the answer is 11/7.you can see the image
Answer:
[tex]\boxed {\boxed {\sf \frac{11}{7}}}[/tex]
Step-by-step explanation:
The slope describes the direction and steepness of a line. The formula is:
[tex]m= \frac{y_2-y_1}{x_2-x_1}[/tex]
Where (x₁, y₁) and (x₂, y₂) are the points the line contains. For this problem, the line contains the points (2,7) and (-5, -4). Therefore:
x₁= 2 y₁ = 7 x₂ = -5 y₂ = -4Substitute these values into the formula.
[tex]m= \frac{ -4 -7}{-5-2}[/tex]
Solve the numerator (-4 -7 = -11).
[tex]m= \frac{ -11}{-5-2}[/tex]
Solve the denominator (-5-2 = -7).
[tex]m= \frac{ -11}{-7}[/tex]
Simplify the fraction. The 2 negative signs cancel each other out.
[tex]m= \frac{11}{7}[/tex]
The slope of the line is 11/7
Please help me find limit
9514 1404 393
Answer:
-13/11
Step-by-step explanation:
Straightforward evaluation of the expression at x=1 gives (1 -1)/(1 -1) = 0/0, an indeterminate form. So, L'Hopital's rule applies. The ratio of derivatives is ...
[tex]\displaystyle\lim_{x\to 1}\dfrac{n}{d}=\dfrac{n'}{d'}=\left.\dfrac{\dfrac{4}{3\sqrt[3]{4x-3}}-\dfrac{7}{2\sqrt{7x-6}}}{\dfrac{5}{2\sqrt{5x-4}}-\dfrac{2}{3\sqrt[3]{2x-1}}}\right|_{x=1}=\dfrac{4/3-7/2}{5/2-2/3}=\dfrac{8-21}{15-4}\\\\=\boxed{-\dfrac{13}{11}}[/tex]
What is the slope of the line that passes through the points listed in the table?
x l y
8 l 3
10 l 7
A. -4
B. -2
C. 2
D. 4
Answer:
2
Step-by-step explanation:
The slope is given by
m = ( y2-y1)/(x2-x1)
= (7-3)/(10-8)
= 4/2
= 2
8x + 2 = = 7 + 5x + 15
Answer:
2.5
Step-by-step explanation:
8x + 2 = 7 + 5x + 15
Combine like terms:
8x + 2 = 7 + 5x + 15
8x + 2 = 22
-2 -2
-----------------
8x = 20
---- ----
8 8
x = 2.5
Hope this helped.
It keeps saying my answer is wrong after i identified the GCF as 3 but maybe I typed it wrong.
Answer:
3(9t^5-7p^4)(9t^5+7p^4)
Step-by-step explanation:
243 t^10 - 147 p^8
3 ( 81 t^10-49 p^8 )
Then we need to factor what is in the parentheses
3 ( ( 9t^5) ^2 - ( 7p^4) ^2)
This is the difference of squares ( a^2 -b^2) = ( a-b) (a+b)
3(9t^5-7p^4)(9t^5+7p^4)
No, the graph suggests that the increase in adoptions from 2000 to 2005 was less significant than it actually is. No, the graph suggests that the increase in adoptions from 2000 to 2005 was more significant than it actually is. Yes, the graph fairly and accurately depicts the data in an objective manner.
Answer: No, the graph suggests that the increase in adoptions from 2000 to 2005 was more significant than it actually is
Step-by-step explanation:
Ok, in the graph we can see that the minimal value for the y-axis is y = 4000.
This means that the graph is like a "zoom" tath points to the tips of the boxes.
This makes the relative difference between the columns seems to be bigger than it actually is, so the correct answer would be:
"No, the graph suggests that the increase in adoptions from 2000 to 2005 was more significant than it actually is"
And remember that this happens for the people that only see the graph for a second and draw the conclusions (most of the people). While in the graph you can read all the information that you need to calculate exactly the relative change.
The number of lines that can be drawn perpendicular to a given line at a given point on that line in space is:
A. 3
B. 0
C. not enough information
D. infinitely many
Answer:
D. infinitely many
Step-by-step explanation:
Perpendicular lines can be drawn everywhere on the lone in infinitely different places, making the answer infinite.
The number of lines that can be drawn perpendicular to a given line at a given point on that line in space is infinite many.
The correct answer is an option (D)
What is perpendicular to line?"It is a straight line that makes an angle of 90° with another line. "For given question,
Lines are perpendicular to each other if their intersection with one another forms a right angle. Through any given line, there are an infinite number of perpendicular lines.Through a specific point on a line, there exists only one perpendicular line. Similarly, for a line and a point not on that line, there is only one perpendicular line through the point.We can draw infinite perpendicular lines to a
Therefore, the number of lines that can be drawn perpendicular to a given line at a given point on that line in space is infinite many.
The correct answer is an option (D)
Learn more about the perpendicular lines here:
https://brainly.com/question/18271653
#SPJ2
SOMEONE PLEASE HELP.............
Select the type of equations.
consistent
equivalent
inconsistent
Answer:
this is an inconsistent because no solutions
A researcher is interested in determining whether typists are most productive in the morning, at midday, in the evening, or late at night. To answer this question, the researcher recruits 20 participants and assigns 5 participants to be measured at each time of day. To evaluate productivity, the researcher measures words typed per minute at each time of day.
Morning Midday Evening Night
99 42 80 82
80 32 83 78
99 45 94 79
98 49 70 97
79 38 79 96
Mean 91 41.2 81.2 86.4
SStotal = 9094.95
What are the degrees of freedom for the numerator of the F-ratio?
a. 2
b. 3
c. 16
d. 19
Answer:
d. 19
Step-by-step explanation:
Degrees of freedom is the number is the number of value which is used in the final calculation. It calculate as n-1, where n is the sample size. The degrees of freedom for the given scenario is 19. The sample size is 20 so the degrees of freedom is 1 less which will be 19.
Use Lagrange multipliers to find three numbers whose sum is 30 and the product P = x3y4z is a maximum. Choose the answer for the smallest of the three values. Question 20 options: a) 21/4 b) 5 c) 15/4 d) 3
We want to maximize [tex]x^3y^4z[/tex] subject to the constraint [tex]x+y+z=30[/tex].
The Lagrangian is
[tex]L(x,y,z,\lambda)=x^3y^4z-\lambda(x+y+z-30)[/tex]
with critical points where the derivatives vanish:
[tex]L_x=3x^2y^4z-\lambda=0[/tex]
[tex]L_y=4x^3y^3z-\lambda=0[/tex]
[tex]L_z=x^3y^4-\lambda=0[/tex]
[tex]L_\lambda=x+y+z-30=0[/tex]
[tex]\implies\lambda=3x^2y^4z=4x^3y^3z=x^3y^4[/tex]
We have
[tex]3x^2y^4z-4x^3y^3z=x^2y^3z(3y-4x)=0\implies\begin{cases}x=0,\text{ or}\\y=0,\text{ or}\\z=0,\text{ or}\\3y=4x\end{cases}[/tex]
[tex]3x^2y^4z-x^3y^4=x^2y^4(3z-x)=0\implies\begin{cases}x=0,\text{ or}\\y=0,\text{ or}\\3z=x\end{cases}[/tex]
[tex]4x^3y^3z-x^3y^4=x^3y^3(4z-y)=0\implies\begin{cases}x=0,\text{ or}\\y=0,\text{ or}4z=y\end{cases}[/tex]
Let's work with [tex]x=3z[/tex] and [tex]y=4z[/tex], for which we have
[tex]x+y+z=8z=30\implies z=\dfrac{15}4\implies\begin{cases}x=\frac{45}4\\y=15\end{cases}[/tex]
The smallest of these is C. 15/4.
What is the slope of the line that passes through the points listed in the table?
x | y
4 | 7
5 | 3
A. 4
B. 3
C. -3
D. -4
Answer:
D. -4
Step-by-step explanation:
the slope formula is
m=(y2-y1)/(x2-x1)
(x2,y2) = (4,7)
(x1, y1) = (5,3)
So (7-3)/(4-5) = 4/-1 = -4
Answer:
-4
Step-by-step explanation:
I say so
Christopher has breakfast at a cafe and the cost of his meal is \$36.00$36.00dollar sign, 36, point, 00. Because of the service, he wants to leave a 10\%10%10, percent tip.
What is his total bill including tip?
Answer: $ 39.60
Step-by-step explanation:
36 + (36*0.10) = 39.60
The mean number of years employees stay with a company is 12 years with a population standard deviation 4 years. The distribution of years has a left skewed shape. The probability that the mean years of staying in the company for a randomly selected sample of 36 will be more than 14 years is
Answer:
sorry for doesn't know the answer
What is the probability of randomly picking a red marble from a bag of 10 green marbles, 10 yellow marbles, and 5 red marbles?
Answer
20%
Step-by-step explanation:
What is 45x62 Please help.
Answer:
45
62x
______
90
2700+
_________
2790
Step-by-step explanation:
Triangle+ Triangle + Triangle = 30 Triangle + circle + circle = 20 Circle + Square + Square = 13 Triangle + circle x half square = ?
Answer:
Below
Step-by-step explanation:
Let T be triangle, C the circle and S the square.
● T + T + T = 30
● 3T = 30
Divide both sides by 3
● 3T/3 = 30/3
● T = 10
So the triangle has a value of 10.
●30 T + C + C = 20C + S + S = 13T +C ×S/2
Add like terms together
●30 T + 2C = 20C +2S= 13T + C×S/2
Replace T by its value (T=10)
● 300 + 2C = 20C + 2S = 130 + C×S/2
Take only this part 20C + 2S = 130 + C × S/2
● 20C + 2S = 130 + C×S/2 (1)
Take this part (300+2C = 20C+2S) and express S in function of C
● 20C + 2S = 300 + 2C
Divide everything by 2 to make easier
● 10 C + S = 150+ C
● S = 150+C-10C
● S = 150-9C
Replace S by (5-9C) in (1)
● 20C + 2S = 130 + C×S/2
● 20C + 2(150-9C) = 130 +C× (150-9C)/2
● 20C + 300-18C= 130 + C×(75-4.5C)
● 2C + 300 = 130 + 75 -4.5C^2
● 2C +300-130 = 75C - 4.5C^2
● 2C -75C + 170 = -4.5C^2
● -73C + 170 = -4.5C^2
Multiply all the expression by -1
● -4.5C^2 +73C+ 170= 0
This is a quadratic equation, so we will use the discriminant method.
Let Y be the discriminant
● Y = b^2-4ac
● b = 73
● a = -4.5
● c = 170
● Y = 73^2 - 4×(-4.5)×170= 8389
So the equation has two solutions:
● C = (-b +/- √Y) /2a
√Y is approximatively 92
● C = (-73 + / - 92 )/ -9
● C = 18.34 or C = -2.11
Approximatively
● C = 18 or C = -2
■■■■■■■■■■■■■■■■■■■■■■■■■
● if C = 18
30T + 2C = 300 + 36 = 336
● if C = -2
30T + 2C = 300-4 = 296
CD is the perpendicular bisector of XY Determine the value of x. Question 8 options: A) –2 B) –1∕2 C) 4 D) 1.25
Answer:
Step-by-step explanation:
12x - 9 = 8x + 7
4x - 9 = 7
4x = 16
x = 4
solution is C
The solution is Option C.
The value of x is given from the equation x = 4
What is perpendicular bisector?A perpendicular bisector is defined as a line or a line segment that divides a given line segment into two parts of equal measurement. Lines that cross each side's midpoint and are perpendicular to the specified side are known as a triangle's perpendicular bisectors.
The perpendicular bisector theorem states that any point on the perpendicular bisector is equidistant from both the endpoints of the line segment on which it is drawn
Given data ,
Let the first line be represented as CD
Let the second line be represented as XY
Now , CD is the perpendicular bisector of XY
So , the point F is the midpoint of the line segment XY
The measure of line segment XF = 12x - 9
The measure of line segment FY = 8x + 7
From the perpendicular bisector theorem ,
The measure of line segment XF = The measure of line segment FY
Substituting the values in the equation , we get
12x - 9 = 8x + 7
Subtracting 8x on both sides of the equation , we get
4x - 9 = 7
Adding 9 on both sides of the equation , we get
4x = 16
Divide by 4 on both sides of the equation , we get
x = 4
Therefore , the value of x = 4
Hence , the value of the equation is x = 4
To learn more about perpendicular bisectors click :
https://brainly.com/question/4137998
#SPJ2
What is the value of x in |6| = x?
Answer:
6
Step-by-step explanation:
the | | are for absolute value, which means
|-6|=|6|= 6
Find the area of the shaded regions:
Answer: 125.6 in^2
Step-by-step explanation:
First, we have that the radius of this circle is r = 10in
Now, we know that the area of a circle is:
A = pi*r^2
Now, if we got only a section of the circle, defined by an angle x, then the area of that region is:
A = (x/360°)*pi*r^2
Notice that if x = 360°, then the area is the same as the area of the full circle, as expected.
Then each shaded area has an angle of 72°.
A = (72°/360°)*3.14*(10in)^2 = 62.8 in^2
And we have two of those, both of them with the same angle, so the total shaded area is:
2*A = 2*62.8 in^2 = 125.6 in^2
I need help please help meee I don’t understand
Answer:
204
Step-by-step explanation:
To simplify the shape, you can do multiple things. I've opted to shave down both prongs to take it from a 'T' shape to a rectangular prism.
For height of the prongs, take 4 from 6.
6 - 4 = 2
Divide by 2 as there are 2 prongs.
2 / 2 = 1
Remember L * W * H
6 * 3 * 1 = 18
Remember that there are two prongs!
3 + 4 = 7
6 * 7 * 4 = 168
168 + 2(18) = 204
h(x) = x2 + 1 k(x) = x – 2
Evaluate 3h(2) + 2k(3) =
Answer:
17
Step-by-step explanation:
[tex]h(x) =x^2 +1\\k(x)=x-2\\\\3h(2)+2k(3)\\\\h(2)= ?\\k(3)=?\\\\h(2) = (2)^2 +1\\= 4+1\\h(2)=5\\\\\\k(3)= 3-2\\k(3) = 1\\\\3h(2) +2k(3)\\\\= 3(5)+2(1)\\=15+2\\3h(2)+2k(3) = 17[/tex]
5, 9, and 17
Step-by-step explanation:
Read the image for instructions
Answer:
4 ther are 4 line symmetery
Answer:
two lines of symmetry
(a vertical and a horizontal)
Find the value of the test statistic z using . The claim is that the proportion of adults who smoked a cigarette in the past week is less than , and the sample statistics include n subjects with saying that they smoked a cigarette in the past week.
Correct question is;
The claim is that the proportion of adults who smoked a cigarette in the past week is less than 0.35, and the sample statistics include n = 1168 subjects with 385 saying that they smoked a cigarette in the past week. Find the value of the test statistic
Answer:
Test statistic is z = -1.46
Step-by-step explanation:
Let's first of all define the hypotheses:
Null hypothesis:
H0: p = 0.35, i.e 35% in the sample of 1,168 adults have smoked cigarettes in the previous week.
Alternative hypothesis:
Ha: p < 0.35, i.e less than 35% in the sample of 1,168 adults have smoked cigarette in the previous week.
The sample size is, n = 1,168 while the number of adults who smoked in the previous week would be; x = 385
Therefore, the sample proportion of adults who smoked in the previous week would be calculated as;
p^ = x/n = 385/1168 ≈ 0.3296
Now, from Central Limit Theorem for large samples, The sampling distribution of the sample proportion p^, will have a mean of μ = p = 0.35
Formula for standard deviation is;
σ = √[p (1 – p)/n]
σ = √(0.35 × (1 – 0.35)/1168)
σ = √0.0001947774
σ = 0.014
Formula for test statistic is;
z = (p^ - p)/σ
z = (0.3296 - 0.35)/0.014
z = - 1.46
The Tran family and the Green family each used their sprinklers last summer. The water output rate for the Tran family's sprinkler was 35L per hour. The water output rate for the Green family's sprinkler was 40L per hour. The families used their sprinklers for a combined total of 50 hours, resulting in a total water output of 1900L. How long was each sprinkler used?
Answer:
Tran family's sprinkler was used for 20 hours
Green's family's sprinkler was used for 30 hours
Step-by-step explanation:
Let the hours for which Tran family's sprinkler used is x hours
water output rate for the Tran family's sprinkler = 35L per hour
water output from Tran family's sprinkler in x hours = 35*x L = 35x
Let the hours for which Green family's sprinkler used is y hours
water output rate for the Green family's sprinkler = 40L per hour
water output from Green family's sprinkler in x hours = 40*y L = 40y
Given
The families used their sprinklers for a combined total of 50 hours
thus
x + y = 50 -------------------equation 1
y = 50-x
total water output of 1900L
35x+40y = 1900 -------------------equation 1
using y = 50-x in equation 2, we have
35x + 40(50-x) = 1900
35x + 2000 - 40x = 1900
=> -5x = 1900 - 2000 = -100
=> x = -100/-5 = 20
y = 50-20 = 30
Thus,
Tran family's sprinkler was used for 20 hours
Green's family's sprinkler was used for 30 hours
Evaluate the line integral, where C is the given curve. C (x yz) dx 2x dy xyz dz, C consists of line segments (3, 0, 1) to (4, 3, 1) and from (4, 3, 1) to (4, 5, 4)
Split up C into two component paths C₁ and C₂, where each line segment is respectively parameterized by
r₁(t) = (1 - t ) (3i + k) + t (4i + 3j + k) = (t + 3) i + 3t j + k
r₂(t) = (1 - t ) (4i + 3j + k) + t (4i + 5j + 4k) = 4i + (2t + 3) j + (3t + 1) k
both with 0 ≤ t ≤ 1.
It's a bit unclear what function you're supposed to integrate (looks like xyz ?) so I'll give a more general result. The line integral of a scalar function f(x, y, z) along the given path C is
[tex]\displaystyle \int_C f(x,y,z)\,\mathrm ds = \int_{C_1}f(\mathbf r_1(t))\left\|\frac{\mathrm d\mathbf r_1}{\mathrm dt}\right\|\,\mathrm dt + \int_{C_1}f(\mathbf r_2(t))\left\|\frac{\mathrm d\mathbf r_2}{\mathrm dt}\right\|\,\mathrm dt[/tex]
We have
dr₁/dt = i + 3j ==> || dr₁/dt || = √(1² + 3²) = √10
dr₂/dt = 2j + 3k ==> || dr₂/dt || = √(2² + 3²) = √13
Then the integrals reduce to
[tex]\displaystyle \int_0^1 \left(\sqrt{10}\,f(t+3,3t,1) + \sqrt{13}\,f(4,2t+3,3t+1)\right)\,\mathrm dt[/tex]
If indeed f(x, y, z) = xyz, then we have
[tex]\displaystyle \int_0^1 \left(3\sqrt{10}\,t(t+3) + 4\sqrt{13}\,(2t+3)(3t+1)\right)\,\mathrm dt = 11\sqrt{\frac52}+42\sqrt{13}[/tex]
How do I answer this
Answer:
11. Yes
12. No
Step-by-step explanation:
11. The x values only have 1 y value, so it makes it a function.
12. The x value 0 has 2 y values -4 and 4, therefore it is not a function, because in functions that x value can only have one y value,
Clara travels from her home to Stoke.
The distance from her home to Stoke is 100 miles.
She travels at an average speed of 50 miles per hour.
She stops for 20 minutes on the journey. Clara arrives in Stoke at 10:10 am.
At what time did she leave home?
Answer:
7:50 am
Step-by-step explanation:
Clara took 2 hours to reach, and she took a 20 min break, so she left at 7:50 and arrived at 10:10.
Answer:
7:50
Step-by-step explanation:
50 miles per hour/50 miles per 60 min.
50 miles + 50 miles = 100 miles.
if 50 miles takes 1 hour, 100 miles would equal to 2 hours.
considering clara took a 20 min break, thats 2 hours and 20 minutes.. subtract that from the time she arrived and you would get 7:50
Gavin goes to the market and buys one rectangle shaped board. The length of the board is 16 cm and width of board is 10 cm. If he wants to add a 2 cm wooden border around the board, what will be the area of the rectangle board?
Answer:
The answer is 216
Step-by-step explanation:
if there is a 2 cm border, that means that the sides will both become 2 centimeters longer. so (16+2)*(10*2) = 18*12 = 216.
\int\limits^0_\pi {x*sin^{m} (x)} \, dx
Let
[tex]I(m) = \displaystyle \int_0^\pi x\sin^m(x)\,\mathrm dx[/tex]
Integrate by parts, taking
u = x ==> du = dx
dv = sinᵐ (x) dx ==> v = ∫ sinᵐ (x) dx
so that
[tex]I(m) = \displaystyle uv\bigg|_{x=0}^{x=\pi} - \int_0^\pi v\,\mathrm du = -\int_0^\pi \sin^m(x)\,\mathrm dx[/tex]
There is a well-known power reduction formula for this integral. If you want to derive it for yourself, consider the cases where m is even or where m is odd.
If m is even, then m = 2k for some integer k, and we have
[tex]\sin^m(x) = \sin^{2k}(x) = \left(\sin^2(x)\right)^k = \left(\dfrac{1-\cos(2x)}2\right)^k[/tex]
Expand the binomial, then use the half-angle identity
[tex]\cos^2(x)=\dfrac{1+\cos(2x)}2[/tex]
as needed. The resulting integral can get messy for large m (or k).
If m is odd, then m = 2k + 1 for some integer k, and so
[tex]\sin^m(x) = \sin(x)\sin^{2k}(x) = \sin(x)\left(\sin^2(x)\right)^k = \sin(x)\left(1-\cos^2(x)\right)^k[/tex]
and then substitute u = cos(x) and du = -sin(x) dx, so that
[tex]I(2k+1) = \displaystyle -\int_0^\pi\sin(x)\left(1-\cos^2(x)\right)^k = \int_1^{-1}(1-u^2)^k\,\mathrm du = -\int_{-1}^1(1-u^2)^k\,\mathrm du[/tex]
Expand the binomial, and so on.
One more than the quotient of a number x and 4. Write an expression to represent:
Answer:
x/4 +1
Step-by-step explanation:
Consider the line L(t)=⟨5+t,1+5t⟩. Then:
Choose perpendicular, parallel or neither. (PS. Answers below may not be true.)
If L(t) = ⟨5 + t, 1 + 5t⟩, then the tangent vector to L(t) is
dL/dt = ⟨1, 5⟩
Any line parallel to L(t) will have the same tangent vector, up to some scalar factor (that is, if the tangent vector is a multiple of ⟨1, 5⟩).
Any line r(t) with tangent vector T(t) = dr/dt that is perpendicular to L(t) will satisfy
T(t) • ⟨1, 5⟩ = 0
• r(t) = ⟨-5, -2t, 1 - 10t⟩ is parallel to L(t) because its tangent vector is
T(t) = ⟨-2, -10⟩ = -2 ⟨1, 5⟩
• r(t) = ⟨1 + 1.5t, 3 + 7.5t⟩ is parallel to L(t) because
T(t) = ⟨1.5, 7.5⟩ = 1.5 ⟨1, 5⟩
• r(t) = ⟨-2 - t, 2 - 2t⟩ is neither parallel nor perpendicular to L(t) because
T(t) = ⟨-1, -2⟩ ≠ k ⟨1, 5⟩
for any real k (in other words, there is no k such that -1 = k and -2 = 5k), and
⟨-1, -2⟩ • ⟨1, 5⟩ = -1 - 10 = -11 ≠ 0
• r(t) = ⟨3 + 15t, -3t⟩ is perpendicular to L(t) because
T(t) = ⟨15, -3⟩
and
⟨15, -3⟩ • ⟨1, 5⟩ = 15 - 15 = 0