find the order of magnitude of the following physical quantities. enter your answer in the form: 10x where x is the exponent of 10. (a) the mass of earth’s atmosphere: 5.1×1018 kg;

Answers

Answer 1

The mass of Earth's atmosphere is given as 5.1×10^18 kg. To find the order of magnitude of this quantity, we need to determine the power of 10 that represents the scale of the value.

To do this, we can look at the exponent of 10 in scientific notation. In this case, the exponent is 18. The order of magnitude is determined by the value of this exponent.

In the given value, the exponent is positive, indicating a large quantity. Since the exponent is 18, we can say that the mass of Earth's atmosphere is on the order of 10^18 kg.

To put this in perspective, let's consider some examples of other quantities with different orders of magnitude:

- The mass of a human is on the order of 10^1 kg, as it is typically around 70 kg.
- The mass of Earth is on the order of 10^24 kg, as it is approximately 5.97×10^24 kg.

So, the mass of Earth's atmosphere, at 5.1×10^18 kg, falls between these two orders of magnitude. It is more than a billion times smaller than the mass of Earth, but more than a billion times larger than the mass of a human.

To know more about atmosphere visit:

https://brainly.com/question/32358340

#SPJ11


Related Questions

Show that the wave function ψ = Aei(kx-wt) is a solution to the Schrödinger equation (Eq. 41.15), where k = 2π/λ and U=0 .

Answers

The wave function ψ = Aei(kx-wt) satisfies the Schrödinger equation with U=0 by satisfying E = ħ²k²/2m. #SPJ11

The wave function ψ = Aei(kx-wt) satisfies the Schrödinger equation with U=0. The Schrödinger equation, in its time-independent form, is given by Ĥψ = Eψ, where Ĥ is the Hamiltonian operator, E is the energy eigenvalue, and ψ is the wave function. In the case of U=0, the Hamiltonian operator reduces to the kinetic energy operator, and the time-independent Schrödinger equation becomes -ħ²/2m ∂²ψ/∂x² = Eψ. Taking the second derivative of ψ with respect to x, we find that (∂²/∂x²) (Aei(kx-wt)) = -k²Aei(kx-wt). Comparing this result to the Schrödinger equation, we see that -k²Aei(kx-wt) = -ħ²k²/2m Aei(kx-wt). This implies that E = ħ²k²/2m, which satisfies the Schrödinger equation.

Learn more about Schrödinger equation here:

https://brainly.com/question/31642338

#SPJ11

Review. A standing-wave pattern is set up by radio waves between two metal sheets 2.00 m apart, which is the shortest distance between the plates that produces a standingwave pattern. What is the frequency of the radio waves?

Answers

To determine the frequency of the radio waves that produce a standing wave pattern between two metal sheets spaced 2.00 m apart, we need to consider the fundamental mode of the standing wave, where the distance between consecutive nodes is half a wavelength.

Therefore, the shortest distance that produces a standing wave pattern is equal to half the wavelength of the radio waves.

In a standing wave pattern, nodes are points where the amplitude of the wave is always zero, and antinodes are points where the amplitude is maximum. For the fundamental mode, the distance between consecutive nodes (or antinodes) is equal to half the wavelength of the wave.

In this case, the shortest distance between the plates (2.00 m) corresponds to half a wavelength. Therefore, we can express the wavelength as 2 times the shortest distance between the plates.

Wavelength (λ) = 2 * shortest distance between plates]

To find the frequency (f), we can use the wave equation: v = f * λ, where v is the velocity of the wave.

Since radio waves travel at the speed of light (approximately 3.00 x 10^8 m/s), we can substitute the values into the equation:

3.00 x 10^8 m/s = f * (2 * shortest distance between plates)

Simplifying the equation, we can solve for the frequency:

f = (3.00 x 10^8 m/s) / (2 * shortest distance between plates)

By plugging in the value of the shortest distance between the plates (2.00 m), we can calculate the frequency of the radio waves that produce the standing wave pattern.

Learn more about wavelength here:

https://brainly.com/question/31322456

#SPJ11

If you shake one end of the rope whose other end is tied to a stationary object,

Answers

If you shake one end of a rope whose other end is tied to a stationary object, a wave will propagate along the length of the rope.

When you shake one end of the rope, you create a disturbance that travels as a wave along the rope. This wave is known as a transverse wave, where the particles of the rope move perpendicular to the direction of wave propagation.

The speed at which the wave travels along the rope depends on the properties of the rope, such as its tension and mass per unit length. It can be calculated using the equation:

v = √(T/μ)

where v is the velocity of the wave, T is the tension in the rope, and μ is the mass per unit length of the rope.

As the wave propagates along the rope, it causes the particles of the rope to oscillate up and down in a transverse motion. The wave transfers energy from one end to the other, without the actual movement of the rope as a whole.

When you shake one end of a rope tied to a stationary object, a transverse wave will travel along the length of the rope, causing the particles of the rope to oscillate. The wave transfers energy without moving the rope as a whole.

To know more about stationary ,Visit :

https://brainly.com/question/2292466

#SPJ11

A shaft is turning at 65.0 rad/s at time t=0 . Thereafter, its angular acceleration is given byα=-10.0-5.00 twhere α is in rad/s² and t is in seconds.(a) Find the angular speed of the shaft at t=3.00 s.

Answers

The angular speed of the shaft at t = 3.00 s is 20.5 rad/s. It is determined by integrating the given angular acceleration function and applying the initial condition.

To find the angular speed of the shaft at t = 3.00 s, we need to integrate the given angular acceleration function with respect to time. The angular acceleration function is α = -10.0 - 5.00t, where α is in rad/s² and t is in seconds.

Integration

Integrating the given angular acceleration function α = -10.0 - 5.00t with respect to time will give us the angular velocity function ω(t).

∫α dt = ∫(-10.0 - 5.00t) dt

Integrating -10.0 with respect to t gives -10.0t, and integrating -5.00t with respect to t gives -2.50t².

Therefore, ω(t) = -10.0t - 2.50t² + C, where C is the constant of integration.

Determining the constant of integration

To determine the constant of integration, we use the initial condition provided in the problem. At t = 0, the shaft is turning at 65.0 rad/s.

ω(0) = -10.0(0) - 2.50(0)² + C

65.0 = C

Therefore, the constant of integration C is equal to 65.0.

Substituting t = 3.00 s

Now we can find the angular speed of the shaft at t = 3.00 s by substituting t = 3.00 into the angular velocity function ω(t).

ω(3.00) = -10.0(3.00) - 2.50(3.00)² + 65.0

ω(3.00) = -30.0 - 22.50 + 65.0

ω(3.00) = 12.5 rad/s

Therefore, the angular speed of the shaft at t = 3.00 s is 12.5 rad/s.

Learn more about angular speed

brainly.com/question/29058152

#SPJ11

When you weigh yourself on good old terra firma (solid ground), your weight is 133 lb . In an elevator your apparent weight is 113 lb. What is the direction of the elevator's acceleration

Answers

The direction of the elevator's acceleration is downward.

The apparent weight in an elevator is different from the actual weight on solid ground due to the presence of acceleration. When the elevator accelerates upward, the apparent weight increases, while when it accelerates downward, the apparent weight decreases. In this case, the apparent weight in the elevator is 113 lb, which is less than the weight on solid ground (133 lb). Since the apparent weight is lower, it indicates that the elevator's acceleration is in the opposite direction of gravity, which is downward.

The acceleration due to gravity, denoted by the symbol "g," is a constant value that represents the rate at which objects accelerate towards the Earth's surface under the influence of gravity. Near the surface of the Earth, the standard value for acceleration due to gravity is approximately 9.8 meters per second squared (m/s²). This means that for every second an object is in free fall near the Earth's surface, its speed will increase by 9.8 meters per second, assuming no other forces are acting on it.

To learn more about Acceleration, click here:

brainly.com/question/30660316

#SPJ11

What is the magnitude of the total negative charge on the electrons in 1.32 mol of helium?

Answers

The magnitude of the total negative charge on the electrons in 1.32 mol of helium is 1.27232 x 10^5 C. The magnitude of the total negative charge refers to the total amount of negative charge present in a system or object.

In order to determine the magnitude of the total negative charge on the electrons in 1.32 mol of helium, we can follow a few steps.                                                                                                                                                                                                                          Firstly, we calculate the total number of electrons by multiplying Avogadro's number (6.022 x 10^23 electrons/mol) by the number of moles of helium (1.32).                                                                                                                                                         This gives us 7.952 x 10^23 electrons.                                                                                                                                            Next, we need to determine the charge of a single electron, which is 1.6 x 10^-19 C (Coulombs).                                                Finally, we multiply the total number of electrons by the charge of a single electron to find the magnitude of the total negative charge.                                                                                                                                                                                     Multiplying 7.952 x 10^23 electrons by 1.6 x 10^-19 C/electron gives us 1.27232 x 10^5 C.                                                                                                               Therefore, the magnitude of the total negative charge on the electrons in 1.32 mol of helium is calculated to be 1.27232 x 10^5 C.                                                                                                                                                                                                               This represents the cumulative charge carried by all the electrons present in the given amount of helium.

Read more about magnitude of the negative charge.                                                                     https://brainly.com/question/30572548                                                                                                                                            #SPJ11

A+3.60+lb+sample+of+the+mineral+siderite+contains+48.2%+iron.+how+many+meters+of+iron+wire+with+diameter+of+0.0650+inches+can+be+produced+from+this+sample?+density+of+iron+is+7.87+g/cm3.

Answers

To determine how many meters of iron wire can be produced from the given sample of siderite, we need to follow these steps: Calculate the mass of iron in the sample.
Step 1: Calculate the mass of iron in the sample.
The sample contains 48.2% iron. If we assume the sample's mass is 3.60 lb (pounds), then the mass of iron can be calculated as:
Mass of iron = 48.2% * 3.60 lb
Step 2: Convert the mass of iron to grams.
Since the density of iron is given in grams per cubic centimeter (g/cm^3), we need to convert the mass of iron from pounds to grams. Remember that 1 lb is equal to 453.592 grams.
Step 3: Calculate the volume of the iron wire.
The volume of a cylindrical wire can be calculated using the formula:
Volume = π * [tex](diameter/2)^2[/tex] * length
Step 4: Convert the volume of the iron wire to cubic centimeters ([tex]cm^3[/tex]).
Since the density of iron is given in g/[tex]cm^3[/tex], we need to convert the volume of the iron wire from cubic inches to cubic centimeters. Remember that 1 inch is equal to 2.54 centimeters.
Step 5: Calculate the length of the iron wire.
Using the density and the volume of the iron wire, we can calculate the length using the formula:
Length = Mass of iron / (Density * Volume)
By following these steps, you can determine the number of meters of iron wire that can be produced from the given sample of siderite.

To know more about mass visit:

https://brainly.com/question/11954533

#SPJ11

derive the energy equation in spherical coordinates using the differential control volume depicted below. follow the same procedure shown in class for cartesian coordinates; i.e. use an energy balance with conduction and advection flows in/out chegg

Answers

To derive the energy equation in Spherical coordinates using the differential control volume depicted, we can follow a similar procedure as for Cartesian coordinates. The energy equation can be derived by considering the energy balance with conduction and advection flows in and out of the control volume.

In spherical coordinates, the energy equation can be expressed as:

ρc_p ∂T/∂t = ∇·(k∇T) + ρV·∇T + Q

Where:
- ρ is the density of the fluid
- c_p is the specific heat capacity at constant pressure
- T is the temperature
- t is time
- k is the thermal conductivity
- V is the velocity vector
- ∇ is the gradient operator
- Q represents any internal heat sources or sinks within the control volume.

This equation accounts for heat conduction through the medium (∇·(k∇T)), advection of heat by the fluid (ρV·∇T), and any internal heat sources or sinks (Q).

Know more about Spherical coordinates  here,

https://brainly.com/question/31745830

#SPJ11

which form of the law of conservation of energy describes the motion of the block as it slides on the floor from the bottom of the ramp to the moment it stops? view available hint(s)for part e which form of the law of conservation of energy describes the motion of the block as it slides on the floor from the bottom of the ramp to the moment it stops? 12mv2i mghi wnc

Answers

The law of conservation of energy states that energy cannot be created or destroyed, only transferred or transformed. This equation represents the conservation of energy, where the initial potential energy is converted into kinetic energy and work done by non-conservative forces.


1. Initial potential energy (mgh): The block initially has potential energy due to its height above the floor. This potential energy is given by the product of the block's mass (m), acceleration due to gravity (g), and height (h). As the block slides down the ramp, this potential energy is converted into other forms.

2. Kinetic energy (12mv^2): As the block slides, it gains kinetic energy due to its motion. The kinetic energy of an object is given by half the product of its mass (m) and the square of its velocity (v).

3. Work done by non-conservative forces (W_nc): Non-conservative forces, such as friction between the block and the floor, can do work on the block, causing it to lose energy. The work done by non-conservative forces is negative and represents energy lost due to factors like friction, air resistance, or heat dissipation.

Initial potential energy (mgh) = Kinetic energy (12mv^2) + Work done by non-conservative forces (W_nc)

To know more about kinetic energy visit:

https://brainly.com/question/999862

#SPJ11

If equipment draws a current of 300 amperes, what is the approximate opening time of the ocpd?

Answers

The approximate opening time of the Overcurrent Protection Device (OCPD) can be determined based on the current drawn by the equipment. However, to provide a more accurate answer, we need to know the type of OCPD being used.

Assuming that the OCPD is a standard circuit breaker, the opening time can vary depending on the specific breaker. Generally, circuit breakers have a time-current characteristic curve that defines their tripping time based on the magnitude of the current.

To determine the approximate opening time, we can refer to the manufacturer's data or standard time-current curves. These curves provide a graphical representation of the tripping time for different current values.

For example, if we assume that the circuit breaker has a tripping time of 0.1 seconds at 100 amperes, we can estimate the opening time for a current of 300 amperes by interpolating between the provided data points.

Using linear interpolation, we can calculate the approximate opening time as follows:

- The time difference between 100 amperes and 300 amperes is 200 amperes.
- The time difference between 0.1 seconds and the unknown opening time is t seconds.
- The ratio of the current difference to the time difference is constant: 200 amperes / 0.1 seconds = 300 amperes / t seconds.
- Solving for t, we get t = (0.1 seconds) * (300 amperes / 200 amperes) = 0.15 seconds.

Therefore, based on this estimation, the approximate opening time of the OCPD for a current draw of 300 amperes is 0.15 seconds.

To know more about current visit:

https://brainly.com/question/15141911

#SPJ11

If the maximum tension the rope can have before it breaks is 200 N, what is the centripetal acceleration just before the rope breaks.

Answers

The maximum tension the rope can have before it breaks is 200 N, the centripetal acceleration just before the rope breaks is equal to 200 N divided by the mass of the object.

To determine the centripetal acceleration just before the rope breaks, we need to consider the maximum tension in the rope and the mass of the object moving in a circular path.

The centripetal force required to maintain circular motion is provided by the tension in the rope. When the tension in the rope reaches its maximum value (200 N), it is equal to the centripetal force acting on the object.

The centripetal force (Fc) can be calculated using the following equation:

Fc = (mass) × (centripetal acceleration)

Given that the maximum tension in the rope is 200 N, we have:

Fc = 200 N

Let's assume the mass of the object is denoted by "m" and the centripetal acceleration is denoted by "ac".

Therefore, the equation becomes:

200 N = m × ac

Solving for the centripetal acceleration (ac), we have:

ac = 200 N / m

So, the centripetal acceleration just before the rope breaks is equal to 200 N divided by the mass of the object.

To learn more about he centripetal acceleration visit: https://brainly.com/question/79801

#SPJ11

In november you noticed that it's still seems to be dark in the morning when you are getting ready for school how can you use tools to make your observation more scientific and evaluate it

Answers

To make your observation more scientific and evaluate it, you can use tools such as a stopwatch and a light meter.

1. Stopwatch: Use a stopwatch to measure the exact time it takes for it to become light in the morning. Start the stopwatch when you first notice any light and stop it when the environment is fully illuminated. Repeat this process on different days to gather more data and calculate an average time.

2. Light meter: Use a light meter to quantitatively measure the amount of light present in the morning. This will provide you with numerical data that can be used to compare different days and analyze any patterns or changes in light intensity.

By using these tools, you can make your observation more objective and precise. This will help you gather reliable data, draw accurate conclusions, and potentially identify any underlying factors influencing the darkness in the morning during November.

Learn more about stopwatch at

https://brainly.com/question/9628870

#SPJ11

A light square wire frame each side 10cm vertically in water with one side touching the water surface.find the additional force necessary to pull the frame clear of the water

Answers

The additional force necessary to pull the frame clear of the water can be determined using Archimedes' principle.

When the wire frame is submerged in water, it experiences an upward buoyant force equal to the weight of the water it displaces. To find the additional force required to pull the frame out of the water, we need to calculate the buoyant force acting on it.

The wire frame is a square with each side measuring 10 cm. Since one side is touching the water surface, the effective area of the frame in contact with water is 10 cm x 10 cm = 100 cm².

The buoyant force acting on the frame is equal to the weight of the water it displaces, which can be calculated using the formula: Buoyant force = density of water x volume of water displaced x gravitational acceleration.

The volume of water displaced is equal to the area of contact (100 cm²) multiplied by the depth to which the frame is submerged. However, the depth of submersion is not provided in the question. Therefore, it is not possible to determine the additional force necessary to pull the frame clear of the water without knowing the depth.

To calculate the additional force, we would need to know the depth to which the frame is submerged. With that information, we can determine the volume of water displaced and, subsequently, calculate the buoyant force. The additional force required would be equal to the buoyant force acting in the upward direction.

Learn more about Archimedes' principle

brainly.com/question/787619

#SPJ11.

A weightlifter holds a barbell motionless at her chest as she prepares to lift it over herd head. The work done by the wieghtlifter to hold the barbell in this position is:______.

Answers

The work done by the weightlifter to hold the barbell motionless at her chest is zero.

The work done on an object is defined as the product of the applied force and the displacement of the object in the direction of the force. In this case, the weightlifter is holding the barbell motionless, which means there is no displacement occurring. When there is no displacement, the work done is zero.

To understand this concept further, we can consider that work is equal to the force applied multiplied by the distance moved in the direction of the force. Since the weightlifter is keeping the barbell stationary, there is no distance moved.

Therefore, even though the weightlifter is exerting a force to hold the barbell, no work is being done because there is no displacement in the direction of the force.

Learn more about work done here:

brainly.com/question/2750803

#SPJ11

Calculate the force required to push a block of 20 kg on a horizontal surface with a coefficient of friction of 0.15.

Answers

The force required to push a block of 20 kg on a horizontal surface with a coefficient of friction of 0.15 is 29.4 N.

To calculate the force required to push the block, we need to consider the force of friction. The force of friction can be determined using the equation:

Frictional Force = coefficient of friction × normal force

1. Normal Force: The normal force is the force exerted by the surface on the block, perpendicular to the surface. In this case, since the block is on a horizontal surface, the normal force is equal to the weight of the block.

Normal Force = mass × acceleration due to gravity

Normal Force = 20 kg × 9.8 m/s²

Normal Force = 196 N

2. Frictional Force: The frictional force opposes the motion of the block. It is given by the equation:

Frictional Force = coefficient of friction × normal force

Frictional Force = 0.15 × 196 N

Frictional Force = 29.4 N

3. Force Required: The force required to push the block is equal to the frictional force. Therefore,

Force Required = 29.4 N

Hence, the force required to push the block of 20 kg on a horizontal surface with a coefficient of friction of 0.15 is 29.4 N.

To know more about Frictional Force refer here:

https://brainly.com/question/30280206#

#SPJ11

A coin placed 30.0cm from the center of a rotating, horizontal turntable slips when its speed is 50.0cm/s . (b) What is the coefficient of static friction between coin and turntable?

Answers

The coefficient of static friction between the coin and the turntable can be determined using the given information. The coin is placed 30.0 cm from the center of the rotating turntable, and it slips when its speed reaches [tex]50.0 cm/s[/tex]. We need to calculate the coefficient of static friction.

When the coin slips on the turntable, the force of static friction reaches its maximum value, which can be expressed as:

fs_max = μs * N

where fs_max is the maximum static friction force, μs is the coefficient of static friction, and N is the normal force.

In this case, the normal force N is equal to the weight of the coin, given by:

[tex]N = m * g[/tex]

where m is the mass of the coin and g is the acceleration due to gravity.

The force acting on the coin is the centripetal force required to keep it in circular motion, which is given by:

[tex]Fc = m * v² / r[/tex]

where v is the speed of the coin and r is the distance from the center of the turntable.

When the coin slips, the force of static friction is equal to the centripetal force:

fs_max = Fc

Substituting the expressions for fs_max, μs, N, and Fc, we get:

[tex]μs * m * g = m * v² / r[/tex]

Simplifying the equation, we find:

[tex]μs = v² / (g * r)[/tex]

By plugging in the values for the speed ([tex]50.0 cm/s[/tex]), acceleration due to gravity ([tex]9.8 m/s²[/tex]), and distance from the center ([tex]30.0 cm[/tex]), we can calculate the coefficient of static friction between the coin and the turntable.

Learn more about friction here:

https://brainly.com/question/13000653

#SPJ11

Two samples of the same radioactive nuclide are prepared. Sample G has twice the initial activity of sample H . (i) How does the half-life of G compare with the half-life of H ?(a) It is two times larger.(b) It is the same. (c) It is half as large.

Answers

(i) Option b, The half-life of sample G is the same as the half-life of sample H. (ii) Option c, After passing through five half-lives, G and H have the same activity.

(i) The half-life of a radioactive nuclide is the time it takes for half of the atoms in a sample to decay. In this scenario, sample G has twice the initial activity of sample H. However, the half-life of G and H remains unchanged. The half-life is a characteristic property of a specific radioactive nuclide and is independent of the initial activity or quantity of the sample.

(ii) After each sample has passed through five half-lives, the remaining activity is determined. Since the half-life of both samples is the same, after five half-lives, they would have undergone an equal amount of decay. Therefore, the activities of G and H would be the same. Option (c) "G and H have the same activity" is the correct choice in this case.

Learn more about radioactive nuclide here:

https://brainly.com/question/4189425

#SPJ11

The complete question is:

Two samples of the same radioactive nuclide are prepared. Sample G has twice the initial activity of sample H.

(i) How does the half-life of G compare with the half-life of H?

(a) It is two times larger.

(b) It is the same.

(c) It is half as large.

(ii) After each has passed through five half-lives, how do their activities compare?

(a) G has more than twice the activity of H.

(b) G has twice the activity of H.

(c) G and H have the same activity.

(d) G has lower activity than H.

Monochromatic ultraviolet light with intensity 550 W /m² is incident normally on the surface of a metal that has a work function of 3.44 eV . Photoelectrons are emitted with a maximum speed of 420 km / s . (c) How do you suppose the actual current compares with this maximum possible current?

Answers

The actual current generated by photoelectrons emitted from a metal surface is typically less than the maximum possible current. Several factors, such as the intensity of incident light, the work function.

The maximum kinetic energy of emitted photoelectrons is given by the equation KE = hf - Φ, where KE is the kinetic energy, hf is the energy of the incident photons (determined by the frequency f of the light), and Φ is the work function of the metal.

In this scenario, the maximum speed of the photoelectrons is given as 420 km/s. We can convert this to m/s, which is approximately 420,000 m/s. The actual current generated depends on the number of photoelectrons emitted and their kinetic energies. The current is determined by the rate at which these photoelectrons flow through a circuit.

To compare the actual current with the maximum possible current, we need to consider additional factors such as the efficiency of the photoelectric effect, which accounts for factors like surface conditions and electron scattering within the metal. Due to these factors, the actual current is typically less than the maximum possible current.

Therefore, the actual current generated by the emitted photoelectrons is expected to be less than the maximum possible current, considering the various factors that influence the photoelectric effect.

Learn more about photoelectric  here:

https://brainly.com/question/33463799

#SPJ11

When a cannon is fired, the accelerations of the cannon and cannonball are different, because the:____.

Answers

Answer:

Because the masses are different.

Explanation:

acceleration produced in the cannonball and cannon are different because the force applied on them are equal but their masses are different.

A brass sphere with a diameter of 16. 0 cm at 68°F is heated up to a temperature of 284°F. The change in volume of the sphere is?

Answers

To determine the change in volume of a brass sphere when heated from 68°F to 284°F, we need to consider the equation of ΔV = V_i * α * ΔT.

The change in volume of a solid due to temperature change can be determined using the coefficient of linear expansion (α) and the initial volume (V_i) of the object. The formula to calculate the change in volume (ΔV) is given as:

ΔV = [tex]V_i[/tex] * α * ΔT

Where ΔT is the change in temperature.

To calculate the change in volume of the brass sphere, we first need to determine the initial volume (V_i). The volume of a sphere is given by the formula:

[tex]V_i[/tex] = (4/3) * π * [tex](r_i)^3[/tex]

Where r_i is the initial radius of the sphere.

Given the diameter of the sphere as 16.0 cm, the initial radius (r_i) can be calculated as half the diameter, which is 8.0 cm.

Next, we need to determine the coefficient of linear expansion (α) for brass. The coefficient of linear expansion for brass is approximately 19 x [tex]10^(-6)[/tex] per °C.

The change in temperature (ΔT) can be calculated as the final temperature minus the initial temperature. Converting the temperatures to °C:

ΔT = (284°F - 68°F) * (5/9) = 124°C

Now, we can substitute the values into the formula to calculate the change in volume (ΔV):

ΔV = [tex]V_i[/tex] * α * ΔT

After calculating the volume using the initial radius and the coefficient of linear expansion, we can find the change in volume.

Learn more about volume here:

https://brainly.com/question/33438920

#SPJ11

If a box of max 59kg is place in a height 25m, what is the potantial energy (take= g as 10k)

Answers

Placing a box weighing up to 59 kg at a height of 25 m results in potential energy of 14,750 Joules, assuming the acceleration due to gravity is 10 m/s².

The potential energy of an object is given by the equation PE = mgh, where m represents the mass of the object, g is the acceleration due to gravity, and h is the height of the object from a reference point. In this case, the box has a maximum weight of 59 kg.

To calculate the potential energy, we can substitute the given values into the equation. With a mass of 59 kg, a height of 25 m, and g as 10 m/s², we have PE = (59 kg) * (10 m/s²) * (25 m).

Multiplying these values together, we find that the potential energy of the box is 14,750 Joules. The unit of potential energy is Joules, which represents the amount of energy an object possesses due to its position relative to a reference point.

Therefore, when a box with a maximum weight of 59 kg is placed at a height of 25 m, it has a potential energy of 14,750 Joules, assuming the acceleration due to gravity is 10 m/s².

Learn more about acceleration here : https://brainly.com/question/107797

#SPJ11

olve for the forces acting on CDE at Pins C and D . Note: Positive is up (y) and to the right for x.

Answers

To solve for the forces acting on CDE at Pins C and D, we need additional information or a description of the system's configuration.

In order to determine the forces acting on CDE at Pins C and D, we need to understand the specific setup and geometry of the system. Without this information, it is not possible to provide a definitive answer. The forces at Pins C and D depend on the external loads, constraints, and the structural characteristics of the system.

In general, the forces acting on CDE can be determined by applying the principles of statics and equilibrium. The forces at Pins C and D can be resolved into their components along the x-axis and y-axis. The equations of equilibrium can then be used to solve for the unknown forces by considering the sum of forces and moments acting on the system.However, without the specific details of the system, such as the lengths, angles, applied loads, or any other relevant information, it is not possible to provide a precise analysis or calculation of the forces at Pins C and D. Therefore, to accurately determine the forces, additional information or a detailed description of the system's configuration is necessary.

learn more about forces here:

https://brainly.com/question/30507236

#SPJ11

A dense particle with mass 10 kg follows the path with units in meters and seconds. what force acts on the mass at ?

Answers

The force acting on the mass is 98 N (Newtons).

The force acting on the mass can be determined using Newton's second law of motion, which states that force (F) is equal to mass (m) multiplied by acceleration (a).

In this case, the force acting on the mass is the gravitational force, given by the equation F = mg, where g is the acceleration due to gravity (approximately 9.8 m/s^2).

Given that the mass of the particle is 10 kg, we can calculate the force acting on it as follows:

F = mg
F = 10 kg * 9.8 m/s^2

Therefore, the force acting on the mass is 98 N (Newtons).

Learn more about Newton's Second Law of Motion here:

https://brainly.com/question/32423985

#SPJ11

You make a 50:50 mixture of benzoic acid and salicylic acid. what is most likely to happen to the melting point of the mixture?

Answers

When you make a 50:50 mixture of benzoic acid and salicylic acid, the most likely outcome is a decrease in the melting point of the mixture. This is due to the phenomenon known as eutectic behavior.

Eutectic behavior occurs when two substances with different melting points are combined in certain proportions. In this case, benzoic acid has a higher melting point than salicylic acid. When they are mixed together in equal amounts, a eutectic mixture is formed.

The eutectic mixture has a lower melting point than either of the pure substances. This is because the two substances interact at the molecular level, disrupting the crystal lattice structure and making it easier for the mixture to melt.

By creating a 50:50 mixture of benzoic acid and salicylic acid, you are essentially creating a eutectic mixture, which will result in a decrease in the melting point. It's important to note that the extent of the decrease will depend on the specific properties of the two substances involved.

You can learn more about benzoic acid at: brainly.com/question/3186444

#SPJ11

An airplane is flying with a speed of 282 km/h at a height of 2200 m above the ground. A parachutist whose mass is 93.3 kg, jumps out of the airplane, opens the parachute and then lands on the ground with a speed of 3.50 m/s. How much energy was dissipated on the parachute by the air friction

Answers

To calculate the energy dissipated on the parachute by air friction, we need to first find the initial potential energy of the parachutist before landing and then subtract the final potential energy.

1. Find the initial potential energy:
The initial potential energy is given by the formula:
Potential energy = mass x gravitational acceleration x height
Plugging in the values, we get:
Potential energy = 93.3 kg x 9.8 m/s^2 x 2200 m

2. Find the final potential energy:
The final potential energy is given by the formula:
Potential energy = mass x gravitational acceleration x height
Since the parachutist lands on the ground, the final height is 0. Plugging in the values, we get:
Potential energy = 93.3 kg x 9.8 m/s^2 x 0 m

3. Calculate the energy dissipated:
To find the energy dissipated, we subtract the final potential energy from the initial potential energy:
Energy dissipated = Initial potential energy - Final potential energy
So, the energy dissipated on the parachute by air friction is the difference between the initial and final potential energy of the parachutist.

To know more about potential energy visit:

https://brainly.com/question/24284560

#SPJ11

The box with the changing data shows that the acceleration is constant at 4. 90 m/s2, but i thought g = 9. 80 m/s2. How is this possible?

Answers

The observation of a constant acceleration of 4.90 m/s², instead of the expected value of 9.80 m/s² (g), can be explained by the presence of external forces acting on the object or by considering the context in which the measurement was made.

The value of 9.80 m/s² represents the acceleration due to gravity (g) near the Earth's surface in a vacuum. However, in real-world situations, other forces can come into play and affect the acceleration of an object. These forces may include friction, air resistance, or other external forces acting on the object.

If an object is experiencing an acceleration of 4.90 m/s², it suggests that there are additional forces present that are counteracting the full effect of gravity. These forces can either oppose or assist the gravitational force and result in a net acceleration different from the expected value of g.For example, if an object is moving upwards against gravity, it experiences a net force in the opposite direction of gravity, causing its acceleration to be less than g. On the other hand, if an object is in free fall but encounters air resistance, the opposing force from air resistance can reduce the net acceleration and result in a value lower than g.

Therefore, when observing an acceleration of 4.90 m/s² instead of g, it indicates the influence of external forces on the object's motion or the context in which the measurement was made, rather than a contradiction to the known value of g.

learn more about acceleration here:

https://brainly.com/question/12550364

#SPJ11

The linear density of a dry carbon fiber tow is 0.198 g=m. the density of the carbon fiber is 1.76 g=cm3 and the average filament diameter is 7 mm. determine the number of filaments in the tow

Answers

The linear density of a dry carbon fiber tow is 0.198 g=m. the density of the carbon fiber is 1.76 g=cm³ and the average filament diameter is 7 mm. The number of filaments in the carbon fiber tow is approximately 0.0051.

To determine the number of filaments in the carbon fiber tow, we can use the formula:
Number of filaments = (linear density of the tow) / (linear density of a single filament)
The linear density of the tow is 0.198 g/m and the density of the carbon fiber is 1.76 g/cm³, we need to convert the linear density of the tow to the same units as the linear density of a single filament.
Since the density is given in g/cm³, we can convert the linear density of the tow to g/cm by dividing it by 100:
Linear density of the tow = 0.198 g/m = 0.00198 g/cm

Next, we need to find the linear density of a single filament. To do this, we need to calculate the cross-sectional area of a single filament and divide it by its length.
The average filament diameter is given as 7 mm, which means the radius is half of that or 3.5 mm.
The cross-sectional area of a single filament is given by the formula: A = πr²
Using the given radius, we have: A = π(3.5 mm)²
Converting the radius to cm, we have: A = π(0.35 cm)²
Calculating the cross-sectional area, we identify: A ≈ 0.385 cm²

Now we divide the linear density of the tow (0.00198 g/cm) by the linear density of a single filament (which is the mass per unit length of the filament) to identify the number of filaments:
Number of filaments = 0.00198 g/cm / 0.385 cm²
Number of filaments ≈ 0.0051

You can learn more about linear density at: brainly.com/question/30929692

#SPJ11

When the outer envelope of a red giant is ejected, the remaining core of a low mass star is called a?

Answers

When the outer envelope of a red giant is ejected, the remaining core of a low mass star is called a white dwarf.

A white dwarf is a dense, hot object that no longer undergoes nuclear fusion. It is mainly composed of carbon and oxygen, and is supported by electron degeneracy pressure. The core of the white dwarf gradually cools down over billions of years, eventually becoming a cold, dark object known as a black dwarf. Therefore, When the outer envelope of a red giant is ejected, the remaining core of a low mass star is called a white dwarf.

Learn more about red giant: https://brainly.com/question/27111741

#SPJ11

When the outer envelope of a red giant is ejected, the remaining core of a low mass star is initially called a planetary nebula, and eventually, it becomes a white dwarf.

When a low mass star nears the end of its life, it goes through a phase called the red giant phase. During this phase, the star's core begins to contract while its outer envelope expands, causing the star to increase in size and become less dense. Eventually, the outer envelope of the red giant becomes unstable and starts to drift away from the core. This process is known as a stellar wind or mass loss.

As the outer envelope is ejected, it forms a glowing cloud of gas and dust surrounding the central core. This cloud is called a planetary nebula. Despite its name, a planetary nebula has nothing to do with planets. The term was coined by early astronomers who observed these objects and thought they resembled planetary disks.

The remaining core of the low mass star, which is left behind after the ejection of the outer envelope, undergoes further transformation. It becomes a white dwarf, which is a hot, dense object composed mainly of carbon and oxygen. A white dwarf is the final evolutionary stage of a low mass star, where it no longer undergoes nuclear fusion and gradually cools down over billions of years.

In summary, when the outer envelope of a red giant is ejected, the remaining core of a low mass star is initially called a planetary nebula, and eventually, it becomes a white dwarf.

Learn more about nebula at: https://brainly.com/question/30165962

#SPJ11

The spring in a BB gun has a force constant of 1.8 e4 N/m. When loaded, the spring is compressed a distance of 1.2 cm. If the mass of the BB is 0.36 g, then what is the speed of the BB as it is fired from the toy gun

Answers

To calculate the speed of the BB as it is fired from the toy gun, we can use the principle of conservation of mechanical energy. The potential energy stored in the compressed spring is converted into kinetic energy of the BB.

First, let's convert the mass of the BB to kilograms: 0.36 g = 0.36 × 10^(-3) kg.

The potential energy stored in the spring is given by the formula U = (1/2)kx^2, where k is the force constant and x is the distance the spring is compressed. Substituting the values, we have:

U = (1/2) × (1.8 × 10^4 N/m) × (0.012 m)^2 = 1.296 J

According to the conservation of mechanical energy, this potential energy will be converted into kinetic energy:

U = (1/2)mv^2, where m is the mass of the BB and v is its velocity.

Substituting the values, we can solve for v:

1.296 J = (1/2) × (0.36 × 10^(-3) kg) × v^2

Simplifying, we find:

v^2 = (2 × 1.296 J) / (0.36 × 10^(-3) kg) = 7.2 m^2/s^2

Taking the square root of both sides, we get:

v ≈ 2.68 m/s

Therefore, the speed of the BB as it is fired from the toy gun is approximately 2.68 m/s.

To know more about kinetic:

https://brainly.com/question/5715449

#SPJ11

Q/C A pail of water is rotated in a vertical circle of radius 1.00 m.

(c) What is the pail's minimum speed at the top of the circle if no water is to spill out?

Answers

To prevent water from spilling out of the pail as it rotates in a vertical circle, the minimum speed at the top of the circle can be determined using the concept of centripetal force.

The minimum speed required can be calculated using the equation v_min = sqrt(g * r), where g is the acceleration due to gravity and r is the radius of the circle.

In order for the water to stay inside the pail at the top of the circle, the centripetal force acting on the water must be equal to or greater than the force of gravity pulling the water downward. The centripetal force is provided by the tension in the string or the normal force exerted by the pail.

The minimum speed occurs at the top of the circle, where the net force acting on the water is directed towards the center. The centripetal force is given by the equation F_c = m * v^2 / r, where m is the mass of the water, v is the velocity, and r is the radius of the circle.

At the top of the circle, the centripetal force is provided by the tension or the normal force, which is equal to the weight of the water (mg). Setting these forces equal, we have mg = m * v_min^2 / r.

Simplifying the equation, we find v_min = sqrt(g * r).

Therefore, to prevent the water from spilling out, the pail's minimum speed at the top of the circle must be at least equal to sqrt(g * r), where g is the acceleration due to gravity and r is the radius of the circle.

Learn more about centripetal force here:

brainly.com/question/14021112

#SPJ11

Other Questions
While auscultating a trauma victim's chest for breath sounds you believe you hear muffle heart sounds. You assess that this:_________ 1. Farmer Goodyear produces cash corn. In 2014 total corn sales were $ 489,000 and revenue adjustments $22,000. Operating, and interest expenses were, respectively, $330,000 and $ 35,500. Total nonfarm income and depreciating expenses are $ 25,250 and $ 12,000. Family withdrawal amounted to $67,500 and tax expenses $ 17,000. While there were no unpaid interests for operating loans at the end of 2014, the Principal payments on current portions of debt and leases were $ 32,540. Calculate the Capital Replacement and Debt Replacement margin and perform the appropriate sensitivity analysis. Comment in your Word document how Mr. Goodyear can ensure loan repayability (8 points) The Federalists advocated Question 8 options: a strong state government system. ratification of the new Constitution. return to the Articles of Confederation. the status quo. A 0. 5-kg steel (c = 0. 5 kj/kg-k) rivet cools from 800 k to 300 k upon being installed in a riveted building structure. the entropy change of this rivet is:____. If the level of significance of a hypothesis test is raised from 0. 005 to 0. 2, the probability of a type ii error will:________ How will each of the following changes in demand and/or supply affect equilibrium price and equilibrium quantity in a competitive market? That is, do price and quantity rise, fall, or remain unchanged, or are the answers indeterminate because they depend on the magnitudes of the shifts? a. Supply decreases and demand is constant. Water forms according to the equation below: 2h2(g) o2(g) right arrow. 2h2o(g) delta.hrxn = -483.64 kj how much energy is released during the formation of 1 mol h2o(g)? kj Which theory is predicated on the belief that play is an important force in child development and community life? A university researcher is studying the effect of watching television on residents of the city. Describe a sampling method that can be used for each population.all women over the age of 21 Different cultures place different value on consensus as a decision-making method. a. true b. false The Carboniferous swamps produced so much oxygen that the atmospheric concentration of oxygen increased to 35%. when calculating diluted eps, only securities that should be added to the calculation compared to securities used for the basic eps calculation. How are the pmoc, pmoa, and pmob genes arranged in the dna? you enlist some help from a college freshman to draw the figures. Which would you choose as the most useful and accurate depiction of the arrangement of the pmoc, pmoa, and pmob genes in the chromosome of m. Capsulatus? give reasons to support your choice. a box contains tickets marked 1 2 ... n. a ticket is dran at random from the box. then this ticket is replaced in teh box and a second ticket is dran at random. The ideal criterion for choosing an allocation base for overhead is: Group of answer choices Ease of use. Ease of calculation. Its preciseness. A cause-and-effect relationship. Its applicability. which one of the following is an example of systematic (non-diversifiable) risk? group of answer choices a toymaker has to recall its top-selling toy investors panic causing security prices around the globe to fall precipitously corn prices increase due to increased demand for alternative fuels a city imposes an additional one percent sales tax on all products a flood washes away a firm's warehouse Venya and Kari own a flower shop that specializes in custom bouquets. Wanting to expand into selling potted plants, they create a production possibility chart to assess whether the potted plants are a good idea. Study their chart: How many potted plants should they be able to produce on Day 3 For conflict resolution, many companies prefer to avoid _______________ because of differences in language, legal systems, currencies, and traditional business customs and patterns. Suppose that you are a manufacturer of product ABC, which is composed of parts A, B, and C. Each time a new product is created, it must be added to the product inventory, using the PROD_QOH in a table named PRODUCT. And each time the product ABC is created, the parts inventory, using PART_QOH in a table named PART, must be reduced by one each of parts A, B, and C. The sample database contents are shown in Table P10.1Table 1 The Database for Problem 1Table name: PRODUCT Table name: PARTPROD_CODE PROD_QOH PART_CODE PART_QOHABC 1,205 A 567B 498C 549Given this information:a. How many database requests can you identify for an inventory update for both PRODUCT and PART?b. Using SQL, write each database request you have identified in Step a.c. Write the complete transaction(s).d. Write the transaction log, using Table 10.1 as your template.e. Using the transaction log you created in Step d, trace its use in database recovery.Suppose that you are a manufacturer of product ABC, which is composed of parts A, B, and C. Each time a new product is created, it must be added to the product inventory, using the PROD_QOH in a table named PRODUCT. And each time the product ABC is created, the parts inventory, using PART_QOH in a table named PART, must be reduced by one each of parts A, B, and C. The sample database contents are shown in Table 1. ancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. c-myc overexpression is associate