Answer:
Does the answer help you?
How many times larger is the value of
86,000,000 than 8,600?
Answer:
a 1000 times// just divide them
Answer:
10,000 times Larger
Step-by-step explanation:
To determine the multiple larger for 86,000,000 than 8,600, we simply will use the division operation and the result will be the multiple.
86,000,000 / 8,600 = 10,000
Hence, the number 86,000,000, is 10,000 times larger than 8,600.
Another method is simply to look at the additional zeroes that 86,000,000 has in comparison to 8,600. Since we can see that 86 is the only non-zero digit within the two numbers, we can use the properties of the decimal system to compare. Note that 86,000,000 has 6 zeroes, while 8,600 has two zeros. This means that we will need 4 zeroes as part of our tens multiple, so we can say that 10,000 is the multiple. Once again, we see that 86,000,000 is 10,000 times larger than 8,600.
Cheers.
Find the least number which must be subrtacted from 5607 as to get a perfect square.
Also find the square root of the perfect square so obtained.
( show the workings )
Answer:
i dont know
Step-by-step explanation:
Answer:
Hello,
Step-by-step explanation:
since
[tex]\sqrt{5607} =74,879903...\\\\Let\ x\ the\ searched\ number\\\\5607-x=74^2\\\\x=5607-5476\\\\\boxed{x=131}\\[/tex]
Josephine is going on a run around the lake. She knows the distance around the lake. but she would like to complete her run in a certain amount of time. Josephine knows she can used the formula d=rt Which equation correctly rearranges the formula to find the time it will take her to run around the lake? (Solve for t)
Answer:
D
Step-by-step explanation:
To solve for T in this, you need to to divide r from both sides of the equation.
d=rt
divide r
d/r=t
The correct equation is t= d/r.
The answer is option D.
How do you reorganize an equation?Rearrange the equation in order that the unknown variable is by itself on one aspect of the equals sign (=) and all the different variables are on the opposite side. Rule 1: you could add, subtract, multiply and divide by means of something, so long as you do the identical aspect to both aspects of the equals sign.
What does it mean to rearrange a formula?We can express an equation in phrases of the opposite variable. For example, to arrange the equation in order that it's far written as taking each time period and circulate to the opposite side of the equal sign the usage of the opposite operation till you most effective have.
Learn more about the equation here: https://brainly.com/question/1214333
#SPJ2
How would I solve this? (y-z) ÷ z y=-2 and z=4/5
Answer:
-3.5
Step-by-step explanation:
The problem you have stated is (y-z)/z where y=-2 and z = 4/5. To solve, substitute the values of y and z into the problem. Then, you have (-2-4/5)/4/5. (-2-4/5) simplifies to -14/5 so then you have (-14/5)/4/5. To divide, multiply -14/5 by 5/4 {multiplying by the reciprocal}. That equals -70/20 which is equal to -3.5
Answer:
[tex]\large\boxed{-3.5}[/tex]
Step-by-step explanation:
(y - z) ÷ z y = -2 and z = 4/5
Substitute in the given values for y and z into the equation
(y - z) ÷ z
(-2 - 4/5) ÷ 4/5
Subtract inside the parenthesis (-2 - 4/5)
-2.8 ÷ 4/5
Convert 4/5 into a decimal (in this case that can be done by multiplying both the numerator and denominator by 20)
4/5 = (4 * 20) / (5 * 20) = 80 / 100
80 / 100
Divide numerator and denominator by 10
8/10 = 0.8
Substitute into previous equation
-2.8 ÷ 4/5 = -2.8 ÷ 0.8
Divide
[tex]\large\boxed{-3.5}[/tex]
Hope this helps :)
find the interest rate r when p = 800, a = 2700, and t = 3.
Answer:
r = 0.5 or 1/2
Step-by-step explanation:
Simple Interest Rate Formula: A = P(1 + r)^t
Simply plug in our known variables:
2700 = 800(1 + r)³
Now we solve for r:
Divide both sides by 800
27/8 = (1 + r)³
Take the cube root on both sides
∛27/8 = ∛(1 + r)³
Simplify
3/2 = 1 + r
Subtract 1 on both sides
r = 1/2
r = 0.5
Answer:
For compound interest, 50%.
Step-by-step explanation:
(I'm assuming this question is asking for the compound interest):
The formula for compound interest is given by:
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]
Plug in the values we know. We can use 1 for n:
[tex]2700=800(1+r)^3\\27/8=(1+r)^3\\1+r=\sqrt[3]{27/8}\\r=3/2-1\\r=1/2=.5[/tex]
So, the interest rate is 50%.
64. Find the coordinates of the midpoint of a segment with endpoints (7.-1) and (-1, 5).
(x₂+x2 yı+Y2
Midpoint formula
2
Answer:
The coordinates of the midpoint of the segment is (3,2)
Step-by-step explanation:
To find the coordinates of the midpoint, we use the midpoint formula which is;
(x1+x2/2 , y1+y2/2)
Where;
x1 = 7
x2 = -1
y1 = -1
y2 = 5
= (7-1)/2 , (-1+5)/2 = 6/2, 4/2 = (3,2)
There are two cameras that take pictures of a traffic intersection. Camera A starts taking pictures at 6 AM and takes a picture every 11 minutes. Camera B starts taking pictures at 7 AM and takes pictures every 7 minutes. Camera A and Camera B take a picture at the same time at four different times before noon. When Camera A and Camera B take their last picture together, how many minutes before noon is it?
Answer:
41 minutes before noon
Step-by-step explanation:
The given parameters are;
The time camera A starts taking pictures = 6 AM
The frequency of picture taking by camera A = Once every 11 minutes
The time camera B starts taking pictures = 7 AM
The frequency of picture taking by camera B = Once every 7 minutes
The number of times both cameras take a picture at the same time before noon = 4 times
Let the time the two cameras first take a picture the same time be x, we have;
11·y - 60 = x
7·z = x
Taking the number of times after 7 camera A snaps and noting that the first snap is 6 minutes after 7, we have
11·b + 6 = x
7·z = x
x is a factor of 7 and 11·b + 6 and x is some minutes after 7
By using Excel, to create a series of values for Camera A based, on 11·b + 6, and dividing the results by 7 we have the factors of 7 at;
28, 105, 182, and 259 minutes after 7
Given that there are 60 minutes in one hour, we have;
259/60 = 4 hours 19 minutes, which is 11:19 a.m. or 41 minutes before noon.
Look at this sphere:
If the radius is doubled, then which of the following statements about its surface area will be true?
In the equation for surface area the radius is squared ( r^2)
If the radius is doubled, the radius would be 2^2 more which equals 4
The surface area would be 4 times the old surface area.
What is the product? Two-thirds times eight-ninths
10/27
16/27
Two-thirds
Five-sixths
Answer:
16/27
[tex]\frac{2}{3}[/tex] × [tex]\frac{8}{9}[/tex] = [tex]\frac{16}{27}[/tex]
Math! Need help will give brainliest if CORRECT
Hey there! I'm happy to help!
So we want to see which of these have the greatest value. Since these are all negative numbers, we want the one that is closest to zero.
So, we know that -1000 is going to furthest from 0. -10 will be further than -8 since it is a larger negative number, so it will be more negative than -8.
-1/2 is just barely negative, so it is going to be closer to -0 than -8, so the correct answer is C. -1/2.
Have a wonderful day and keep on learning! :D
Find the coefficient of third term of (2x−1)^6.
240
using pascals trianle
for the power 6 it is
1, 6,15,20, 15,6, 1
and for the third term (2x)^4 and (-1)^2
[tex]15 \times {(2x)}^{4} \times {( - 1)}^{2} [/tex]
[tex]240 {x}^{4} [/tex]
Since only the coefficient is needed
the answer is 240.
The required coefficient of third term is 480.
Coefficient of the third term of (2x−1)^6 to be determine.
Coefficient is defined as the integer present adjacent to the variable.
Here, (2x−1)^6
Using binomial expansion,
Third term = P(6,2)(2x)^6-2(-1)^2
= 6*5*16x^4
= 480x^4
Thus, the required coefficient of third term is 480.
Learn more about coefficient here:
https://brainly.com/question/2507029
#SPJ2
45. A crew member on a boat releases a camera 2 feet above the surface of a lake. The
camera falls 6 feet, where it is caught by a diver. How many feet below the surface of
the lake is the diver?
A. 6 feet below
B. 8 feet below
C. 4 feet below
D. 12 feet below
Answer:
C. 4 feet below
Step-by-step explanation:
A crew member on a boat releases a camera 2 feet above the surface of a lake. That is +2 feet
The camera falls 6 feet. -6
+2+(-6)
2-6
-4
Below 4 feet
Find the area of ABCD
Answer:
Applying Heron's Formula
[tex]s=\frac{2.89+4.3+6.81}{2}[/tex]
[tex]s_1=7[/tex]
[tex]A_1=\sqrt{7(7-2.89)(7-4.3)(7-6.81)}[/tex]
[tex]A_1=10.56[/tex]
Now, [tex]s_2=\frac{6.81+8.59+7.58}{2}[/tex]
[tex]s_2=11.49[/tex]
[tex]A_2=\sqrt{11.49(11.49-6.81)(11.49-8.59)(11.49-7.59)}[/tex]
[tex]A_2=24.69[/tex]
Total Area:
[tex]10.56+24.69[/tex]
[tex]=35.25[/tex]
OAmalOHopeO
Triangle ABC has a height of 8 cm and an area of 42cm².
Calculate the length of BC.
BC must be base
Height=8cmArea=42cm^2We know
[tex]\boxed{\sf Area_{(Triangle)}=\dfrac{1}{2} Height\times Base}[/tex]
[tex]\\ \sf\longmapsto 42=\dfrac{1}{2}8BC[/tex]
[tex]\\ \sf\longmapsto 4BC=42[/tex]
[tex]\\ \sf\longmapsto BC=\dfrac{42}{4}[/tex]
[tex]\\ \sf\longmapsto BC=10.5cm[/tex]
BC must be base then
Area: 42cm²
Height: 8cm
Base: BC
1/2 × b × h = 42
1/2 × b × 8 = 42
b = 42/4
b = 21/2
BC = 21/2 or 10 1/2
Or 10.5cm
Must click thanks and mark brainliest
The distance of the point (5, -1) from the y axis is *
Answer:
5 units
Step-by-step explanation:
draw a horizontal line from the point (5, -1) to the y-axis: y=-1, it hits the y-axis at (0, -1). the distance between the two is 5 units
Write an equation of the line that passes through the point (5, –8) with slope 5. A. y−5=5(x+8) B. y+8=−5(x−5) C. y−5=−5(x+8) D. y+8=5(x−5)
Answer:
D
Step-by-step explanation:
The equation of a line in point- slope form is
y - b = m(x - a)
where m is the slope and (a, b) a point on the line
Here m = 5 and (a, b) = (5, - 8 ), thus
y - (- 8) = 5( x - 5), that is
y + 8 = 5(x - 5) → D
Astrid is in charge of building a new fleet of ships. Each ship requires 404040 tons of wood, and accommodates 300300300 sailors. She receives a delivery of 444 tons of wood each day. The deliveries can continue for 100100100 days at most, afterwards the weather is too bad to allow them. Overall, she wants to build enough ships to accommodate at least 210021002100 sailors.
To build the fleet of ships, Astrid must consider each of the given rates (i.e. the daily tons of wood, the sailors per ship, etc.). The available deliveries are enough to build ships that can accommodate at least 2100 sailors.
Given that:
Required quantities
[tex]Wood = 40\ tons[/tex]
[tex]Sailors = 300[/tex] per ship
Available quantities
[tex]Wood = 4\ tons[/tex] daily
[tex]Days = 100[/tex] at most
First, we calculate the total tons of woods Astrid can receive.
[tex]Total = Days \times Wood\ Available[/tex]
[tex]Total = 100 \times 4[/tex]
[tex]Total = 400\ tons[/tex] ---- in 100 days
Next, we calculate the number of ships that can be made from the 400 tons.
[tex]Ships = \frac{Total\ tons}{Wood\ Required}[/tex]
So, we have:
[tex]Ships = \frac{400}{40}[/tex]
[tex]Ships = 10[/tex]
This means that Astrid can build up to 10 ships
The number of sailors the ship can accommodate is:
[tex]Sailors = Ships \times Sailors\ per\ ship[/tex]
So, we have:
[tex]Sailors = 10 \times 300[/tex]
[tex]Sailors = 3000[/tex]
It means the 10 ships can accommodate 3000 sailors.
3000 sailors is greater than 2100 sailors.
So, we can conclude that she can build enough ship for the 2100 sailors.
Read more about
https://brainly.com/question/17174491
Answer:
280 tons
Step-by-step explanation:
:)
A man borrows $200 000 to buy a sports car. He is charged a simple interest of
2.88% per annum. If the loan is for 7 years, find the
(a) interest payable
(b) amount of each repayment if the total sum is to repaid in 84 equal
installments.
Answer:
See explanation
Step-by-step explanation:
a) 200,000 x .0288 x 7 = 40,320 interest
b) 240,320/84 = $2860.95
On the first day in each month, Enid deposited $4 into her bank account and Jim deposited $3 into his. They opened these accounts on May 15, 1990. On December 31, 1990, they each had $72 dollars in their account. How much did each person deposit on May 15?
Answer:
The amount of money in Enid bank account can be written as a linear equation.
Ye = Xe + $4*m
where Ye is the money that Enid has in her account, m is the number of months that have passed since she opened it, and Xe is the initial deposit.
For Jim, the equation is similar:
Yj = Xj + $3*m
where Yj and Xj are similar as above.
Between May 15 and December 31 of the same year, we have 7 months (where i am counting December because the deposit is made in the first day of the month).
Then we have that:
Ye = $72 = Xe + $4*7 = Xe + $28
Xe = $72 - $28 = $44
So in May 15, Enid deposited $44.
For Jim we have:
Yj = $72 = Xj + $3*7 = Xj + $21
Xj = $72 - $21 = $51
So in May 15, Jim deposited $51.
I already found the vertex, but can someone help me find the latus rectum of this parabola?
Answer:
Step-by-step explanation:
y=x²+7
vertex(0,7)
the length of latus rectum in a parabola equal to four times the focal length :
y=x²+7
focus X=-b/2a=0
focus Y=c- (b²-1)/4a=7+1/4=29/4
focus (0 , 29/4)
latus rectum is 29/4
(x-h)^2 = 4p (y-k) 4p is the length of the latus rectum with vertex(0,7)
(0-0)²=4p(29/4-7)
0=29p-28p=1p
the length of the latus rectum is 1
Answer:
1
Step-by-step explanation:
The short answer is that the length of the latus rectum is the reciprocal of the magnitude of the leading coefficient.
In y = x^2 +7, the leading coefficient is 1.
latus rectum = 1/|1| = 1
what does |x| mean? like what do the | | 'bars' symbolize or represent?
Answer: Absolute Value
Step-by-step explanation:
The | | is a symbol for absolute value. This signifies that the number inside would be positive. Now, this doesn't mean it will always be a number inside absolute value bars. It can also be expressions.
Examples:
|1|: Even though the number inside is a positive 1, we know that it cannot be negative under any circumstances. The only exception would be if there was a negative sign on the outside of the absolute value.
|-1|: We see that there is a -1 in the absolute value. This means that it is actually a 1, not -1. The absolute value is what makes everything inside positive.
|1-5|: To solve this, we know that 1-5=-4. Without the absolute value, the answer -4 would be correct. In this case, we have absolute value, so the answer is actually 4.
|x+2|: x+2 can easily be negative. This would happen is x was a negative number that is smaller than -2. x+2 can also be positive, but the absolute value guarantees that the ending result must be positive.
Which statement correctly compares
1–201 and
1512
ol-201 = 151
ol-201 < 51
l-201 > 151
Answer:
Option B.
Step-by-step explanation:
Consider the correct question is "Which statement correctly compares
1. -201 and 151
-201 = 151
-201 < 51
-201 > 151"
The given numbers are -201 and 151. We need to compare these numbers.
We know that all negative numbers are less than positive numbers.
So,
-201 < 151
If both numbers are negative, then the larger negative number is the smaller number.
Therefore, the correct option is B.
The formula e= 3n can be used to relate the number of sides (n) in the base of a prism to the number of edges (e) that the prism has.
a) Make n the the subject of the formula.
Step-by-step explanation:
e=3n
where e =edges and n= number of sides
n= e/3
David hikes 2 1/4 miles in 1/2 an hour. What is his rate in miles per hour? At this rate, how long will it take him to walk 18 miles?
Answer:
1 hour= 4.5 miles
18 miles= 4 hours
Step-by-step explanation:
determine if the equation is a linear equation -x + 3y^2=18
Answer:
No
Step-by-step explanation:
Linear equations must have no squares, roots, cubes, or any powers. If the graph has an asymptote or any restrictions, it is not a linear function.
A linear function will only appear in either point-slope form or slope-intercept form. These forms will not have square roots or powers in them.
-x + 3y² = 18
We know here that this is not a linear function. But we can try to write it in slope-intercept form:
3y² = x + 18
y² = x/3 + 6
y = √(x/3 + 6)
We can see from here that our graph is a square root function and has a restricted domain (no negative numbers).
Alternatively, we can graph the equation to see if it is a constant line (linear equation) or not. When we do so, we see that it is definitely not a linear function:
3. A publishing house is selling subscriptions to its magazines for 20% off the original price. If a
subscription to Newsweek Magazine is on sale for $72, how much does it usually cost?]
a) $14.40
b) $57.60
c) $86.40
d) $90
Can anyone help me with this please and thank you
Answer:
x=0, 7
Step-by-step explanation:
x^2-3x=4x
x^2-7x=0
x(x-7)=0
x=0 or 7
Answer:
x=0 x=7
Step-by-step explanation:
x^2 -3x = 4x
Subtract 4x from each side
x^2 -3x-4x=0
x^2 -7x = 0
Factor out an x
x(x-7) =0
Using the zero product property
x=0 x-7 =0
x=0 x=7
For what values of does the equation (2 + 1)^2 + 2 = 10 − 6 have two real and equal roots?
Answer:
Step-by-step explanation:
For what values of does the equation (2 + 1)^2 + 2 = 10 − 6 have two real and equal roots?
The price of tiling a room varies directly as the size of the room. Sam is laying tile in his kitchen. If the tiling costs $4,224.00 for 264 square feet, what is the size of a kitchen that costs $3,824.00? A. 239 square feet B. 256 square feet C. 7,648 square feet D. 63,096 square feet
Answer:
The answer is option AStep-by-step explanation:
Let the price of the room be p
Let the size of the room be s
To find the size of a kitchen that costs $3,824.00 we must first find the relationship between them
The statement
The price of tiling a room varies directly as the size of the room is written as
p = kswhere k is the constant of proportionality
when
p = $4,224.00
s = 264 square feet
Substitute the values into the expression to find k
That's
4224 = 264k
Divide both sides by 264
k = 16
So the formula for the variation is
p = 16swhen
p = 3824
[tex]s = \frac{p}{16} [/tex]
[tex]s = \frac{3824}{16} [/tex]
s = 239
The final answer is
239 square feet
Hope this helps you
Please answer this question now
Answer:
200 cubic centimeters is the answer :)
Step-by-step explanation: