element is determined using the same method as above. The first column elements are 1, 4, and 7. The cofactor of 1 is 5*(-1)^(2+2) = 5, the cofactor of 4 is 9*(-1)^(3+2) = -9, and the cofactor of 7 is 0*(-1)^(3+3) = 0. Therefore, the determinant using cofactor expansion along the first column is 1*5 + 4*(-9) + 7*0 = 0.

Learn more about matrix here:

https://brainly.com/question/29132693

#SPJ11

Find the radius of convergence, R, of the series.
[infinity] 3(−1)nnxn
sum.gif
n = 1
R =
Find the interval, I, of convergence of the series. (Enter your answer using interval notation.)
I =

Answers

The series is given by the expression ∑[infinity] 3(−1)nnxn, n = 1. The task is to find the radius of convergence, R, and the interval of convergence, I, for the series.

To find the radius of convergence, we can use the ratio test. Let's apply the ratio test to the series:

lim(n→∞) [tex]|\frac{(3(-1)^{(n+1)} * (n+1) * x^{(n+1)}}{ (3(-1)^n * n * x^n)} |[/tex]

Simplifying the expression, we get:

lim(n→∞) [tex]|\frac{(3(-1)^{(n+1)} * (n+1) * x^{(n+1)}}{ (3(-1)^n * n * x^n)} |[/tex]

= lim(n→∞) |(3 * (n+1) * x) / (n * x)|

= lim(n→∞) |3 * (n+1) / n|

= 3.

For the series to converge, the ratio should be less than 1. Therefore, |3| < 1, which is not true. Hence, the series diverges for all values of x. Consequently, the radius of convergence, R, is 0.

Since the series diverges for all x, the interval of convergence, I, is empty, represented by the notation I = {}.

Learn more about ratio here: https://brainly.com/question/31945112

#SPJ11

Find the profit function if cost and revenue are given by C(x) = 182 + 1.3x and R(x) = 2x – 0.04x?. The profit function is P(x)=

Answers

The profit function, P(x), can be calculated by subtracting the cost function, C(x), from the revenue function, R(x), which is given by P(x) = R(x) - C(x). In this case, the profit function would be P(x) = (2x - 0.04x) - (182 + 1.3x).

The profit function represents the difference between the revenue generated from selling a certain quantity of goods or services and the cost incurred in producing and selling them. In this case, the revenue function, R(x), is given by 2x - 0.04x, where x represents the quantity of goods sold. This function calculates the total revenue obtained from selling x units, taking into account a fixed price per unit and a discount of 0.04 per unit.

The cost function, C(x), is given by 182 + 1.3x, where 182 represents the fixed costs and 1.3x represents the variable costs associated with producing x units. The variable cost per unit is 1.3, indicating that the cost increases linearly with the quantity produced.  

To calculate the profit function, P(x), we subtract the cost function from the revenue function, yielding P(x) = (2x - 0.04x) - (182 + 1.3x). Simplifying this expression, we have P(x) = 0.96x - 182.3, which represents the profit obtained from selling x units after considering the costs involved.

Learn more about function here:

https://brainly.com/question/31062578

#SPJ11

Evaluate the integral 12 2 fa? (2 (23 – 2)"?dat by making the substitution u = : 23 – 2. + C

Answers

Therefore, the integral ∫2^(3 – 2x) dx, with the substitution u = 2^(3 – 2x), evaluates to:

(-1 / (2(ln 2))) ln (8) + (1 / ln 2) x + C, where C is the constant of integration.

To evaluate the integral ∫2^(3 – 2x) dx using the substitution u = 2^(3 – 2x), let's proceed with the following steps:

Let u = 2^(3 – 2x)

Differentiate both sides with respect to x to find du/dx:

du/dx = d/dx [2^(3 – 2x)]

To simplify the derivative, we can use the chain rule. The derivative of 2^x is given by (ln 2) * 2^x. Applying the chain rule, we have:

du/dx = d/dx [2^(3 – 2x)] = (ln 2) * 2^(3 – 2x) * (-2) = -2(ln 2) * 2^(3 – 2x)

Now, we can solve for dx in terms of du:

du = -2(ln 2) * 2^(3 – 2x) dx

dx = -du / [2(ln 2) * 2^(3 – 2x)]

Substituting this value of dx and u = 2^(3 – 2x) into the integral, we have:

∫2^(3 – 2x) dx = ∫-du / [2(ln 2) * u]

              = -1 / (2(ln 2)) ∫du / u

              = (-1 / (2(ln 2))) ln |u| + C

Finally, substituting u = 2^(3 – 2x) back into the expression:

∫2^(3 – 2x) dx = (-1 / (2(ln 2))) ln |2^(3 – 2x)| + C

              = (-1 / (2(ln 2))) ln |2^(3) / 2^(2x)| + C

              = (-1 / (2(ln 2))) ln |8 / 2^(2x)| + C

              = (-1 / (2(ln 2))) ln (8) - (-1 / (2(ln 2))) ln |2^(2x)| + C

              = (-1 / (2(ln 2))) ln (8) - (-1 / (2(ln 2))) (2x ln 2) + C

              = (-1 / (2(ln 2))) ln (8) + (1 / ln 2) x + C

to know more about integral visit:

brainly.com/question/31059545

#SPJ11

5. (15 points) Use qualitative theory of autonomous differential equations to sketch the graphs of the corresponding solutions in ty-plane. y = y3 – 3y, y(0) = -3, y(0) = -1/2, y(0) = 3/2, y(0) = 3

Answers

To sketch the graphs of the corresponding solutions in the ty-plane using the qualitative theory of autonomous differential equations, we can analyze the behavior of the given autonomous equation: y = y³ - 3y.

First, let's find the critical points by setting the equation equal to zero and solving for y:y³ - 3y = 0

y(y² - 3) = 0

From this, we can see that the critical points are y = 0 and y = ±√3.

Next, let's determine the behavior of the solutions around these critical points by examining the sign of the derivative dy/dt.

Taking the derivative of the equation with respect to t, we get:dy/dt = (3y² - 3)dy/dt

Now, we can analyze the sign of dy/dt based on the value of y:

1. which means the solutions will decrease as t increases.

2. For -√3 < y < 0, dy/dt > 0, indicating that the solutions will increase as t increases.3. For 0 < y < √3, dy/dt > 0, implying that the solutions will also increase as t increases.

4. For y > √3, dy/dt < 0, meaning the solutions will decrease as t increases.

Now, let's sketch the graphs of the solutions based on the initial conditions provided:

a) y(0) = -3:With this initial condition, the solution starts at y = -3, which is below -√3. From our analysis, we know that the solution will decrease as t increases, so the graph will curve downwards and approach the critical point y = -√3 as t goes to infinity.

b) y(0) = -1/2:

With this initial condition, the solution starts at y = -1/2, which is between -√3 and 0. According to our analysis, the solution will increase as t increases. The graph will curve upwards and approach the critical point y = √3 as t goes to infinity.

c) y(0) = 3/2:With this initial condition, the solution starts at y = 3/2, which is between 0 and √3. As per our analysis, the solution will also increase as t increases. The graph will curve upwards and approach the critical point y = √3 as t goes to infinity.

d) y(0) = 3:

With this initial condition, the solution starts at y = 3, which is above √3. From our analysis, we know that the solution will decrease as t increases. The graph will curve downwards and approach the critical point y = √3 as t goes to infinity.

In summary, the graphs of the corresponding solutions in the ty-plane will have curves that approach the critical points at y = -√3 and y = √3, and their behavior will depend on the initial conditions provided.

Learn more about theory here:

https://brainly.com/question/28035099

#SPJ11

From 2000 through 2005, the rate of change in the number of cattle on farms C (in millions) in a certain country can be modeled by the equation shown below, where t is the year, with t = 0 corresponding to 2000. dC = = 0.69 – 0.132t2 + 0.044et dt In 2002, the number of cattle was 96.5 million. (a) Find a model for the number of cattle from 2000 through 2005. C(t) = = (b) Use the model to predict the number of cattle in 2007. (Round your answer to 1 decimal place.) million cattle

Answers

a. The model equation for the number of cattle from 2000 through 2005 is C(t) = 0.69t - (0.132/3)t^3 + 0.044e^t + 95.472 - 0.044e^2

b.  The predicted number of cattle in 2007 (rounded to 1 decimal place) is 79.9 million cattle.

a. To find a model for the number of cattle from 2000 through 2005, we need to integrate the given rate of change equation.

dC = 0.69 - 0.132t^2 + 0.044e^t dt

Integrating both sides with respect to t:

∫dC = ∫(0.69 - 0.132t^2 + 0.044e^t) dt

C = 0.69t - (0.132/3)t^3 + 0.044e^t + C

Since the number of cattle in 2002 was 96.5 million, we can use this information to find the constant C. Plugging in t = 2 and C = 96.5 into the model equation:

96.5 = 0.692 - (0.132/3)(2^3) + 0.044e^2 + C

96.5 = 1.38 - 0.352 + 0.044e^2 + C

C = 96.5 - 1.38 + 0.352 - 0.044e^2

C = 95.472 - 0.044e^2

Now we have the model equation for the number of cattle from 2000 through 2005:

C(t) = 0.69t - (0.132/3)t^3 + 0.044e^t + 95.472 - 0.044e^2

b. To predict the number of cattle in 2007 (corresponding to t = 7), we can plug t = 7 into the model:

C(7) = 0.697 - (0.132/3)(7^3) + 0.044e^7 + 95.472 - 0.044e^2

C(7) = 4.83 - 20.412 + 0.044e^7 + 95.472 - 0.044e^2

C(7) = 79.89 + 0.044e^7 - 0.044e^2

Therefore, the predicted number of cattle in 2007 (rounded to 1 decimal place) is 79.9 million cattle.

Learn more about model equation at https://brainly.com/question/22591166

#SPJ11

can
you please answer these questions and write all the steps legibly.
Thank you.
Series - Taylor and Maclaurin Series: Problem 10 (1 point) Find the Taylor series, centered at c= 3, for the function 1 f(x) = 1-22 f(α) - ΣΟ The interval of convergence is: Note: You can earn part

Answers

The Taylor series for the function f(x) = 1/(1-2x), centered at c = 3 the interval of convergence is (-1/2, 1/2).

Let's find the Taylor series centered at c = 3 for the function f(x) = 1/(1-2x).

To find the Taylor series, we need to compute the derivatives of the function and evaluate them at the center (c = 3).

The general formula for the nth derivative of f(x) is given by:[tex]f^{n}(x) = (n!/(1-2x)^{n+1})[/tex]

where n! denotes the factorial of n.

Step 1: Compute the derivatives of f(x):

f'(x) = ([tex]1!/(1-2x)^{1+1}[/tex])

f''(x) = ([tex]2!/(1-2x)^{2+1}[/tex])

f'''(x) = ([tex]3!/(1-2x)^{3+1}[/tex])

Step 2: Evaluate the derivatives at x = 3:

f'(3) = ([tex]1!/(1-2(3))^{1+1}[/tex])

f''(3) = ([tex]2!/(1-2(3))^{2+1}[/tex])

f'''(3) = ([tex]3!/(1-2(3))^{3+1}[/tex])

Step 3: Simplify the expressions obtained from step 2:

f'(3) = 1/(-11)

f''(3) = 2/(-11)²

f'''(3) = 6/(-11)³

Step 4: Write the Taylor series using the simplified expressions from step 3:

f(x) = f(3) + f'(3)(x-3) + f''(3)(x-3)² + f'''(3)(x-3)³ + ...

Substituting the simplified expressions:

f(x) = 1 + (1/(-11))(x-3) + (2/(-11)²)(x-3)² + (6/(-11)³)(x-3)³ + ...

Step 5: Determine the interval of convergence.

The interval of convergence for a Taylor series can be determined by analyzing the function's convergence properties. In this case, the function f(x) = 1/(1-2x) has a singularity at x = 1/2. Therefore, the interval of convergence for the Taylor series centered at c = 3 will be the interval (-1/2, 1/2), excluding the endpoints.

To summarize, the Taylor series for the function f(x) = 1/(1-2x), centered at c = 3, is given by:

f(x) = 1 + (1/(-11))(x-3) + (2/(-11)²)(x-3)² + (6/(-11)³)(x-3)³ + ...

The interval of convergence is (-1/2, 1/2).

To know more about Taylor series here

https://brainly.com/question/32235538

#SPJ4

Part C: Thinking Skills 1. Determine the coordinates of the local extreme points for f(x) = xe- 0.5%. IT

Answers

The required coordinates of the local extreme points for f(x) = xe^(-0.5x) are (2, 2e^(-1)).

The given function is f(x) = xe^(-0.5x).Part C: Thinking Skills1. Determine the coordinates of the local extreme points for f(x) = xe^(-0.5x).Solution:We are given the function f(x) = xe^(-0.5x).Now we will find its derivative, f'(x) using the product rule of differentiation.f(x) = u vwhere u = x and v = e^(-0.5x)Now, f'(x) = u' v + v' u= 1 (e^(-0.5x)) + (-0.5x)(e^(-0.5x))= e^(-0.5x) (1 - 0.5x)Now, f'(x) = 0 when 1 - 0.5x = 0=> 1 = 0.5x=> x = 2The critical point is at x = 2. Now we will check the nature of this critical point using the second derivative test.f''(x) = d/dx(e^(-0.5x)(1 - 0.5x))= e^(-0.5x)(0.25x - 0.5)Now, f''(2) = e^(-1) (0.25(2) - 0.5)= -0.18394Since f''(2) is negative, the given critical point is a local maximum.Therefore, the coordinates of the local extreme point are (2, 2e^(-1)).

Learn more about local extreme points here:

https://brainly.com/question/29142686

#SPJ11

Let f(x) = x - 8x? -4. a) Find the intervals on which f is increasing or decreasing b) Find the local maximum and minimum values of . c) Find the intervals of concavity and the inflection points. d) Use the information from a-c to make a rough sketch of the graph

Answers

There are no local minimum values, inflection points, or intervals of concavity. The graph of f(x) will resemble an inverted parabola opening downwards, with a maximum point at x = 1/16 and a y-value of -4.

To analyze the function f(x) = x - 8x^2 - 4, we will perform the following steps:

a) Find the intervals on which f is increasing or decreasing:

To determine the intervals of increasing and decreasing, we need to analyze the sign of the derivative of f(x).

First, let's find the derivative of f(x):

f'(x) = 1 - 16x

To find the intervals of increasing and decreasing, we set f'(x) = 0 and solve for x:

1 - 16x = 0

16x = 1

x = 1/16

The critical point is x = 1/16.

Now, we analyze the sign of f'(x) in different intervals:

For x < 1/16: Choose x = 0, f'(0) = 1 - 0 = 1 (positive)

For x > 1/16: Choose x = 1, f'(1) = 1 - 16 = -15 (negative)

Therefore, f(x) is increasing on the interval (-∞, 1/16) and decreasing on the interval (1/16, ∞).

b) Find the local maximum and minimum values of f(x):

To find the local maximum and minimum values, we need to analyze the critical points and the endpoints of the given interval.

At the critical point x = 1/16, we can evaluate the function:

f(1/16) = (1/16) - 8(1/16)^2 - 4 = 1/16 - 1/128 - 4 = -4 - 1/128

Since the function is decreasing on the interval (1/16, ∞), the value at x = 1/16 will be a local maximum.

As for the endpoints, we consider f(0) and f(∞):

f(0) = 0 - 8(0)^2 - 4 = -4

As x approaches ∞, f(x) approaches -∞.

Therefore, the local maximum value is -4 at x = 1/16, and there are no local minimum values.

c) Find the intervals of concavity and the inflection points:

To find the intervals of concavity and the inflection points, we need to analyze the second derivative of f(x).

The second derivative of f(x) can be found by differentiating f'(x):

f''(x) = -16

Since the second derivative is a constant (-16), it does not change sign. Thus, there are no inflection points and no intervals of concavity.

d) Sketch the graph:

Based on the information obtained, we can sketch a rough graph of the function f(x):

The function is increasing on the interval (-∞, 1/16) and decreasing on the interval (1/16, ∞).

There is a local maximum at x = 1/16 with a value of -4.

Learn more about  the intervals here:

https://brainly.com/question/32715586

#SPJ11

show full work please
18. A company claims it can extract N gallons of contaminated water per day from a deep well at the rate modeled by N(t)=61¹-720r³ +21600r² where t is the number of days since the extraction begins

Answers

The company's extraction rate of contaminated water from a deep well is modeled by the function N(t) = 61¹ - 720r³ + 21600r², where t represents the number of days since the extraction began.

The given function N(t) = 61¹ - 720r³ + 21600r² represents the extraction rate of contaminated water, measured in gallons per day, from the deep well. The variable t represents the number of days since the extraction process started. The function is defined in terms of the variable r.

To understand the behavior of the extraction rate, we need to analyze the properties of the function. The function is a polynomial of degree 3, indicating a cubic function. The coefficient values of 61¹, -720r³, and 21600r² determine the shape of the function.

The first term, 61¹, is a constant representing a base extraction rate that is independent of time or any other variable. The second term, -720r³, is a cubic term that indicates the influence of the variable r on the extraction rate. The third term, 21600r², is a quadratic term that also affects the extraction rate.

The cubic and quadratic terms introduce variability and complexity into the extraction rate function. The values of r determine the specific rate of extraction at any given time. By manipulating the values of r, the company can adjust the extraction rate according to its requirements.

In summary, the company's extraction rate of contaminated water from the deep well is modeled by the function N(t) = 61¹ - 720r³ + 21600r², where t represents the number of days since the extraction began. The function incorporates a cubic term and a quadratic term, allowing the company to control the extraction rate by manipulating the variable r.

Learn more about mathematical functions :

https://brainly.com/question/30594198

#SPJ11

Evaluate •S 4 cos x sin x dx Select the better substitution: (A) uecos x, (B) u = 4 cos x, or (C) u = sin x. O(A) O(B) (C) With this substitution, the limits of integration are updated directly as f

Answers

The better substitution for evaluating the integral of 4 cos x sin x dx is u = 4 cos x (option B). This substitution simplifies the integral and makes the integration process easier.

To evaluate the integral of 4 cos x sin x dx, we can consider the given substitutions and determine which one leads to simpler integration.

Let's evaluate each of the given substitutions and see how they affect the integral.

(A) u = ecos x

Taking the derivative, we have du = -sin x dx. This substitution does not simplify the integral since we still have sin x in the integrand.

(B) u = 4 cos x

Taking the derivative, we have du = -4 sin x dx. This substitution simplifies the integral as it eliminates the sin x term.

(C) u = sin x

Taking the derivative, we have du = cos x dx. This substitution also simplifies the integral as it eliminates the cos x term.

Comparing the substitutions, both (B) and (C) simplify the integral by eliminating one of the trigonometric functions. However, (B) u = 4 cos x leads to a more direct simplification since it eliminates the sin x term directly.

Therefore, the better substitution for evaluating the integral of 4 cos x sin x dx is u = 4 cos x (option B). This substitution simplifies the integral and makes the integration process easier.

Learn more about integral here:

https://brainly.com/question/29562419

#SPJ11

For the linear function y = f(x) = 4x + 6: a. Find df dx at x = 2. f'(2) = b. Find a formula for x = = f-¹(y). f-¹(y) = df-1 c. Find dy (f ¹)'(f(2)) = at y = f(2).
Question 2 < If f(x) = 7 sin-¹(

Answers

a. To find df/dx at x = 2, we need to take the derivative of the function f(x) = 4x + 6 with respect to x. The derivative of a linear function is the coefficient of x, so in this case, f'(x) = 4. Therefore, f'(2) = 4.

b. To find the inverse function f^(-1)(y), we need to solve the equation y = 4x + 6 for x. Rearranging the equation, we get x = (y - 6)/4. So the formula for f^(-1)(y) is f^(-1)(y) = (y - 6)/4.

c. To find dy/dx, we need to take the derivative of the inverse function f^(-1)(y) with respect to y. The derivative of (y - 6)/4 with respect to y is 1/4. Therefore, (f^(-1))'(f(2)) = 1/4.

Note: In Question 2, the given expression "7 sin-¹(" is incomplete, so it is not possible to provide a complete answer without the rest of the expression.

Learn more about derivative here;

https://brainly.com/question/29144258

#SPJ11

dy = 9e²+7, y(-7)= 0 dz Solve the initial value problem above. (Express your answer in the form y=f(x).)

Answers

The solution to the initial value problem is y = 9/2 * e^(2x) + 7x + 49 - 9/2 * e^(-14).

To solve the initial value problem, we need to find the function y(x) that satisfies the given differential equation and initial condition.

The given differential equation is dy/dx = 9e^(2x) + 7.

To solve this, we can integrate both sides of the equation with respect to x:

∫ dy = ∫ (9e^(2x) + 7) dx

Integrating, we get:

y = 9/2 * e^(2x) + 7x + C

where C is the constant of integration.

To find the specific value of C, we use the initial condition y(-7) = 0. Substituting x = -7 and y = 0 into the equation, we can solve for C:

0 = 9/2 * e^(2*(-7)) + 7*(-7) + C

0 = 9/2 * e^(-14) - 49 + C

C = 49 - 9/2 * e^(-14)

Now we have the complete solution:

y = 9/2 * e^(2x) + 7x + 49 - 9/2 * e^(-14)

Therefore, the solution to the initial value problem is y = 9/2 * e^(2x) + 7x + 49 - 9/2 * e^(-14).

Learn more about "differential equation":

https://brainly.com/question/1164377

#SPJ11

Other Questions
Find all inflection points for f(x) = x4 - 10x3 +24x2 + 3x + 5. O Inflection points at x=0, x= 1,* = 4 O Inflection points at x - 1,x=4 O Inflection points at x =-0.06, X = 2.43 x 25.13 O This function does not have any inflection points. if a student is a sophomore what is the probabillty that they travle the world need help!h. Find any horizontal and vertical asymptotes of the following function if they exist by using limits 2x? 3x2 +1 of the function: f(x) = x - 8 Discuss within your group XRP (RIPPLE)3. Discuss within your group to choose one national currency. (Jappan) (Japanese yen)Section 1: History overview of xrp (Ripple)Section 2: The cryptocurrency regulation in Japan national currency. what is true about esotropia pt w/ normal retinal correspondence? a. angle of anomaly is greater than zero b. cover test and maddox rod produce the same results c. the perception is a single fused image d. the fovea is corresponding to point zero. According to the article, which of the following characteristics fit Standard Oil? Check all that apply. researchers at deloitte university suggested that blockchain coulda. increase the need for more security when using cash alternatives. b. improve financial transactions. c. All of the above are true. d. increase the number of intermediaries in most legal transactions. e. completely replace money as a means of payment. 1. Write an equation that would allow you to test whether a particular point (x, y) is on the parabola 2. Write an equation that states (x, y) is the same distance from (4, 1) as it is from x axis. 3. Write an equation that describe a parabola with focus (-1,-7) and directrix y=3.4. Write an equation that is perpendicular to the equation y= -2/5x + 8/5. help asap2. Use an integral to find the area above the curve y=-e* + e(2x-3) and below the x-axis, for x20. You need to use a graph to answer this question. You will not receive any credit if you use the metho Multiply the question below (with an explanation)(0.1x^2 + 0.01x + 1) by (0.1x^2) why did the little girl stare at the narrators mother from the first day by edward First draw a sketch of the 2D region and the kth strip. Then write the Riemann Sum that will approximate the volume of revolution of the surface generated by rotating the region bounded by y = 2x, x = 2, and the first quadrant around the x-axis using the shell method. In the preparation of this narcotic, roots are chewed, spit out, and mixed with water. The plant from which this narcotic derives isA.Erythroxylum coca.B.Papaver somniferum.C.Piper methysticum.D.Lophophora williamsii.E.Ipomoea violoaceae. Grainger W.W. Inc sells computer equipment to a firm in Japan. The total price of computer equipment is 172,650 in U.S. dollars. Approximately, how much the firm in Japan will pay to Grainger W.W. Inc in Japanese yens if one unit of Japanese yen is currently equal to $0.01 (expressed as $/Japanese yen)? Give a parametric representation for the surface consisting of the portion of the plane 3x + 2y + 6z = 5 contained within the cylinder x^2 + y^2 = 81. Remember to include parameter domains. Suppose that the Disney World is using a simulation to study thewaiting line (queue) for the new Marvel ride. Among the choicesbelow, identify the probability distributions that would likely bea be determine convergence or divergence using any method covered so far (up to section 10.5.) justify your answer: [infinity]n=1 n^3/n! A researcher wishes to estimate the number of households with two tablets. What size sample should be obtained in order to be 95% confident that the sample proportion will not differ from the true proportion by more than 6%? A previous study indicates that the proportion of households with two tablets is 20%. Round up to the nearest whole number. Find the directions in which the function increases and decreases most rapidly at Po Then find the derivatives of the function in these directions fix.y.z)=(x/)- y. Pof-4.1-4) The direction in which the given function f(x..z)=(x/y)-yz Increases most rapidly at Po(-41-4) --- (Type exact answers, using rodicals as needed.) The direction in which the given function f(x,y,z)=(x/y)- yz decreases most rapidly et P (-41.-4) is --=-(001. Ok (Type exact answers, using radicals as needed.) The derivative of the given function f(x,y.cz)=(x/y)-yz in the direction in which the function increases most rapidly at Pol-41,-4) s (D)-41-4 = 0 Type an exact answer using radicats as needed.) he derivative of the given function fix,y,z)=(x/y)- yz in the direction in which the function decreases most rapidly at Po(-4.1.- 4) is (-)-4,1,-4)=0 ype an exact answer, using radicals as needed.) () Levine Inc., which produces a single product, has prepared the following standard cost sheet for one unit of the product.Direct materials (6 pounds at $3.20 per pound)$19.20Direct labor (1 hours at $12.00 per hour)$12.00During the month of April, the company manufactures 340 units and incurs the following actual costs.Direct materials purchased and used (2,500 pounds)$8,250Direct labor (360 hours)$4,248Compute the total, price, and quantity variances for materials and labor.