Answer:
[tex]3\sqrt{6}[/tex]
Step-by-step explanation:
We are to determine the limit below.
[tex]\lim _{x \rightarrow8}\sqrt{7x-2}[/tex]
Plug in 8 into the function.
[tex]\lim _{x \rightarrow8}\sqrt{7x-2}=\sqrt{7(8)-2}\\=\sqrt{56-2}\\ =\sqrt{54}\\ =3\sqrt{6} \\\lim _{x \rightarrow8}\sqrt{7x-2}=3\sqrt{6}[/tex]
Problem of the Day
The tortoise and the hare were arguing: who's the fastest? The tortoise boasted he
could swim 220 miles in 10 hours. The hare bragged he could hop 90 miles in 2 hours.
But who is faster? How can you tell?
Answer:
hare
Step-by-step explanation:
Their average rates are ...
tortoise: (220 mi)/(10 h) = 22 mi/h
hare: (90 mi)/(2 h) = 45 mi/h
The hare has a faster speed than the tortoise.
A bank loaned out $20,000, part of it at the rate of 6 % per year and the rest at 16 % per year. If the interest received in one year totaled $1500, how much was loaned at 6 %?
Answer:
$1,020
Step-by-step explanation:
0.06x + 0.16(20,000 - x) = 1500
AHH!! IM STUCK PLEASE HELP! :(
Think about this. If we were to align the coefficients with their solutions to form this matrix, it would be the following -
[tex]\begin{bmatrix}2&-6&-2&|&1\\ 0&3&-2&|&-5\\ 0&2&2&|&-3\end{bmatrix}[/tex]
Now this is one way to assign the coefficients. As you can see, 2, - 6, - 2 are present as the coefficients for the first row. Similarly 0, 3, - 2 are present as the coefficients for the second row - ( as one term is missing from this row, it is replaced with a " 0 " ). The same applies for the third row. The end values of the system of equation is present as the last column.
The options are assigned in a manner with which the coefficients and variables are present in two columns, while the end values of the system of equation given, is present as the last column. Knowing the arrangement of both the coefficients and the end values of the system of equation, all we have to do is add these " variables " as one column -
Solution = Option B
Aphrodite took out a 30-year loan from her bank for $170,000 at an APR of
7.2%, compounded monthly. If her bank charges a prepayment fee of 6
months' interest on 80% of the balance, what prepaymeant fee would
Aphrodite be charged for paying off her loan 12 years early?
A. $3246.74
B. $4078.20
C. $4895.83
D. $4921.46
Answer:
A. $3246.74
Step-by-step explanation:
The monthly payment can be found from the amortization formula.
A = P(r/n)/(1 -(1 +r/n)^(-nt))
where P is the principal amount, r is the annual rate compounded n times per year for t years.
Filling in the values, we compute the monthly payment to be ...
A = $170,000(.072/12)/(1 -(1 +.072/12)^(-12·30)) = $1153.94
__
The remaining balance after t years will be ...
B = P(1 +r/n)^(nt) -A((1 +r/n)^(nt) -1)/(r/n)
For the given initial principal and the computed payment, after 18 years, the balance will be ...
B = $170000(1 +.072/12)^(12·18) -$1153.94((1 +.072/12)^(12·18) -1)/(.072/12)
B = $111,054.71
The prepayment penalty appears to be ...
(r/2)(0.80B) = (.072/2)(0.80)($111,054.71) = $3,198.38
The closest listed answer choice is ...
A. $3246.74
_____
Please ask your teacher how to get the answer, since none of the offered choices appear to be correct.
If tan A=2/3 and tan B= -3/5 what is the exact value of cot(A-B)?
Answer:
cot(A-B) = 3/19
Step-by-step explanation:
The formula for cot(A-B) = (Cot A Cot B + 1 ) / (Cot B - Cot A)
we know that cot A = 1/ Tan A
Given
tan A=2/3
therefore cot A = 1/ tan A = 1/2/3 = 3/2
tan B= -3/5
cot B = 1/ tan B = 1/-3/5 = -5/3
Thus,
(Cot A Cot B + 1 ) = (3/2)*(-5/3 )+ 1 = -5/2 +1 = (-5+2)/2 = -3/2
(Cot B - Cot A) = -5/3 -3/2 = (-5*2) + (-3*3) / 2 = -10 -9/2 = -19/2
Thus,
cot(A-B) = (Cot A Cot B + 1 ) / (Cot B - Cot A) = -3/2 / -19/2 = 3/19
Thus,
cot(A-B) = 3/19
Find the missing length indicated. x=
Answer: x = 120
Step-by-step explanation:
Here we have 3 triangles, one big and two smaller ones, one at the left and other at the right.
Now, the right sides is shared by the right smaller triangle and the big triangle, if this length is Z, we have that (using the angle in top of it, A, such that 64 is adjacent to A.)
Cos(A) = 64/Z
Cos(A) = Z/(64 +225)
We can take the quotient of those two equations and get:
[tex]1 = \frac{64*(64 + 225)}{Z^2} = \frac{18496}{Z^2}[/tex]
Then:
Z = √(18,496) = 136.
now, we have that for the smaller triangle one cathetus is equal to 64 and the hypotenuse is equal to 136.
Then, using the Pythagorean theorem:
64^2 + x^2 = 136^2
x = √(136^2 - 64^2) = 120
A normally distributed population of package weights has a mean of 63.5 g and a standard deviation of 12.2 g. XN(63.5,12.2) a. What percentage of this population weighs 66 g or more
Answer:
The percentage is %z [tex]= 41.9[/tex]%
Step-by-step explanation:
From the question we are told that
The mean is [tex]\mu = 63.5 \ g[/tex]
The standard deviation is [tex]\sigma = 12.2 \ g[/tex]
The random number is x = 66 g
Given the the population is normally distributed
The probability is mathematically represented as
[tex]P(X > 66 ) = P(\frac{X - \mu }{\sigma} > \frac{x - \mu }{\sigma } )[/tex]
Generally the z-score for this population is mathematically represented as
[tex]Z = \frac{ X - \mu}{ \sigma}[/tex]
So
[tex]P(X > 66 ) = P(Z > \frac{66 - 63.5 }{12.2 } )[/tex]
[tex]P(X > 66 ) = P(Z > 0.2049 )[/tex]
Now the z-value for 0.2049 from the standardized normal distribution table is
[tex]z = 0.41883[/tex]
=> [tex]P(X > 66 ) = 0.41883[/tex]
The percentage is
% z [tex]= 0.41883 * 100[/tex]
%z [tex]= 41.9[/tex]%
Coin B is going to be thrown 4000 times.
Work out an estimate for the number of times
coin B will land on Heads.
Answer:
The probability of "heads" is ½ and the probability of "tails" is ½.
This means that if we flip this coin several times, we expect it to land on "heads" for half of the time.
If we flip the coin 4000 times, we would expect it to land on "heads" 2000 times, because ½ × 4000 = 2000
Three populations have proportions 0.1, 0.3, and 0.5. We select random samples of the size n from these populations. Only two of the distributions of the sample proportions are normally distributed. Choose all possible values of n.
a. 10
b. 100
c. 50
d. 40
e. 20
Answer:
(1) A Normal approximation to binomial can be applied for population 1, if n = 100.
(2) A Normal approximation to binomial can be applied for population 2, if n = 100, 50 and 40.
(3) A Normal approximation to binomial can be applied for population 2, if n = 100, 50, 40 and 20.
Step-by-step explanation:
Consider a random variable X following a Binomial distribution with parameters n and p.
If the sample selected is too large and the probability of success is close to 0.50 a Normal approximation to binomial can be applied to approximate the distribution of X if the following conditions are satisfied:
np ≥ 10 n(1 - p) ≥ 10The three populations has the following proportions:
p₁ = 0.10
p₂ = 0.30
p₃ = 0.50
(1)
Check the Normal approximation conditions for population 1, for all the provided n as follows:
[tex]n_{a}p_{1}=10\times 0.10=1<10\\\\n_{b}p_{1}=100\times 0.10=10=10\\\\n_{c}p_{1}=50\times 0.10=5<10\\\\n_{d}p_{1}=40\times 0.10=4<10\\\\n_{e}p_{1}=20\times 0.10=2<10[/tex]
Thus, a Normal approximation to binomial can be applied for population 1, if n = 100.
(2)
Check the Normal approximation conditions for population 2, for all the provided n as follows:
[tex]n_{a}p_{1}=10\times 0.30=3<10\\\\n_{b}p_{1}=100\times 0.30=30>10\\\\n_{c}p_{1}=50\times 0.30=15>10\\\\n_{d}p_{1}=40\times 0.10=12>10\\\\n_{e}p_{1}=20\times 0.10=6<10[/tex]
Thus, a Normal approximation to binomial can be applied for population 2, if n = 100, 50 and 40.
(3)
Check the Normal approximation conditions for population 3, for all the provided n as follows:
[tex]n_{a}p_{1}=10\times 0.50=5<10\\\\n_{b}p_{1}=100\times 0.50=50>10\\\\n_{c}p_{1}=50\times 0.50=25>10\\\\n_{d}p_{1}=40\times 0.50=20>10\\\\n_{e}p_{1}=20\times 0.10=10=10[/tex]
Thus, a Normal approximation to binomial can be applied for population 2, if n = 100, 50, 40 and 20.
1a. A deep-sea diver is at sea level. He submerges 15 feet per minute,
How many feet below sea level is he after submerging for 10 minutes? First question.
Second question,Then write an integer representing the deep-sea current location.
PLZZZ answer this correctly and i give you a brainliest!!!
Answer:
150, 15x
Step-by-step explanation:
After ten minutes he will be 15 * 10 = 150 feet below sea level.
We can call the number of minutes the diver has been underwater for as x so the integer is 15 * x = 15x.
What amount invested at 10% compounded semiannually will be worth $6380.00 after 38 months? Calculate the result to the nearest cent.
Given Information:
Annual interest rate = r = 10%
Accumulated amount = A = $6380.00
Semi-annual compounding = n = 2
Number of years = t = 38/12 = 19/6
Required Information
Principle amount= P = ?
Answer:
Principle amount= P = $4,684.05
Step-by-step explanation:
The principal amounts in terms of compound interest is given by
[tex]$ P = \frac{A}{(1 + i)^N} $[/tex]
Where
i = r/n
i = 0.10/2
i = 0.05
N = n*t
N = 2*19/6
N = 19/3
So, the principal amount is
[tex]P = \frac{6380.00}{(1 + 0.05)^{19/3}} \\\\P= \$4,684.05 \\\\[/tex]
Therefore, you need to invest $4,684.05 at 10% compounded semiannually for 38 months to get $6380.00 in savings.
Bargains Galore marked down a $82 cappuccino machine to $72. Calculate the following (if necessary, round your answer for markdown percent to the nearest hundredth percent):
Answer:
12.2%
Step-by-step explanation:
82 · [tex]\frac{100-x}{100}[/tex] = 72 When multiplied by a certain percent we get 72
82(100-x) = 7200
100(A whole as you may say) - *a percent* = the markdown
8200-82x=7200
82x = 1000
x ≈ 12.2
Tell me if you need further explanation
Answer:
12.20%
Step-by-step explanation:
$82 went down to $72.
$82 - $72 = $10
The price went down $10.
Now we find the percent that $10 is of $82.
percent = part/whole * 100%
percent = 10/82 + 100% = 12.195%
Answer: 12.20%
Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum. (If an answer does not exist, enter DNE.) 1 + 0.5 + 0.25 + 0.125 + ...
Answer:
Convergent. The sum is 2.
Step-by-step explanation:
First let's find the rate of the series. We can find it by dividing one term by the term before:
[tex]0.5 / 1 = 0.5[/tex]
[tex]0.25 / 0.5 = 0.5[/tex]
[tex]0.125 / 0.25 = 0.5[/tex]
So the rate of the series is 0.5. The series is convergent if the rate is between 0 and 1, so this series is convergent.
We can find its sum with the following equation:
[tex]S = a_1 / (1 - r)[/tex]
Where a_1 is the first term and r is the rate.
So we have that:
[tex]S = 1/ (1 - 0.5)[/tex]
[tex]S = 2[/tex]
The sum of the series is 2.
There is a triangle with a perimeter of 63 cm, one side of which is 21 cm. Also, one of the medians is perpendicular to one of the angle bisectors. Then what you've got to do is find the side lengths of the triangle
Answer:
21cm; 28cm; 14cm
Step-by-step explanation:
There is no info in the problem/s text which one of the triangle's side is 21 cm. That is why we have to try all possible variants.
Let the triangle is ABC . Let the AK is the angle A bisector and BM is median.
Let O is AK and BM cross point.
Have a look to triangle ABM. AO is the bisector and AOB=AOM=90 degrees (means that AO is as bisector as altitude)
=> triangle ABM is isosceles => AB=AM (1)
1. Let AC=21 So AM=21/2=10.5 cm
So AB=10.5 cm as well. So BC= P-AB-AC=63-21-10.5=31.5 cm
Such triangle doesn' t exist ( is impossible), because the triangle's inequality doesn't fulfill. AB+AC>BC ( We have 21+10.5=31.5 => AB+AC=BC)
2. Let AB=21 So AM=21 and AC=42 .So BC= P-AB-AC=63-21-42=0 cm- such triangle doesn't exist.
3. Finally let BC=21 cm. So AB+AC= 63-21=42 cm
We know (1) that AB=AM so AC=2*AB. So AB+AC=AB+2*AB=3*AB
=>3*AB=42=> AB=14 cm => AC=2*14=28 cm.
Let check if this triangle exists ( if the triangle's inequality fulfills).
BC+AB>AC 21+14>28 - correct=> the triangle with the sides' length 21cm,14 cm, 28cm exists.
This variant is the only possible solution of the given problem.
hurry helpppppppppp please guys
Answer: The box with three shaded squares and one non-shaded square
Step-by-step explanation:
You are trying to find the representation of the shaded region.
The scale shows point A at 0.75, and the scale can range from 0 to 1.
0.75 is equal to 3/4 of 1
3 of the 4 squares are shaded
So, the common ratio is 3:4 or 3/4
According to a study conducted in one city, 39% of adults in the city have credit card debts of more than $2000. A simple random sample of 100 adults is obtained from the city. Describe the sampling distribution of the sample proportion of adults who have credit card debts of more than $2000.
Answer:
The sampling distribution of the sample proportion of adults who have credit card debts of more than $2000 is approximately normally distributed with mean [tex]\mu = 0.39[/tex] and standard deviation [tex]s = 0.0488[/tex]
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In this question:
[tex]p = 0.39, n = 100[/tex]
Then
[tex]s = \sqrt{\frac{0.39*0.61}{100}} = 0.0488[/tex]
By the Central Limit Theorem:
The sampling distribution of the sample proportion of adults who have credit card debts of more than $2000 is approximately normally distributed with mean [tex]\mu = 0.39[/tex] and standard deviation [tex]s = 0.0488[/tex]
Please help I would be very greatful. On a coordinate plane, a solid straight line has a positive slope and goes through (0, 0.2) and (3, 2.2). Everything to the right of the line is shaded. Which linear inequality is represented by the graph? y > Two-thirdsx – One-fifth y ≥ Three-halvesx + One-fifth y ≤ Two-thirdsx + One-fifth y < Three-halvesx – One-fifth
Answer: C. y ≤ 2/3x + 1/5
Step-by-step explanation: From 1/5 on the y coordinate plane go up 2 and right 3 and it perfectly matches, so it would be C. 100% on Edge2020.
Answer:
C
Step-by-step explanation:
just did the test.
A state lottery randomly chooses 4 balls numbered from 1 through 37 without replacement. You choose 4 numbers and purchase a lottery ticket. The random variable represents the number of matches on your ticket to the numbers drawn in the lottery. Determine whether this experiment is binomial. If so, identify a success, specify the values n, p, and q and list the possible values of the random variable x.Is the experiment binomial?A. Yes, there are a fixed number of trials and the trials are independent of each other.B. No, there are more than two outcomes for each trial.C. Yes, the probability of success is the same for each trial.D. No, because the probability of success is different for each trial.
Answer:
A) Yes, there are a fixed number of trials and the trials are independent of each other.
Sample size 'n' = 37
probability of success p = 0.1081
q = 0.8919
Step-by-step explanation:
Explanation:-
Given data we will observe that
There are a fixed number of trials and the trials are independent of each other.
Given a state lottery randomly chooses 4 balls numbered from 1 through 37 without replacement.
Given size 'n' = 37
The probability that a state lottery randomly chooses 4 balls numbered from 1 through 37 without replacement.
Proportion
[tex]p = \frac{x}{n} = \frac{4}{37} = 0.1081[/tex]
q = 1 - p = 1 - 0.1081 = 0.8919
Final answer:-
Sample size 'n' = 37
p = 0.1081
q = 0.8919
Find the surface area of each prism. Round to the nearest tenth if necessary while doing your calculations as well as in your final answer. 360 units2 586 units2 456 units2 552 units2
Answer:
Option (4)
Step-by-step explanation:
Surface area of a prism = 2B + P×h
where B = Area of the triangular base
P = perimeter of the triangular base
h = height of the prism
B = [tex]\frac{1}{2}(\text{leg 1})(\text{leg 2})[/tex]
Since, (Hypotenuse)² + (Leg 1)² + (Leg 2)² [Pythagoras theorem]
(20)² = (12)² + (Leg 2)²
Leg 2 = [tex]\sqrt{400-144}[/tex]
= 16 units
Therefore, B = [tex]\frac{1}{2}\times 12\times 16[/tex]
= 96 units²
P = 12 + 16 + 20
P = 48 units
h = 7.5 units
Surface area of the prism = 2(96) + (48×7.5)
= 192 + 360
= 552 units²
Therefore, surface area of the given triangular prism = 552 units²
Option (4) will be the answer.
Tublu buys a cylindrical water tank height 1.4 M and diameter 1.1 M to catch rainwater off his roof.
Complete Question:
Tublu buys a cylindrical water tank of height 1.4m and diameter 1.1m to catch rainwater off his roof. He has a full 2 liters tin of paint in his store and decides to paint the tank(not the base). If he uses 250ml to cover 1m2, will he have enough paint to cover the tank with one layer of paint? Take pie as 3.142
Answer:
Yes. It will be enough to cover the tank with 1 layer of paint. The tank requires 1.21 liters of paint.
Step-by-step explanation:
Given:
Height of cylindrical tank (h) = 1.4m
Diameter = 1.1m (radius = ½ of 1.1 = 0.55 m)
Litres of paint available = 2 liters
Rate of usage of paint = 250 ml to 1 m²
π = 3.142
Required:
Determine if the available 2 liters of paint would be enough for the painting
Solution:
Step 1: calculate the curved surface area of the cylindrical tank
Curved surface area (CSA) = 2πrh
= 2*3.142*0.55*1.4
= 4.84 m²
Step 2: Calculate how many liters of paint is required to paint the cylindrical tank having a curved surface area of 4.84 m²
If 1 m² requires 250ml (0.25 liters) of paint,
4.84m² area will require 4.84*0.25 liters
= 1.21 liters of paint.
Since 2 liters of paint is available, it means the paint will be more than enough to cover the tank with 1 layer of paint.
graph the function f(x)=3/8(×-1)(x-9)
Suppose in the next year, 2007, College D's expenses and enrollment remain about the same, but in addition to their current revenues, they receive an additional $50,000,000 grant. This would allow them to reduce average tuition by how much?
This question is incomplete, here is the complete question:
Suppose in the next year, 2007, College D's expenses and enrollment remain about the same, but in addition to their current revenues, they receive an additional $50,000,000 grant. This would allow them to reduce average tuition by how much?
A) $1388.89
B) $3571.43
C) $5555.56
D) $9500.00
E) $25888.89
number of students = 36,000
Answer: A) $
1388.89
Step-by-step explanation:
the college received additional grant which is $50,000,000
and the number of students is 36,000,
and we also know that expenses and enrollment remained the same.
So if we have more money (grants) and nothing changed (expenses remain the same)
dividing the grant by the number of students will show just how much the average tuition fee would be reduced
therefore R = G/n
R = 50,000,000 / 36000
R = 1,388.888 ≈ $1388.89
State sales tax is 3%. How much would you pay on a $246 pair of shoes?
Round your answer to the nearest cent.
Answer:
Step-by-step explanation:
246(.03)= 7.38
246+7.38= $253.38
the line through (5, 7) and (1, - 5)
Answer:
Hey there!
Slope of the line: [tex]\frac{y2-y1}{x2-x1}[/tex]
Slope of the line: [tex]\frac{12}{4}[/tex], which is equal to 3.
Point slope form: y2-y1=m(x2-x1)
Point slope form: y-7=3(x-5)
Y intercept form: y-7=3x-15
Y intercept form: y=3x-8
Let me know if this helps :)
answer of this please
Answer: 205 and 1/7
Step-by-step explanation:
Hope this helped!
<!> Brainliest is appreciated! <!>
Which ordered pair is a solution of this equation?
-2x + 9y = -26
(-4,-4)
(4,4)
(-4,-5)
(-5,-4)
A rectangular box has a base that is 4 times as long as it is wide. The sum of the height and the girth of the box is 200 feet. (a) Express the volume V of the box as a function of its width w. Determine the domain of V (w).
Answer: V(W) = (1/3)*(*W^2*800ft - 8W^3) and the domain is 0 < W < 100ft.
Step-by-step explanation:
The dimensions of the box are:
L = length
W = width
H = heigth.
We know that:
L = 4*W
And the girth of a box is equal to: G = 2*W + 2*H
then we have:
2*W + 2*H + H = 200ft
2W + 3*H = 200ft
Then we have two equations:
L = 4*W
2W + 3*H = 200ft
We want to find the volume of the box, which is V = W*L*H
and we want in on terms of W.
Then, first we can replace L by 4*W (for the first equation)
and:
2*W + 3*H = 200ft
3*H = 200ft - 2*W
H = (200ft - 2*W)/3.
then the volume is:
V(W) = W*(4*W)*(200ft - 2*W)/3
V(W) = (1/3)*(*W^2*800ft - 8W^3)
The domain of this is the set of W such that the volume is positive, then we must have that:
W^2*800ft > 8W^3
To find the maximum W we can see the equality (the minimum extreme is 0 < W, because the width can only be a positive number)
W^2*800ft = 8W^3
800ft = 8*W
100ft = W.
This means that if W is equal or larger than 100ft, the equation gives a negative volume.
Then the domain is 0 < W < 100ft.
5) BRAINLIEST + 10+ POINTS! A 60 foot tall radio tower r feet from an observer subtends an angle of 3.25°. Use the arc length formula to estimate r (the distance between the observer and the radio tower) to the nearest foot. r≈ ___ feet
Answer:
1057
Step-by-step explanation:
tower is 60 feet high.
angle of 3.25 degrees.
3.25/360 * 2 * pi * r = the arc length of this angle.
that would be equal to 0.0567232007* r
if we assume the arc length and the height of the tower are approximately equal, then 0.0567232007 * r = 60
solving for r, we get r = 60/0.0567232007 = 1057.768237 feet.
that's about how far the tower is from the observer.
since the arc length is going to be a little longer than the length of the chord formed by the flagpole, this means that the distance of 1057.768237 meters is going to be a little less than the actual distance.
Answer:
≈ 1058 ft
Step-by-step explanation:
Use of arc formula: s=rθ
Given:
s= 60 ftθ= 3.25°= 3.25*π/180°= 0.0567 radr= s/θ= 60/0.0567 ≈ 1058 ft
when the sun is ay certain angles in the sky a 50 foot building casts a 20 foot shadow, what is the length of the shadow in feet cast by a flag pole 20 feet at the same time?
[tex]50/20=20/x\implies50x=400\implies\boxed{x=8\mathrm{ft}}[/tex]
Hope this helps.
The length of the shadow cast by the flag pole is 6.4 feet.
What is a proportion?A proportion is a fraction of a total amount, and the measures are related using a rule of three.
The relations between variables, either direct or inverse proportional, can be built to find the desired measures in the problem.
We are given that;
Height of building= 50 foot
Shadow= 20foot
Now,
Let x be the length of the shadow cast by the flag pole. Then we have:
2050=x20
Cross-multiplying, we get:
50x=20×20
Dividing both sides by 50, we get:
x=5020×20
Simplifying, we get:
x=58×4
Multiplying, we get:
x=6.4
Therefore, by the proportion the answer will be 6.4 feet.
More can be learned about proportions at;
brainly.com/question/24372153
#SPJ2
3(x + 2) = 12 solve for x
Answer:
x = 2.
Step-by-step explanation:
3(x + 2) = 12
3x + 6 = 12
3x = 6
x = 2
Hope this helps!
Answer:
4
Step-by-step explanation: