Answer:
y=8 and x=8 ✔3. the check is meant to be square root symbol lol
multiply 725base 9× 367base 9
Answer:
Hello,
Answer 303028
Step-by-step explanation:
Multiplication in base 9
[tex]\begin{array}{cccccc}9^5&9^4&9^3&9^2&9^1&9^0\\--&--&--&--&--&--\\&&&7&2&5\\&&&3&6&7\\--&--&--&--&--&--\\&&5&5&8&8\\&4&7&6&3&\\2&3&7&6&&\\--&--&--&--&--&--\\3&0&3&0&2&8\end{array}[/tex]
A study of the effect of television commercials on 12-year-old children measured their attention span, in seconds.
Clothes Food Toys
27 44 61
22 49 64
46 37 57
35 56 48
28 47 63
31 42 53
17 34 48
31 43 58
20 57 47
47 51
44 51
54
1. Find the values of mean and standard deviation.
2. Is there a difference in mean attention span of the children for various commercials?
3. Are there significance differences between pair of means?
Answer: Find answers in the attachment files
Step-by-step explanation:
Use the set of ordered pairs to determine whether the relation is a one-to-one function. {(−6,21),(−23,21),(−12,9),(−24,−10),(−2,22),(−22,−22)}
Answer:
the relation is not one-to-one.
Step-by-step explanation:
it can't because every number is in the 4th quadrant.
If two events are mutually exclusive, can they occur concurrently? Explain. Yes. By definition, mutually exclusive events can occur together. No. By definition, mutually exclusive events cannot occur together. No. Two events will never occur concurrently. Yes. Any two events can occur concurrently.
Answer:
No. By definition, mutually exclusive events cannot occur together.
Step-by-step explanation:
If two events are mutually exclusive, can they not occur concurrently because by definition, mutually exclusive events cannot occur together or at the same time. This ultimately implies that the events or outcome of the sampling is disjointed.
Mathematically, if two events A and B are mutually exclusive;
[tex]P(AnB) = 0[/tex]
From the above expression, we can deduce that the probability of the two (2) events occurring or having an intersection is zero (0).
[tex]P(A or B) = P(A) + P(B)[/tex]
From the above expression, we can deduce that the probability of either of the two (2) events occuring is the sum of the probability of each occurrence.
For example, when a fair die is tossed once, the outcomes are mutually exclusive.
P(d) = 1, 2, 3, 4, 5 and 6.
Other examples include;
1. Tossing a coin once, you'll either get a head or a tail but not a head and a tail at the same time.
2. In cards, both a king and an ace or a king and a queen are mutually exclusive because you can't have both occurring at the same time.
01:15:51 Differential equation of the family of circles touching the y-axis at origin is
Step-by-step explanation:
Correct option is
B
x
2
−y
2
+2xy
dx
dy
=0
The system of circles touching Y axis at origin will have centres on X axis. Let (a,0) be the centre of a circle. Then the radius of the circle should be a units, since the circle should touch Y axis at origin.
Equation of a circle with centre at (a,0) and radius a
(x─a)²+(y─0)²=a²
That is,
x²+y²─2ax=0 ─────► (1)
The above equation represents the family of circles touching Y axis at origin. Here 'a' is an arbitrary constant.
In order to find the differential equation of system of circles touching Y axis at origin, eliminate the the arbitrary constant from equation(1)
Differentiating equation(1) with respect to x,
2x+2ydy/dx─2a=0
or
2a=2(x+ydy/dx)
Replacing '2a' of equation(1) with the above expression, you get
x²+y²─2(x+ydy/dx)(x)=0
That is,
─x²+y²─2xydy/dx=0
or
x²─y²+2xydy/dx=0
Find the sum of the first 10 terms of the following geometric sequences: 3,6,12,24,48
Answer:
3,069
Step-by-step explanation:
The sequence is doubling, so terms 1 through 10 are:
3, 6, 12, 24, 48, 96, 192, 384, 768, 1,536
3 + 6 + 12 + 24 + 48 + 96 + 192 + 384 + 768 + 1,536 = 3,069
hello help Plis……..
Answer:
1.)149800
2.)75.9820
3.)49990
4.)29.900
Ughhh this is hard for me!
Answer:
(x+4)/3. When x is 5 the answer is 3
Step-by-step explanation:
A data set lists earthquake depths. The summary statistics are
nequals=400400,
x overbarxequals=6.866.86
km,
sequals=4.374.37
km. Use a
0.010.01
significance level to test the claim of a seismologist that these earthquakes are from a population with a mean equal to
6.006.00.
Assume that a simple random sample has been selected. Identify the null and alternative hypotheses, test statistic, P-value, and state the final conclusion that addresses the original claim.
What are the null and alternative hypotheses?
A.
Upper H 0H0:
muμequals=5.005.00
km
Upper H 1H1:
muμnot equals≠5.005.00
km
B.
Upper H 0H0:
muμnot equals≠5.005.00
km
Upper H 1H1:
muμequals=5.005.00
km
C.
Upper H 0H0:
muμequals=5.005.00
km
Upper H 1H1:
muμgreater than>5.005.00
km
D.
Upper H 0H0:
muμequals=5.005.00
km
Upper H 1H1:
muμless than<5.005.00
km
Determine the test statistic.
(Round to two decimal places as needed.)
Determine the P-value.
(Round to three decimal places as needed.)
State the final conclusion that addresses the original claim.
Fail to reject
Upper H 0H0.
There is
evidence to conclude that the original claim that the mean of the population of earthquake depths is
5.005.00
km
Answer:
Step-by-step explanation:
The summary of the given statistics data include:
sample size n = 400
sample mean [tex]\overline x[/tex] = 6.86
standard deviation = 4.37
Level of significance ∝ = 0.01
Population Mean [tex]\mu[/tex] = 6.00
Assume that a simple random sample has been selected. Identify the null and alternative hypotheses, test statistic, P-value, and state the final conclusion that addresses the original claim.
To start with the hypothesis;
The null and the alternative hypothesis can be computed as :
[tex]H_o: \mu = 6.00 \\ \\ H_1 : \mu \neq 6.00[/tex]
The test statistics for this two tailed test can be computed as:
[tex]z= \dfrac{\overline x - \mu}{\dfrac{\sigma}{\sqrt {n}}}[/tex]
[tex]z= \dfrac{6.86 - 6.00}{\dfrac{4.37}{\sqrt {400}}}[/tex]
[tex]z= \dfrac{0.86}{\dfrac{4.37}{20}}[/tex]
z = 3.936
degree of freedom = n - 1
degree of freedom = 400 - 1
degree of freedom = 399
At the level of significance ∝ = 0.01
P -value = 2 × (z < 3.936) since it is a two tailed test
P -value = 2 × ( 1 - P(z ≤ 3.936)
P -value = 2 × ( 1 -0.9999)
P -value = 2 × ( 0.0001)
P -value = 0.0002
Since the P-value is less than level of significance , we reject [tex]H_o[/tex] at level of significance 0.01
Conclusion: There is sufficient evidence to conclude that the original claim that the mean of the population of earthquake depths is 5.00 km.
(4.8 × 10⁷) + 6,500,000
Answer:
5.45 * 10^7
Step-by-step explanation:
[tex](4.8 * 10^7) +6,500,000[/tex]
= [tex](4.8 * 10^7) + 6.5 * 10^6[/tex]
= [tex](4.8 * 10^7) + (0.65 * 10^7)[/tex]
= [tex]5.45 * 10 ^7[/tex]
Gail paid a total of $12,000 for stock that was $6 per share. If she sold all her shares for $18,000, how much profit on each share did she make?
A
$9
B
$3
С.
S2000
D
$6.000
Answer:
$3
Step-by-step explanation:
Given
Total Cost Price: $12,000
Unit Cost Price= $6
Total Selling Price = $18,000
Required
Determine the profit on each share
First, we need to determine the units of share bought;
Units = Total cost price / Unit Cost Price
[tex]Units = \frac{\$12000}{\$6}[/tex]
[tex]Units = 2000[/tex]
Next is to determine the selling price of each share; This is calculated as follows;
Unit Selling Price = Total Selling Price / Units Sold
[tex]Unit\ Selling\ Price = \frac{\$18000}{\$2000}[/tex]
[tex]Unit\ Selling\ Price = \$9[/tex]
The profit is the difference between the unit cost price and unit selling price
[tex]Profit = Unit\ Selling\ Price - Unit\ Cost\ Price[/tex]
[tex]Profit = \$9 - \$6[/tex]
[tex]Profit = \$3[/tex]
93/28=15/4n-5+4 4/7 i NEED this answer
Answer:
n=1
Step-by-step explanation:
93/28=15/4n-5+4 4/7
93/28=15/4n-5+32/7
93/28=15/4n-35+32/7
93/28=15/4n-3/7
93/28+3/7=15/4n
15/4n=93*7+28*3/28*7
15/4n= 651+84/196
15/4n=735/196
15/4n*4/15=753/196*4/15
n=49/49
n=1
What is the solution to the following system of equations? 3x-2y=12 6x - 4y = 24
Answer:
D question,somewhat confusing, itsit's like simultaneous equation,but values are different
Answer:
x = 4 + 2y/3
Step-by-step explanation:
What is the scale factor of the dilation?
A. 2/5
B. 2/3
C. 3/2
D. 8/5
Which polynomial can be factored using the binomial theorem?
64x2 + 200x + 625
64x2 + 400x + 625
14,641x4 - 11,979x3 + 9,801x2 – 8,019x + 6,561
14,641x4 - 23,958x3 + 19,602x2 – 16,038x + 6,561
Answer:
B
Step-by-step explanation:
64x2 + 400x + 625=(8x+25)^2
Hãy tìm hàm gốc f(t) có hàm ảnh Laplace như dưới đây:
F(p)=6/p(2p^2+4p +10)
It looks like we're given the Laplace transform of f(t),
[tex]F(p) = L_p\left\{f(t)\right\} = \dfrac6{p(2p^2+4p+10)} = \dfrac3{p(p^2+2p+5)}[/tex]
Start by splitting up F(p) into partial fractions:
[tex]\dfrac3{p(p^2+2p+5)} = \dfrac ap + \dfrac{bp+c}{p^2+2p+5} \\\\ 3 = a(p^2+2p+5) + (bp+c)p \\\\ 3 = (a+b)p^2 + (2a+c)p + 5a \\\\ \implies \begin{cases}a+b=0 \\ 2a+c=0 \\ 5a=3\end{cases} \implies a=\dfrac35,b=-\dfrac35, c=-\dfrac65[/tex]
[tex]F(p) = \dfrac3{5p} - \dfrac{3p+6}{5(p^2+2p+5)}[/tex]
Complete the square in the denominator,
[tex]p^2+2p+5 = p^2+2p+1+4 = (p+1)^2+4[/tex]
and rewrite the numerator in terms of p + 1,
[tex]3p+6 = 3(p+1) + 3[/tex]
Then splitting up the second term gives
[tex]F(p) = \dfrac3{5p} - \dfrac{3(p+1)}{5((p+1)^2+4)} - \dfrac3{5((p+1)^2+4)}[/tex]
Now take the inverse transform:
[tex]L^{-1}_t\left\{F(p)\right\} = \dfrac35 L^{-1}_t\left\{\dfrac1p\right\} - \dfrac35 L^{-1}_t\left\{\dfrac{p+1}{(p+1)^2+2^2}\right\} - \dfrac3{5\times2} L^{-1}_t\left\{\dfrac2{(p+1)^2+2^2}\right\} \\\\ L^{-1}_t\left\{F(p)\right\} = \dfrac35 - \dfrac35 e^{-t} L^{-1}_t\left\{\dfrac p{p^2+2^2}\right\} - \dfrac3{10} e^{-t} L^{-1}_t\left\{\dfrac2{p^2+2^2}\right\} \\\\ \implies \boxed{f(t) = \dfrac35 - \dfrac35 e^{-t} \cos(2t) - \dfrac3{10} e^{-t} \sin(2t)}[/tex]
Find the distance between the pair of points.
(-6/11, -3)
and (-6/11, 2/3)
The distance between the pair of points is
Type an integer or a simplified fraction.)
Answer:
3 2/3
Step-by-step explanation:
The x value is the same for both points. So we're only trying to figure out the difference in the y values. One y value is three steps down from zero and one y value is 2/3 of a step up from zero. So the total vertical distance between the two points is 3 and 2/3.
What is the equation of the line that passes through the point (2, -1) and has a
slope of
3/2
Answer:
The answer is
[tex]y = \frac{3}{2} x - 4[/tex]Step-by-step explanation:
To find the equation of the line using a point and slope we use the formula
y - y1 = m(x - x1)where m is the slope
(x1 ,y1) is the given point
From the question
slope = 3/2
point = ( 2 , - 1)
Substitute these values into the above formula
That's
[tex]y + 1 = \frac{3}{2} (x - 2)[/tex]
[tex]y + 1 = \frac{3}{2} x - 3[/tex]
[tex]y = \frac{3}{2} x - 3 - 1[/tex]
We have the final answer as
[tex]y = \frac{3}{2} x - 4[/tex]
Hope this helps you
Answer:
y= 3/2x -4
Step-by-step explanation:
Since we are given a point and a slope, we can use the point-slope formula.
[tex]y-y_{1} = m(x-x_{1})[/tex]
where m is the slope and (x1, y1) is a point the line passes through.
We know the slope is 3/2 and the point we are given is (2, -1).
[tex]m=\frac{3}{2} \\\\x_{1} = 2\\\\y_{1} = -1[/tex]
Substitute the values into the formula.
[tex]y- -1 = \frac{3}{2} (x-2)[/tex]
[tex]y+1=\frac{3}{2} (x-2)[/tex]
We want to find the equation of line , which is y=mx+b ( m is the slope and b is the y-intercept). Therefore, we must get y by itself on the left side of the equation.
First, distribute the 3/2. Multiply each term inside the parentheses by 3/2.
[tex]y+1= (\frac{3}{2} * x) + (\frac{3}{2} *-2)[/tex]
[tex]y+1= \frac{3}{2}x + (\frac{3}{2} *-2)[/tex]
[tex]y+1=\frac{3}{2} x + -3[/tex]
[tex]y+1=\frac{3}{2} x -3[/tex]
Next, subtract 1 from both sides.
[tex]y+1-1=\frac{3}{2} x + -3 -1[/tex]
[tex]y=\frac{3}{2} x + -3 -1[/tex]
[tex]y=\frac{3}{2} x -4[/tex]
Now the line is in slope intercept form, therefore the equation of the line is y=3/2x -4. The slope of the line is 3/2 and the y-intercept is -4.
How many skirt-blouse outfits can a woman choose from if she has 5 skirts and 6 blouses?
(4 points) Determine whether each of these functions is O(x 2 ). Proof is not required but it may be good to try to justify it (a) 100x + 1000 (b) 100x 2 + 1000 (c) x 3 100 − 1000x 2 (d) x log x (2) (2 points) U
Answer:
(a) O(x²)
(b) O(x²)
(c) O(x²)
(d) Not O(x²)
Step-by-step explanation:
If a function is O(x²), then the highest power of x in the function ia greater or equal to 2.
(a) 100x + 1000
This is O(x), not O(x²)
(b) 100x² + 1000
This is O(x²)
(c) x³.100 − 1000x²
This is O(x²)
(d) x log x²
This is not O(x²)
Find the 84th term of an arithmetic sequence if the first term and common
difference are given as:
ai = 3; d = -4
ag4 =
I
Next
Previous
Answer:
-329
Step-by-step explanation:
1st term a1 = 3, common difference d = -4
84th term,
3+(84-1)(-4)
= -329
Identify the vertex of the function f(x) = |x-^1/2|-2
the negative will shift the graph right, so x = 1/2
the negative 2 will shift the graph down, so y = -2
Thus, the vertex is (1/2, -2)
look at the image for the question
Answer:
117.8
Step-by-step explanation:
surface area = πr²+πrl, where r = radius and l = slant height
so,
πr²+πrl
= π×3²+π×3×9.5
= 75π/2
= 117.8 (rounded to the nearest tenth)
(-t^3+5t^2-6t)+(8t^2-8t)
Answer:
-t^3+13t^2-14t
Step-by-step explanation:
(-t^3+5t^2-6t)+(8t^2-8t)
Combine like terms
-t^3+5t^2+8t^2-6t-8t
-t^3+13t^2-14t
How many two-digit numbers are there which are multiples of both 2 and 7?
2 digits number = 10-99
Lets find the multiples of 2 and 7 both
Which are = 14, 28,42,56,70,84,98
Therefore there are 7 two digit multiples of both 2 and 7
Must click thanks and mark brainliest
9514 1404 393
Answer:
7
Step-by-step explanation:
Those numbers are 14, 28, 42, 56, 70, 84, 98. There are 7 numbers that are multiples of 2 and 7 (multiples of 14).
What triangle is this
HOPE SO IT HELPS YOU
Answer:
Isosceles.
Step-by-step explanation:
It's an isosceles triangle because 2 sides are congruent ( 2 are 23 yds long).
How many g of amino acids are in a 2,000mL total parenteral nutrition of 4.25% travesol (amino acids and 20%dextrose?
Answer:
The mass of amino acid present is 85 g
Step-by-step explanation:
From the question we are told that
The volume of the total parenteral nutrition is [tex]V = 2000 mL[/tex]
Generally the volume of the amino acid present is
[tex]V_a = 0.0425 * 2000[/tex]
[tex]V_a = 85 mL[/tex]
Generally
[tex]mass \ \ \alpha \ \ volume[/tex]
So the mass of amino acid present is 85g
Write the ratio 4 L : 5.6 L as a fraction in the simplest form with whole numbers in the numerator and denominator
Answer:
Step-by-step explanation:
It's 5/7
You get that by having a calculator that does that. If you don't then the way to do it is multiply the numerator and denominator by 1.25
4 * 1.25 = 5
5.6 * 1.25 = 7
HELP SOMEONE FOR 20 POINTS
Which of the following equations is of a parabola with a vertex at (1, 2)?
O y = (x - 1) 2 - 2
Oy= (x - 1)2 + 2
O y = (x + 1)2 - 2
O y = (x + 1)2 + 2
Answer:
the second option: (x-1)squared +2
Explanation:
The x value of the vertex can be found in the parenthesis after the x. However, you have to do the opposite value of it. So, since the paranthesis has (x-1) then that means that the vertex's x-value has to be 1.
For the y-value of the vertex, that can be found after the paranthesis. This value will not be used as the opposite like with the x-value. So, we know that in (x-1)^2 +2 the "+2" indicates the y-value to be 2.