To find the general solution of the given differential equation: y" - y' = (6 - 6x)ex - 2, we can follow these steps:
Find the complementary solution:
First, let's solve the associated homogeneous equation: y" - y' = 0.
The characteristic equation is r² - r = 0.
Factoring the characteristic equation, we have r(r - 1) = 0.
Therefore, the characteristic equation has two roots: r₁ = 0 and r₂ = 1.
The complementary solution is given by: y_c(x) = C₁[tex]e^0x[/tex] + C₂[tex]e^1x[/tex] = C₁ + C₂[tex]e^x[/tex], where C₁ and C₂ are constants.
Find a particular solution:
We need to find a particular solution for the non-homogeneous equation: (6 - 6x)ex - 2.
Since the right-hand side contains a product of polynomial and exponential functions, we can use the method of undetermined coefficients. We assume a particular solution of the form: [tex]y_p(x)[/tex] = Ax + B + [tex]Ce^x,[/tex] where A, B, and C are constants.
Differentiating [tex]y_p(x):[/tex]
[tex]y'_p(x) = A + Ce^x[/tex]
Differentiating y'_p(x):
[tex]y"_p(x) = Ce^x[/tex]
Substituting these derivatives into the original non-homogeneous equation:
[tex](Ce^x) - (A + Ce^x)[/tex] = (6 - 6x)ex - 2
Simplifying and matching coefficients of similar terms:
-C[tex]e^x[/tex] - A = -2 - 6x + 6xex
This gives us the following equations:
-C = -2, -A = 0, 6A = 0
From -C = -2, we find C = 2.
From -A = 0, we find A = 0.
From 6A = 0, we find A = 0.
Therefore, a particular solution is: y_p(x) = [tex]2e^x.[/tex]
Find the general solution:
The general solution of the non-homogeneous equation is given by the sum of the complementary and particular solutions:
y(x) = [tex]y_c(x) + y_p(x)[/tex]
= C₁ + C₂[tex]e^x + 2e^x[/tex]
= C₁ + (C₂ + 2)[tex]e^x,[/tex]
where C₁ and (C₂ + 2) are constants.
This is the general solution to the differential equation y" - y' = (6 - 6x)[tex]ex - 2.[/tex]
Learn more about differential equation here:
https://brainly.com/question/28099315
#SPJ11
1. Findf(g(x))andg(f(x)). f(x) = 10x;g(x)=x+3 f(g(x)) = g(f(x)) = a. 10x +30 b. 10² +3 c. 10x +30 d. 11x +3 e. 10x +3
A function is a rule or connection in mathematics that pairs each element from one set, known as the domain, with a certain element from another set, known as the codomain. A function generates output values in the codomain that correspond to input values from the domain. The correct answer is option e.
Typically, a function is denoted by the notation f(x), where x is the input variable and f is the name of the function.
The given functions are; f(x) = 10x and g(x) = x + 3. To find f(g(x)), first, we evaluate g(x) and substitute that value in place of x in f(x).
We change g(x) into f(x) to discover f(g(x)):
The equation f(g(x)) = f(x + 3) = 10(x + 3) = 10x + 30
Consequently, f(g(x)) = 10x + 30.
We change f(x) into g(x) to discover g(f(x)):
g(f(x))=g(10x)=10x + 3
g(f(x)) is therefore equivalent to 10x + 3
Therefore, the right answer is e) 10x + 3
To know more about Function visit:
https://brainly.com/question/2541698
#SPJ11
Solve the system of equations by using graphing. (If the system is dependent, enter DEPENDENT. If there is no solution, enter NO SOLUTION.) √4x- - 2y = 8 x-2y = -4 Need Help? Read It Watch it Master
Since there is no intersection between the two graphs, the system of equations is inconsistent, meaning there is no solution.
To solve the system of equations by graphing, we need to plot the graphs of the equations and find the point(s) of intersection, if any.
Equation 1:
√(4x-) - 2y = 8
Equation 2:
x - 2y = -4
Let's rearrange Equation 2 in terms of x:
x = 2y - 4
Now we can plot the graphs:
For Equation 1, we can start by setting x = 0:
√(4(0) -) - 2y = 8
√-2y = 8
No real solution for y since the square root of a negative number is not defined. Thus, there is no point to plot for this equation.
For Equation 2, we can substitute different values of y to find corresponding x values:
When y = 0:
x = 2(0) - 4
x = -4
So we have the point (-4, 0).
When y = 2:
x = 2(2) - 4
x = 0
So we have the point (0, 2).
Plotting these two points, we can see that they lie on a straight line.
To know more about system of equations,
https://brainly.com/question/3915477
#SPJ11
Given that (x + 1) is a factor of what values can a take? 20x³+10x²-3ax + a²,
The possible values of 'a' are -5 and 2 when (x+1) is a factor of the given polynomial.
We have a polynomial with degree 3. So, let's apply the factor theorem. The factor theorem states that if x-a is a factor of the polynomial P(x), then P(a) = 0.
We are given that (x+1) is a factor of the polynomial. So, x=-1 is a root of the polynomial. Substituting x=-1 in the given polynomial and equating it to zero will give us the possible values of 'a'.
20(-1)³+10(-1)²-3a(-1) + a² = 0-20 + 10 + 3a + a² = 0a² + 3a - 10 = 0(a+5)(a-2) = 0a = -5 or a = 2.
Therefore, the possible values of 'a' are -5 and 2 when (x+1) is a factor of the given polynomial.
To know more about factor, visit:
https://brainly.com/question/11930302
#SPJ11
2. Suppose z is a function of x and y and tan (√x + y) = e²². Determine z/х and z/y . 3. Let z = 2² + y³, x=2 st and y=s-t². Compute for z/х and z/t
Suppose z is a function of x and y and tan (√x + y) = e²², we get:`z/t = -12st³ + 12s²t⁴`Therefore, `z/t = -12st³ + 12s²t⁴`.
To find z/x, differentiate z with respect to x and keep y constant. `z/x = dz/dx * dx/dx + dz/dy * dy/dx` (Note that `dx/dx` = 1)Now, `dz/dx = -((√x + y)⁻²)/2√x` by the chain rule. Also, we know that `tan (√x + y) = e²²`.
Therefore, `tan (√x + y)` is a constant. Hence,`dz/dx = 0`.Therefore, `z/x = 0`.To find z/y, differentiate z with respect to y and keep x constant. `z/y = dz/dx * dx/dy + dz/dy * dy/dy` (Note that `dx/dy = 0` as x is a constant)
Differentiating z with respect to y, we get:`dz/dy = 3y²`Therefore,`z/y = 3y²`3. Let z = 2² + y³, x = 2 st and y = s - t². Compute for z/х and z/t
To find z/x, differentiate z with respect to x and keep y constant. `z/x = dz/dx * dx/dx + dz/dy * dy/dx` (Note that `dx/dx` = 1)
Now, `dx/dx = 1` and `dz/dx = 0` because z does not depend on x.
Hence, `z/x = 0`.To find z/t, differentiate z with respect to t and keep x and y constant.` z/t = dz/dt * dt/dt` (Note that `dx/dt = 2s`, `dy/dt = -2t`, `dx/dt` = `2s`)
Differentiating z with respect to t, we get:`dz/dt = 3y² * (-2t)`
Substituting x = 2st and y = s - t², we get: `z/t = 3(s - t²)²(-2t)`
Simplifying, we get: `z/t = -12st³ + 12s²t⁴`
Therefore, `z/t = -12st³ + 12s²t⁴`.
More on functions: https://brainly.com/question/30480002
#SPJ11
REMARK 1.e LET F:X->T BE * INJECTIVE AND OS HX). THE PRE-IMAGE OF B wet THE INVERSE FUNCTION le IF P-{ xEX 140x)+8) AND IF 'cy) ly 68 -Cy} THEU P = 1
Previous question
Next question
The given statement,
Let f: X -> T be injective and f(h(x)) = B.
The pre-image of B is then called the inverse function of h(x).
If P = {x ∈ X : h(x) ∈ B} and if γ(x) = (x, h(x)), then P = γ−1({y ∈ X × T : y2 = B}).
We must show that γ is bijective.
We show that γ is injective and surjective separately.
Injective: Suppose γ(x1) = γ(x2).
That is (x1, h(x1)) = (x2, h(x2)).
Then x1 = x2 and
h(x1) = h(x2) as well, since each coordinate of a pair is unique.
Hence γ is injective.
Surjective:
Suppose (x, t) ∈ X × T.
We need to show that there exists y ∈ X such that γ(y) = (x, t).
Let y = f−1(t).
Since f(h(y)) = t,
h(y) ∈ B, and
hence γ(y) = (y, h(y)).
Therefore, the given statement,
Let f: X -> T be injective and f(h(x)) = B.
The pre-image of B is then called the inverse function of h(x).
If P = {x ∈ X : h(x) ∈ B} and if
γ(x) = (x, h(x)),
then P = γ−1({y ∈ X × T : y2 = B}).
We show that γ is injective and surjective separately.
To know more about pre-image visit:
brainly.com/question/17563625
#SPJ11
Aufgabe 1:
Given are f: RR: connecting lines
s: R→R: →
(x-2)2-3 such as T1 = -2,2 = 1. Give the equation of the (secant) of point (x1, f(x1)) and (x2. f(x2))
A notice: the slope and y-intercept are integers Enter negative integers without parentheses
The equation of the secant of point $(x_1, f(x_1))$ and $(x_2, f(x_2))$ is: $y=\frac{(x-2)²-4}{x+2.2}x+\frac{-2(x-2)²+8}{x+2.2}$.
consider the Given function as f: RR: connecting lines
s: R→R: →
(x-2)2-3 such as T1 = -2,2 = 1
The slope and y-intercept are integers Enter negative integers without parentheses
The points are point (x1, f(x1)) and (x2. f(x2)).
We are to give the equation of the secant of point (x1, f(x1)) and (x2, f(x2)).Slope of the secant: $\frac{f(x_2)-f(x_1)}{x_2-x_1}$Where $x_1=-2,2$ and $x_2=x$.So the slope of the secant is:$\frac{f(x)-f(-2.2)}{x-(-2.2)}=\frac{(x-2)²-3-1}{x-(-2.2)}=\frac{(x-2)²-4}{x+2.2}$To find the y-intercept we will put $x=-2,2$:y-intercept: $f(x_1)-\frac{f(x_2)-f(x_1)}{x_2-x_1}x_1$=$1-\frac{(x-2)²-1}{x-(-2.2)}(-2.2)=\frac{-2(x-2)²+8}{x+2.2}$.
To know more about lines:
https://brainly.in/question/15156104
#SPJ11
In Aufgabe 1, you are given the following information:
- "f: RR: connecting lines" indicates that the function f is a line in the real number system.
- "s: R→R: →" suggests that s is a transformation from the real numbers to the real numbers.
- "(x-2)2-3" is an expression involving x, which implies that it represents a function or equation.
- "T1 = -2,2 = 1" provides the value T1 = 1 when evaluating the expression (x-2)2-3 at x = -2 and x = 2.
To solve the problem, you need to find the equation of the secant line passing through the points (x1, f(x1)) and (x2, f(x2)), where x1 and x2 are specific values.
The instructions state that the slope and y-intercept of the secant line should be integers. To represent negative integers, you should omit the parentheses.
To proceed further and provide a specific solution, I would need more information about the values of x1 and x2.
To know more about connecting lines visit:
https://brainly.com/question/13088900
#SPJ11
Use Cramer's rule to solve the system of equations. If D = 0, use another method to determine the solution set. 9x -y + 2z = - 25 3x + 9y - z = 58 x + 2y +9z = 58
Given equations are 9x -y + 2z = - 25, 3x + 9y - z = 58 and x + 2y +9z = 58. To find the solution set, we need to use Cramer's rule. The solution set is given by,Cramer's rule for 3 variablesx = Dx/D y = Dy/D z = Dz/DDenominator D will be equal to the determinant of coefficients.
Coefficient determinant is shown as Dx, Dy and Dz respectively for x, y and z variables.
So, we haveD = | 9 -1 2 | | 3 9 -1 | | 1 2 9 | = 1 (-54) - 27 + 36 + 12 - 2 (-9) = 12
Using Cramer's rule for x, Dx is obtained by replacing the coefficients of x with the constants from the right side and evaluating its determinant.
We have Dx = | -25 -1 2 | | 58 9 -1 | | 58 2 9 | = 1 (2250) + 58 (56) + 232 - 25 (18) - 1 (522) - 58 (100) = -3598
Now, using Cramer's rule for y, Dy is obtained by replacing the coefficients of y with the constants from the right side and evaluating its determinant.
We have Dy = | 9 -25 2 | | 3 58 -1 | | 1 58 9 | = 1 (-459) - 58 (17) + 2 (174) - 225 + 58 (2) - 58 (9) = -1119
Finally, using Cramer's rule for z, Dz is obtained by replacing the coefficients of z with the constants from the right side and evaluating its determinant.
We have Dz = | 9 -1 -25 | | 3 9 58 | | 1 2 58 | = 58 (27) - 2 (174) - 9 (100) - 58 (9) - 1 (-232) + 2 (58) = 84
So the solution set is x = -3598/12, y = -1119/12 and z = 84/12If D = 0, then the system of equations does not have a unique solution.
Read more about Cramer's rule.
https://brainly.com/question/12670711
#SPJ11
determine whether the series converges or diverges. [infinity] cos2(n) n5 1 n = 1
Let limn→∞cos^2(n)/n^5L'Hôpital's Rule should be used to evaluate the limit. On the top, take the derivative of cos^2(n) using the chain rule. The limit then becomes:limn→∞2cos(n)(−sin(n))/5n^4 = 0The given series converges by the p-test.
In order to determine whether the series converges or diverges, the given series is: ∞Σn=1cos^2(n)/n^5.Let's have a look at the limit below:limn→∞cos^2(n)/n^5The p-test should be used to test for convergence of the given series. This is because the power of n in the denominator is greater than 1 and the cos^2(n) term is bounded by 0 and 1.L'Hôpital's Rule should be used to evaluate the limit. On the top, take the derivative of cos^2(n) using the chain rule. The limit then becomes:limn→∞2cos(n)(−sin(n))/5n^4 = 0The given series converges by the p-test. Since the series converges, the conclusion can be made that the general term of the series decreases monotonically as n grows to infinity. Therefore, the given series convergesUsing the p-test, we discovered that the series converges. The general term of the series decreases monotonically as n grows to infinity. The given series converges.
To know more about p-test visit:
brainly.com/question/32659182
#SPJ11
The given series converges by the p-test.
In order to determine whether the series converges or diverges, the given series is:
∑ (n to ∞) cos²(n)/n⁵.
Let's have a look at the limit below:
⇒ limn → ∞cos²(n)/n⁵
The p-test should be used to test for convergence of the given series. This is because the power of n in the denominator is greater than 1 and the cos²(n) term is bounded by 0 and 1.
L' Hospital's Rule should be used to evaluate the limit.
On the top, take the derivative of cos^2(n) using the chain rule. The limit then becomes:
limn→∞2cos(n)(−sin(n))/5n⁴ = 0
Hence, The given series converges by the p-test.
Since the series converges, the conclusion can be made that the general term of the series decreases monotonically as n grows to infinity.
Therefore, the given series converges by Using the p-test, we discovered that the series converges.
The general term of the series decreases monotonically as n grows to infinity. The given series converges.
To know more about p-test visit:
brainly.com/question/32659182
#SPJ4
Find the minimized form of the logical expression using K-maps: F=A'B' + AB' + A'B
The minimized form of the logical expression F = A'B' + AB' + A'B is F = A' + B'.
To minimize the logical expression F = A'B' + AB' + A'B, we can use Karnaugh maps (K-maps).
Create the K-map for the given expression:
B'
__________
| 0 | 1 |
A'|___ |___ |
| 1 | 0 |
A |___|___|
Group adjacent 1s in the K-map to form the min terms of the expression. In this case, we have two groups: A' + B' and A' + B.
B'
__________
| 0 | 1 |
A' |___|___|
| 1 | 0 |
A |___ |___|
Write the minimized expression using the grouped min terms:
F = (A' + B') + (A' + B)
Apply the Boolean algebraic simplification to further minimize the expression:
F = A' + B' + A' + B
Since A' + A' = A' and B + B' = 1, we can simplify further:
F = A' + A' + B + B'
Finally, we can combine like terms:
F = A' + B'
For similar question on logical expression.
https://brainly.com/question/28032966
#SPJ8
write a matlab code segment that uses nlinfit to determine the best fit curve for the t and corresponding a values according to this equation use initial guesses of a0 = 1 and r =0.3
An example of the MATLAB code segment that uses nlinfit to determine the best fit curve for the above equation is given below.
What is the MATLAB code segmentThe code establish the function that needs to be fitted by utilizing an unnamed function, fun. Two parameters need to be provided to the function, namely params and t. The parameters of the equation are represented by the variable params, while t functions as the independent variable.
When using the code, Ensure that you substitute the t and a arrays with your factual data points. The presumption of the code is that the Statistics and Machine Learning Toolbox contains the nlinfit function, which must be accessible in your MATLAB environment.
Learn more about MATLAB code segment from
https://brainly.com/question/31546199
#SPJ4
Prove Valid:
1. (∃x)Hx v (Ja ⋅ Kb)
2. (∃x) [(Ja ⋅ Kb) ⊃ ∼ (x=x)] /∴ (∃x)Hx
[tex](∃x)Hx[/tex] is true. Hence, the conclusion "Prove valid: [tex](∃x)Hx[/tex]" is valid.
Given that the premises are:[tex](1) (∃x)Hx v (Ja ⋅ Kb) (2) (∃x) [(Ja ⋅ Kb) ⊃ ∼ (x=x)] /\\∴ (∃x)Hx[/tex]
We are required to show that the conclusion [tex]" (∃x)Hx"[/tex]is valid.
It can be done using the Proof of contradiction technique.
For the proof of contradiction, let us assume the opposite of what we need to prove. i.e, assume that(∃x)Hx is false.
Then, we get∀x ∼HxFrom premise (1), we get [tex](∃x)Hx v (Ja ⋅ Kb)[/tex]
When we assume the opposite, the above expression becomes:∀x ∼Hx v (Ja ⋅ Kb)
Since we have already assumed that ∀x ∼Hx, the above expression becomes: [tex]∀x ∼Hx[/tex]
Here, we will use Universal Instantiation to substitute the value of x in premise (2).
So, from premise (2), we get [tex](∃x) [(Ja ⋅ Kb) ⊃ ∼ (x=x)][/tex]
Assuming [tex](∃x)Hx[/tex] to be false, we get [tex]∀x ∼Hx[/tex]
Using this and the above expression, we can say that [tex][Ja ⋅ Kb] ⊃ ∼(x=x)[/tex] is true for all x.
As x cannot be equal to itself,[tex][Ja ⋅ Kb][/tex] should be false.
Thus, we can say that the negation of the premise is true.i.e, [tex]∼[(∃x)Hx v (Ja ⋅ Kb)][/tex]
We will simplify the above expression using De Morgan's law.
[tex]∼ (∃x)Hx ⋅ ∼ (Ja ⋅ Kb)[/tex]
When we assume that ∃xHx is false, the above expression becomes:∀x ∼Hx ⋅ (Ja ⋅ Kb)Using Universal Instantiation, we can substitute the value of x in the above expression.
From premise (2), we can say that [tex](Ja ⋅ Kb) ⊃ ∼ (x=x)[/tex] is true.
Thus, the expression ∀x ∼Hx ⋅ (Ja ⋅ Kb) becomes false.
Thus, we get
[tex]∼ [(Ja ⋅ Kb) ⊃ ∼ (x=x)][/tex]
Therefore, we have reached a contradiction to our assumption that [tex](∃x)Hx[/tex] is false.
Know more about premises here:
https://brainly.com/question/30466861
#SPJ11
Find the surface integral SS f(x, y, z) ds where f = (x2 + y2) z and o is the sphere x² + y2 + z2 = 25 above z =1. Parameterize the surface integral ar ar , dA ae o R = - / !!! de do III Note: For 8 type theta and for o type phi.
Integral gives the answer as: S = 25π/6.Given below is the surface integral and the equation of the sphere:
S = ∬ f(x, y, z) dsS
= ∬ (x² + y²)z ds
And the sphere is given by x² + y² + z² = 25
above z = 1
To evaluate this surface integral above the sphere, we will use the spherical coordinate system.
The spherical coordinate system is given by the equations:
x = ρ sinφ
cosθy = ρ
sinφ sinθz = ρ cosφ
where ρ is the distance from the origin to the point (x, y, z), θ is the angle between the positive x-axis and the projection of the point onto the xy-plane, and φ is the angle between the positive z-axis and the point (x, y, z).
The Jacobian for spherical coordinates is given by |J| = ρ² sinφ
We need to express the surface element ds in terms of the spherical coordinates.
The surface element is given by:
ds = √(1 + (dz/dx)² + (dz/dy)²) dxdy
Since z = ρ cosφ,
we have: dz/dx = - ρ sinφ cosθ
and dz/dy = - ρ sinφ sinθ
So,ds = √(1 + ρ² sin²φ (cos²θ + sin²θ)) dρ dφ
Now, we can evaluate the surface integral as follows:
S = ∬ f(x, y, z) dsS
= ∫[0, 2π] ∫[0, π/3] (ρ² sin²φ cos²θ + ρ² sin²φ sin²θ) ρ² sinφ √(1 + ρ² sin²φ) dρ dφS
= ∫[0, 2π] ∫[0, π/3] (ρ^4 sin³φ cos²θ + ρ^4 sin³φ sin²θ) √(1 + ρ² sin²φ) dρ dφ
Solving the above integral gives the answer as:
S = 25π/6.
To know more about surface integral visit:
https://brainly.com/question/28171028
#SPJ11
Find the general solution of the system whose augmented matrix is given below.
[ 1 4 0 18 2 7 0 30 ]
Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice.
O A. {x1 = x2 = x3 = О В. {x1 = x2 = x3 is free O C. [xt =
x2 is free
x3 is free
O D. The system has no solution
The general solution of the given system is {x1 = -2/3 + k, x2 = 14/3} where k is any real number.
Hence, the correct option is A. {x1 = x2 = x3 = 0}.
The given augmented matrix is [tex][ 1 4 0 18 2 7 0 30 ][/tex]. We have to find the general solution of the system by row reduction method.
Step 1 The first step is to make the first element of the second row 0.
To do that, subtract the first row from the second row four times.
[ 1 4 0 18 2 7 0 30 ] ⇒ [ 1 4 0 18 0 -9 0 -42 ]
Step 2 Make the second element of the third row 0 by subtracting the second row from the third row twice.
[ 1 4 0 18 0 -9 0 -42 ] ⇒ [ 1 4 0 18 0 -9 0 -42 0 0 0 0 ]
The row-reduced form of the given augmented matrix is
[ 1 4 0 18 0 -9 0 -42 0 0 0 0 ].
The corresponding system of equations is given below.
x1 + 4x2 = 18 -9x2 = -42
The solution of the second equation is
x2 = 42/9 = 14/3
Putting x2 = 14/3 in the first equation, we get
x1 + 4(14/3) = 18
x1 = 18 - 56/3 = -2/3
The solution of the system of equations isx1 = -2/3 and x2 = 14/3
The general solution of the given system is
{x1 = -2/3 + k, x2 = 14/3} where k is any real number.
Hence, the correct option is A. {x1 = x2 = x3 = 0}.
To learn more about solution visit;
https://brainly.com/question/1616939
#SPJ11
Evaluate the line integral dx dy + (x - y)dx, where C is the circle x² + y² = 4 oriented clockwise using: [3] a) Green's Theorem b) With making NO use of Green's Theorem, rather directly by parametrization. [5]
a) The line integral using Green's Theorem is zero because the vector field given by dx dy + (x - y)dx is conservative.
a) Green's Theorem states that for a vector field F = Pdx + Qdy and a simply connected region D bounded by a piecewise-smooth, positively oriented curve C, the line integral of F around C is equal to the double integral of (dQ/dx - dP/dy) over D. In this case, the vector field F = dx dy + (x - y)dx can be expressed as F = Pdx + Qdy, where P = 0 and Q = x - y. Since the partial derivative of Q with respect to x (dQ/dx) is equal to the partial derivative of P with respect to y (dP/dy), the vector field is conservative, and the line integral is zero.
b) Parametrizing the circle, we let x = 2cos(t) and y = 2sin(t), where t ranges from 0 to 2π. Evaluating the integral, we get -4π.
b) To parametrize the circle, we use the trigonometric functions cosine and sine to represent x and y, respectively. Substituting these expressions into the line integral, we integrate with respect to t, where t represents the angle that ranges from 0 to 2π, covering the entire circle. Evaluating the integral, we obtain -4π as the result.
Learn more about line integral here: brainly.com/question/32250032
#SPJ11
Solve the polynomial equation by factoring and then using the zero-product principle. 3x = 3000x Find the the solution set. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. OA. The solution set is. (Use a comma to separate answers as needed. Simplify your answer. Type your answer in the form a + bi.) B. There is no solution.
Given polynomial equation is 3x = 3000x.The equation can be rewritten as:$$3x - 3000x = 0$$ $$\Rightarrow 3x(1 - 1000) = 0$$ $$\.
ightarrow 3x(- 999) = 0$$We have two solutions for the above equation as:3x = 0or-999x = 0Using the zero-product principle we get:3x = 0 gives x = 0 and-999x = 0 gives x = 0Hence, the solution set is {0}.Therefore, option A is correct.
The given equation is 3x = 3000xTo solve the polynomial equation by factoring and then using the zero-product principle. We will start by combining the like terms:3000x - 3x = 0 (Move 3x to the left side of the equation)2997x = 0x = 0Dividing both sides by 2997 we get; 0/2997 = 0Thus, the solution set is {0}.Hence, the correct option is (A) The solution set is {0}.
To know more about Polynomial equation visit:
https://brainly.com/question/30196188
#SPJ11
(0)
The heights of 1000 students are approximately normally distributed with a mean of
179.1
centimeters and a standard deviation of
7.8
centimeters. Suppose
300
random samples of size
25
are drawn from this population and the means recorded to the nearest tenth of a centimeter. Complete parts (a) through (c) below.
The mean and the standard deviation are 179.1 and 0.25
The expected number of sample means that fall between 176.4 and 179.6 cm is 293
The expected number of sample means falling below 176.0 cm is 0
The mean and standard deviationGiven that
Population mean = 179.1Population standard deviation = 7.8Population size = 1000Sample size = 25The sample mean is an estimate of the population mean
So, we have
Sample mean = 179.1
For the standard deviation, we have
σₓ = σ /√n
This gives
σₓ = 7.8 /√1000
So, we have
σₓ = 0.25
(b) The expected number of sample meansWe start by calculating the z-scores using
z = (x - mean)/σ
So, we have
z = (176.4 - 179.1) / 0.25
z = -10.8
z = (179.6 - 179.1) / 0.25
z = 2
So, we have
p = P(-10.8 < z < 2)
Using the z table, we have
p = 0.9773
The expected value is calculated as
E(x) = np
So, we have
E(x) = 300 * 0.9773
Evaluate
E(x) = 293
Expected number of sample means falling belowWe start by calculating the z-scores using
z = (x - mean)/σ
So, we have
z = (176.0 - 179.1) / 0.25
z = -12.4
So, we have
p = P(z < -12.4)
Using the z table, we have
p = 0
The expected value is calculated as
E(x) = np
So, we have
E(x) = 300 * 0
Evaluate
E(x) = 0
Read more about probability at
https://brainly.com/question/31649379
#SPJ4
Question
The heights of 1000 students are approximately normally distributed with a mean of 178.5 centimeters and a standard deviation of 6.4 centimeters. Suppose 400 random samples of size 25 are drawn from this population and the means recorded to the nearest tenth of a centimeter. Complete parts (a) through (c
(a) Determine the mean and standard deviation of the sampling distribution of X.
(b) Determine the expected number of sample means that fall between 176.4 and 179.6 centimeters inclusive (Round to the nearest whole number as needed.)
(c) Determine the expected number of sample means falling below 176.0 centimeters. (Round to the nearest whole number as needed.)
The population of a city is 360,000 and is increasing at a rate of 2.5% each year.
Approximately when will the population reach 720,000?
The population of the city will reach 720,000, approximately after 27.5 years.
To determine approximately when the population will reach 720,000, we can use the formula for exponential growth.
The formula for exponential growth is given by:
P(t) = P0 * (1 + r)^t
Where:
P(t) is the population at time t
P0 is the initial population
r is the growth rate as a decimal
t is the time in years
Given that the initial population P0 is 360,000 and the growth rate r is 2.5% or 0.025, we can substitute these values into the formula.
720,000 = 360,000 * (1 + 0.025)^t
Dividing both sides of the equation by 360,000, we get:
2 = (1 + 0.025)^t
To solve for t, we can take the natural logarithm of both sides:
ln(2) = ln((1 + 0.025)^t)
Using the property of logarithms, we can bring the exponent t down:
ln(2) = t * ln(1 + 0.025)
Dividing both sides by ln(1 + 0.025), we can solve for t:
t = ln(2) / ln(1 + 0.025)
Using a calculator, we find:
t ≈ 27.5 years
Learn more about exponential growth here: brainly.com/question/13674608
#SPJ11
Please solve this two questions thanskk Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination. (If there is no solution, enter NO SOLUTION. If the system has an infinite number of solutions, express x, y, z, and w in terms of the parameters t and s.) 4x + 12y - 7z - 20w = 20 3+9y = 5z = 28w = 38 (x,y,z,w) Show My Work (optionan Submit Answer 0/1 Points] DETAILS PREVIOUS ANSWERS LARLINALG8M 1.2.037. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination. (If there is no solution, enter NO SOLUTION. If the system has an infinite number of solutions, express x, y, and z in terms of the parameter t.) 3x + 3y +9z = 12 x + y + 3z=4 2x + 5y + 15z = 20 x+ 2y + 6z = (x, y, z)
Let's solve the first system of equations using Gaussian elimination:
4x + 12y - 7z - 20w = 20
3 + 9y = 5z
28w = 38
First, let's simplify the second equation by dividing both sides by 9:
1/3 + y = 5/9z
Now we have the following system:
4x + 12y - 7z - 20w = 20
1/3 + y = 5/9z
28w = 38
To eliminate the fractions, we can multiply the second equation by 9:
3 + 9y = 5z
Now the system becomes:
4x + 12y - 7z - 20w = 20
3 + 9y = 5z
28w = 38
To eliminate z from the first equation, we can multiply the second equation by 7:
21 + 63y = 35z
Now the system becomes:
4x + 12y - 7z - 20w = 20
21 + 63y = 35z
28w = 38
To eliminate w from the first equation, we can divide the third equation by 28:
w = 38/28
Now the system becomes:
4x + 12y - 7z - 20 * (38/28) = 20
21 + 63y = 35z
w = 38/28
Simplifying further:
4x + 12y - 7z - 10/7 * 38 = 20
21 + 63y = 35z
w = 19/14
Combining like terms, we have:
4x + 12y - 7z - 380/7 = 20
21 + 63y = 35z
w = 19/14
This system can be further simplified by multiplying all equations by 7 to eliminate the denominators:
28x + 84y - 49z - 380 = 140
147 + 441y = 245z
7w = 19
Now the system becomes:
28x + 84y - 49z = 520
147 + 441y = 245z
w = 19/7
This is the final system of equations obtained after performing Gaussian elimination.
Learn more about Gaussian elimination here:
https://brainly.com/question/14529256
#SPJ11
Mortgage Rates
The average 30-year fixed mortgage rate in the United States in the first week of May in 2010 through 2012 is approximated by
M(t) =
55.9
t2 − 0.31t + 11.2
percent per year. Here t is measured in years, with
t = 0
corresponding to the first week of May in 2010.†
(a)
What was the average 30-year fixed mortgage rate in the first week of May in 2012
(t = 2)?
(Round your answer to two decimal places.)
% per year
(b)
How fast was the 30-year fixed mortgage rate decreasing in the first week of May in 2012
(t = 2)?
(Round your answer to two decimal places.)
% per year
a) The average 30-year fixed mortgage rate in the first week of May in 2012 is found 4.91% per year.
b) The rate of change of the mortgage rate in the first week of May in 2012 is found -0.62% per year.
(a) The average 30-year fixed mortgage rate in the first week of May in 2012 is approximately 4.91% per year.
To find the mortgage rate in 2012,
we need to find M(2):
M(t) = 55.9t² - 0.31t + 11.2%
M(2) = 55.9(2)² - 0.31(2) + 11.2%
M(2) = 55.9(4) - 0.62 + 11.2%
M(2) = 223.6 - 0.62 + 11.2%
M(2) = 234.18%
Therefore, the average 30-year fixed mortgage rate in the first week of May in 2012 is approximately 4.91% per year. Rounding to two decimal places, we have 4.91%.
(b) The rate of change of the mortgage rate in 2012 is approximately -0.62% per year.
We are looking for the rate of change of the mortgage rate in 2012.
That is, we need to find the derivative of M(t) at t = 2:
M(t) = 55.9t² - 0.31t + 11.2
M'(t) = 111.8t - 0.31
M'(2) = 111.8(2) - 0.31
M'(2) = 223.6 - 0.31
M'(2) = 223.29%
Therefore, the rate of change of the mortgage rate in the first week of May in 2012 is approximately -0.62% per year. Rounding to two decimal places, we have -0.62%.
Know more about the fixed mortgage rate
https://brainly.com/question/2591778
#SPJ11
Decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w. v=i+5j, w = 2i+j ₁=₁+₁ v₂ = i+ v₂ = (₁+₁ i+ (Simplify your answer.)
Therefore, the decomposition of vector v into v₁ and v₂ is:
v₁ = (34/5)i + (17/5)j
v₂ = (-9/5)i + (8/5)j
To decompose vector v into two vectors, v₁ and v₂, where v₁ is parallel to vector w and v₂ is orthogonal to vector w, we can use the projection formula:
v₁ = (v⋅w / ||w||²) * w
v₂ = v - v₁
Given:
v = i + 5j
w = 2i + j
Step 1: Calculate the scalar projection of v onto w:
v⋅w = (i + 5j)⋅(2i + j) = 2i⋅i + 2i⋅j + 5j⋅i + 5j⋅j = 2 + 10 + 5 = 17
Step 2: Calculate the magnitude of w:
||w|| = √(2² + 1²) = √5
Step 3: Calculate v₁:
v₁ = (v⋅w / ||w||²) * w = (17 / 5) * (2i + j) = (34/5)i + (17/5)j
Step 4: Calculate v₂:
v₂ = v - v₁ = (i + 5j) - ((34/5)i + (17/5)j) = (1 - 34/5)i + (5 - 17/5)j = (-9/5)i + (8/5)j
Therefore, the decomposition of vector v into v₁ and v₂ is:
v₁ = (34/5)i + (17/5)j
v₂ = (-9/5)i + (8/5)j
To know more about vectors, visit:
https://brainly.com/question/31907879
#SPJ11
Find the first three terms of Taylor series for F(x) = Sin(pnx) + e*-, about x = p, and use it to approximate F(2p)
The Taylor series for a function f(x) about a point a can be represented as: f(x) = f(a) + f'(a)(x - a)/1! + f''(a)(x - a)²/2! + f'''(a)(x - a)³/3! + ...
For the given function F(x) = Sin(pnx) + e*-, we want to find the first three terms of its Taylor series about x = p, and then use it to approximate F(2p).
To find the first three terms, we need to calculate the function's derivatives at x = p:
F(p) = Sin(pnp) + e*- = Sin(p^2n) + e*-
F'(p) = (d/dx)[Sin(pnx) + e*-] = npCos(pnp)
F''(p) = (d²/dx²)[Sin(pnx) + e*-] = -n²p²Sin(pnp)
Substituting these values into the Taylor series formula, we have:
F(x) ≈ F(p) + F'(p)(x - p)/1! + F''(p)(x - p)²/2!
Approximating F(2p) using this Taylor series expansion:
F(2p) ≈ F(p) + F'(p)(2p - p)/1! + F''(p)(2p - p)²/2!
Simplifying this expression will give an approximation for F(2p) using the first three terms of the Taylor series.
For more information on taylor series visit: brainly.com/question/31585708
#SPJ11
Consider the following matrix A: 0 1 2 3 4 5 6 7 3) (a) (4 points) Determine the rank of A: that is, the dimension of the image of A. (b) (4 points) Determine the dimension of the rullspace of A. (c) (2 points) Determine if A, thought of as a function 4: R' Ris one to one, onto, both, or neither.
Given matrix A is as follows:
[tex]$A=\begin{bmatrix}0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 3 \end{bmatrix}$[/tex]
a) We need to function determine the rank of matrix A which is equivalent to determine the dimension of the image of A.
We can find the rank of A using row reduction method.
[tex]$A=\begin{bmatrix}0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 3 \end{bmatrix}\xrightarrow[R_3-2R_1]{R_2-3R_1}\begin{bmatrix}0 & 1 & 2 \\ 3 & 4 & 5 \\ 0 & -5 & -1 \end{bmatrix}\xrightarrow[R_2-5R_3]{R_1+2R_3}\begin{bmatrix}0 & 0 & 0 \\ 3 & 0 & 0 \\ 0 & -5 & -1 \end{bmatrix}$$\Rightarrow \begin{bmatrix}3 & 4 & 5 \\ 0 & -5 & -1 \end{bmatrix}$[/tex]
The above matrix has two non-zero rows, therefore the rank of matrix A is 2.b) We need to determine the dimension of the row space of matrix A. The dimension of row space of A is same as the rank of A which is 2.c) We need to determine if A, thought of as a function 4: R' Ris one to one, onto, both, or neither.
To check whether A is one-to-one or not, we need to find the nullspace of A. Let
[tex]$x=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\in\mathbb{R}^3$ such that $Ax=0$$\begin{bmatrix}0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 3 \end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$\Rightarrow \begin{bmatrix}x_2+2x_3\\3x_1+4x_2+5x_3\\6x_1+7x_2+3x_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$\Rightarrow x_2+2x_3=0\Rightarrow x_2=-2x_3$$3x_1+4x_2+5x_3=0\Rightarrow 3x_1-8x_3=0\Rightarrow x_1[/tex]
[tex]=\dfrac{8}{3}x_3$$6x_1+7x_2+3x_3=0$$\Rightarrow 6\left(\dfrac{8}{3}x_3\right)+7(-2x_3)+3x_3=0$$\Rightarrow -x_3=0\Rightarrow x_3=0$Therefore, the null space of A is given by$\text{null}(A)=\left\{\begin{bmatrix}\dfrac{8}{3}\\-2\\1\end{bmatrix}t\biggr\rvert t\in\mathbb{R}\right\}$[/tex]The dimension of null space of A is 1.To check whether A is onto or not, we need to find the row echelon form of A. From part a, we know that the rank of A is 2. Therefore, the row echelon form of A is
[tex]$\begin{bmatrix}3 & 4 & 5 \\ 0 & -5 & -1 \\ 0 & 0 & 0 \end{bmatrix}$[/tex]
The above matrix has two non-zero rows and the third row is zero. Therefore, the matrix A is not onto.
To know more about function visit:
https://brainly.com/question/28193995
#SPJ11
Give the domain of the following function in interval notation.
g(x)=x^2-5
Thanks.
The function [tex]g(x) = x^2 - 5[/tex] is a polynomial function, which is defined for all real numbers. Therefore, the domain of the function is (-∞, +∞) in interval notation, indicating that it is defined for all x values.
The domain of a function represents the set of all possible input values for which the function is defined. In the case of the function [tex]g(x) = x^2 - 5[/tex], being a polynomial function, it is defined for all real numbers.
Polynomial functions are defined for all real numbers because they involve algebraic operations such as addition, subtraction, multiplication, and exponentiation, which are defined for all real numbers. There are no restrictions or exclusions in the domain of polynomial functions.
Therefore, the domain of the function [tex]g(x) = x^2 - 5[/tex] is indeed (-∞, +∞), indicating that it is defined for all real numbers or all possible values of x.
To know more about function,
https://brainly.com/question/28261670
#SPJ11
a carton of milk contains 1 1/2 servings of milk. a dozen cartons are poured into a large container and then poured into glasses that each hold 2/3 of a serving. how many glasses can be filled?
show work pls
Answer:
You can fill 27 glasses with milk
Step-by-step explanation:
Amount of servings, which is number of cartons times serving per carton, divided by the amount the glass can hold.
Let's solve the amount of servings:
Serving per carton: 1 1/2 is 3/2
Number of cartons: 12 (dozen)
12*3/2 = 18 servings
Now divide it by the amount the glass can hold:
18 ÷ 2/3 = 18*3/2 = 27 glasses
If theta is a continuous random variable which is uniformly distributed between 0 and pi, write down an expression for P(0). Hence find the values of the following averages: (theta) (theta - pi / 2) (theta 2) (theta n) (for the case n ge 0); (cos theta); (sin theta); (|cos theta|); (cos 2 theta); (sin 2 theta); (cos 2 theta + sin 2 theta). Check that your answer are what are you expect.
The expected values of the given functions are:
E(θ) = π/2E(θ - π/2)
= -π/4E(θ²)
= π²/3E(θⁿ)
= π^(n+1)/(n+1)E(cosθ)
= 0E(sinθ)
= 0E(|cosθ|)
= 4/πE(cos 2θ)
= 0E(sin 2θ)
= 0E(cos²θ + sin²θ) = 1
We are given a continuous random variable θ that is uniformly distributed between 0 and π. Let us first determine the expression for P(0).We know that the random variable θ is uniformly distributed between 0 and π. Therefore, the probability density function (PDF) of θ is given by:
f(θ) = 1/π for 0 ≤ θ ≤ πP(0) is the probability that the random variable θ takes the value 0.
The probability that θ takes a specific value in a continuous uniform distribution is zero. Therefore, we have:
P(0) = 0Now, let us find the expected values of the given functions using the definition of the expected value.
For a continuous random variable, the expected value of a function g(θ) is given by:
E(g(θ)) = ∫g(θ)f(θ) dθ
Using the PDF we determined earlier,
we can find the expected values of the given functions as follows:
1. E(θ) = ∫θ f(θ) dθ
= ∫θ(1/π) dθ
= [θ²/(2π)]|₀^π
= π²/(2π)
= π/22. E(θ - π/2)
= ∫(θ - π/2) f(θ) dθ
= ∫(θ - π/2)(1/π) dθ
= [(θ²/2 - πθ/2)/π]|₀^π
= -π/4= -0.78543.
E(θ²) = ∫θ² f(θ) dθ
= ∫θ²(1/π) dθ
= [θ³/(3π)]|₀^π
= π²/3= 3.289864.
E(θⁿ) = ∫θⁿ f(θ) dθ
= ∫θⁿ(1/π) dθ
= [θ^(n+1)/(n+1)π]|₀^π
= π^(n+1)/(n+1)5.
E(cosθ) = ∫cosθ f(θ) dθ
= ∫cosθ(1/π) dθ
= [sinθ/π]|₀^π
= 0-0=06.
E(sinθ)= ∫sinθ f(θ) dθ
= ∫sinθ(1/π) dθ
= [-cosθ/π]|₀^π
= 0-0=07.
E(|cosθ|) = ∫|cosθ| f(θ) dθ
= ∫|cosθ|(1/π) dθ
= [2/π]|₀^(π/2)+[-2/π]|^(π/2)_8.
E(cos 2θ) = ∫cos 2θ f(θ) dθ
= ∫cos 2θ(1/π) dθ
= [sin 2θ/2π]|₀^π
= 0-09.
E(sin 2θ) = ∫sin 2θ f(θ) dθ
= ∫sin 2θ(1/π) dθ
= [-cos 2θ/2π]|₀^π
= 0-010. E(cos²θ + sin²θ)
= ∫(cos²θ + sin²θ) f(θ) dθ
= ∫(1/π) dθ= [θ/π]|₀^π
= π/π
= 1
To know more about functions visit:-
https://brainly.com/question/31062578
#SPJ11
Suppose we have a 2m long rod whose temperature is given by the function u(x, t) for x on the beam and time t. Use separation of variables to solve the heat equation for this rod if the initial temperature is: ſem if 0 < x < 1 u(x,0) if 1 < x < 2 and the ends of the rod are always 0° (i.e., u(0,t) = 0) = u(2,t))
The solutions are: X(x) = B sin(n π x / 2),
λ = n π / 2T(t)
= C exp(-n² π² k t / 4)u(x,t)
= Σ Bₙ sin(n π x / 2) exp(-n² π² k t / 4).
What is it?Given information is; we have a 2m long rod whose temperature is given by the function u(x, t) for x on the beam and time t.
Use separation of variables to solve the heat equation for this rod if the initial temperature is:
ſem if 0 < x < 1 u(x,0) if 1 < x < 2 and the ends of the rod are always 0° (i.e., u(0,t) = 0)
= u(2,t)).
The heat equation is:
u_t = k u_xx.
The initial condition is given as: u(x,0) = { 0 < x < 1
= ƒ(x) { 1 < x < 2.
The boundary conditions are given as:
u(0,t) = u(2,t)
= 0
Since u(x,t) = X(x) T(t),
so we have
X(x) T'(t) = k X''(x) T(t)
Divide both sides by X(x) T(t), so we have-
T'(t)/T(t) = k X''(x)/X(x)
= -λ (-λ is just an arbitrary constant)
We will solve the above ODE for X(x), so we have:
X''(x) + λ X(x)
= 0X(0)
= 0, X(2)
= 0For λ > 0, we have X(x)
= A sin(λ x), λ
= n π / 2,
where n = 1, 2, ...
For λ = 0,
We have X(x) = A + B x.
For λ < 0, we have X(x) = A sinh(λ x) + B cosh(λ x), λ
= -n π / 2,
Where n = 1, 2, ...
Then T'(t) = -λ k T(t)
Integrating both sides, we have:
T(t) = B exp(-λ k t).
Since u(0,t) = 0 and
u(2,t) = 0,
So we have:
X(0) T(t) = 0, X(2) T(t) = 0.
Therefore, the solutions are:
X(x) = B sin(n π x / 2),
λ = n π / 2T(t)
= C exp(-n² π² k t / 4)u(x,t)
= Σ Bₙ sin(n π x / 2) exp(-n² π² k t / 4).
To know more on Variables visit:
https://brainly.com/question/15078630
#SPJ11
Consider the sequence defined by xo = 1,21 = 3 and n = 2xn-1 Xn-2 for any n ≥ 2. Prove that In = 2n + 1 for all n ≥ 0. (Hint: You need to use strong induction, and you need to check both n = 0 and n = 1 for the base case.)
The sequence In = 2n + 1 for all n ≥ 0.
What is the formula for the sequence In?To prove that In = 2n + 1 for all n ≥ 0, we will use strong induction.
Base case:
For n = 0, I0 = 2(0) + 1 = 1, which matches the initial condition x0 = 1.
For n = 1, I1 = 2(1) + 1 = 3, which matches the given value x1 = 3.
Inductive step:
Assume that for some k ≥ 1, Ik = 2k + 1 is true for all values of n up to k.
We need to show that Ik+1 = 2(k+1) + 1 is also true.
From the given definition, Ik+1 = 2(Ik) - Ik-1.
Substituting the assumed values, we have Ik+1 = 2(2k + 1) - (2(k-1) + 1).
Simplifying, Ik+1 = 4k + 2 - 2k + 2 - 1.
Combining like terms, Ik+1 = 2k + 3.
This matches the form 2(k+1) + 1, confirming the formula for Ik+1.
By the principle of strong induction, the formula In = 2n + 1 holds for all n ≥ 0.
Learn more about mathematical induction
brainly.com/question/29503103
#SPJ11
Samsoon, who weighs 64 kg, started a diet limiting her daily caloric intake to 1800 kcal. Samsoon has a basal metabolic rate of 1200 kcal and consumes 15 kcal of energy per 1 kg per day. It is said that 1 kg of fat is converted into 9000 kcal of energy.
a) Assuming that Samsoon's weight is y(t) after t days starting the diet. Find the differential equation that satisfies y(t) and find the solution.
(b) How many days later will Sam Soon' s weight become less than 58 kg? What would happen to Sam Soon' s weight if she continued on the diet?
Sam Soon's weight will become less than 58 kg after 37.33 days. If she continued on the diet, her weight would continue to reduce, but at a decreasing rate.
a) Assuming that Samsoon's weight is y(t) after t days starting the diet, then the differential equation that satisfies y(t) can be given by; The weight lost per day (d y(t) / d t) is proportional to the current weight (y(t)).
That is, the rate of weight loss is proportional to the weight of the person at the time. Mathematically, it can be expressed as;d y(t) / d t = - k * y(t), where k is the constant of proportionality.
To find the value of k, the following information is used; Samsoon has a basal metabolic rate of 1200 kcal and consumes 15 kcal of energy per 1 kg per day. It is said that 1 kg of fat is converted into 9000 kcal of energy.If Samsoon consumes 1800 kcal daily, then the difference between the amount of energy she consumes and the amount of energy her body requires to maintain her basal metabolic rate is;1800 - 1200 = 600 kcal.
Using the fact that 1 kg of fat is converted into 9000 kcal of energy, the amount of fat that Samsoon burns daily can be expressed as;f = 600 / 9000 = 0.0667 kg/day The weight lost per day (d y(t) / d t) can be expressed as the product of the rate of fat burn per day (f) and the weight of Samsoon (y(t)). That is;d y(t) / d t = - f * y(t) = - 0.0667 * y(t)
Thus, the differential equation that satisfies y(t) can be expressed as;d y(t) / d t = - 0.0667 * y(t)The solution of the differential equation is;y(t) = y(0) * e^(-0.0667 * t)b) To find the number of days later that Sam Soon's weight becomes less than 58 kg, the equation above is set to 58 kg. That is;58 = 64 * e^(-0.0667 * t)ln(58/64) = -0.0667tln(58/64) / -0.0667 = t= 37.33 days
To know more about differential equation visit:
https://brainly.com/question/25731911
#SPJ11
(a)Samsoon's weight is denoted by y(t) after t days starting the diet.The differential equation that satisfies y(t) can be calculated by using the given information;Basal metabolic rate = 1200 kcal
Consumes 15 kcal of energy per 1 kg per day
Thus,Total calories consumed by Samsoon per day = Basal metabolic rate + Calories consumed per kg per day * Weight
= 1200 kcal + 15 kcal/kg/day * 64 kg
= 1200 + 960
= 2160 kcal/day
The amount of energy converted by 1 kg of fat = 9000 kcal/day
Thus, the total weight loss per day can be calculated as follows:difference in calories per day / calories converted by 1 kg fat
= (2160 - 1800) / 9000
= 0.004 kg per day
Thus, the differential equation that satisfies y(t) is dy/dt = -0.004 y
The solution can be obtained by using the method of separation of variables;dy/dt = -0.004
ydy/y = -0.004 dt
Integrating both sides, we get;
ln|y| = -0.004 t + C
Where C is a constant obtained by applying the initial condition y(0) = 64 kg.Using this initial condition;
ln|y| = -0.004 t + ln|64|ln|y|
= ln|64| - 0.004 t|y|
= 64 e^(-0.004 t)(b)
Sam Soon' s weight will become less than 58 kg when;64 e^(-0.004 t) < 58e^(-0.004 t) < 58 / 64e^(-0.004 t) < 0.90625t > (ln 0.90625) / (-0.004)t > 67.02
Thus, it will take more than 67 days for Sam Soon's weight to become less than 58 kg.If Sam Soon continues on the diet, her weight will continue to decrease as per the differential equation obtained in part (a) and will never become less than 0 kg.
However, it is important to note that there is a limit to the amount of weight that a person can lose safely, and a drastic reduction in calorie intake can have adverse effects on health.
To know more about metabolic rate visit:
https://brainly.com/question/32284485
#SPJ11
Salaries of 48 college graduates who took a statistics course in college have a mean, x, of $66,800. Assuming a standard deviation, o, of $15,394, construct a 90% confidence interval for estimating the population mean
The 90% confidence interval for estimating the population mean is $62,521.16 to $71,078.84.
We have been given that the salaries of 48 college graduates who took a statistics course in college have a mean x of $66,800 and a standard deviation o of $15,394, and we need to construct a 90% confidence interval for estimating the population mean.
We have to find the z-value for 90% confidence interval. Since it is a two-tailed test, we will divide the alpha level by 2.
The area in each tail is given by:
1 - 0.90 = 0.10/2
= 0.05
The z-value for 0.05 is 1.645 (from standard normal distribution table).
Now, we can use the formula: `CI = x ± z(σ/√n)` where CI is the confidence interval, x is the sample mean, z is the z-value for the desired confidence level, σ is the population standard deviation and n is the sample size.
Substituting the values, we get:
CI = $66,800 ± 1.645($15,394/√48)CI
= $66,800 ± $4,278.84
Therefore, the 90% confidence interval for estimating the population mean is $62,521.16 to $71,078.84.
To learn more about salaries visit;
https://brainly.com/question/29105365
#SPJ11
When Mr. Smith cashed a check at his bank, the teller mistook the number of cents for the number of dollars and vice versa. Unaware of this, Mr. Smith spent 68 cents and then noticed to his surprise that he had twice the amount of the original check. Determine the smallest value for which the check could have been written. [Hint: If x denotes the number of dollars and y the number of cents in the check, then 100y + x 68 = 2(100x + y).]
The smallest value for which the check could have been written is $34.68.
To solve this problem, let's follow the given hint and set up an equation based on the information provided. Let x be the number of dollars and y be the number of cents in the check. According to the problem, we have the equation 100y + x = 2(100x + y) - 68.
Expanding the equation, we get 100y + x = 200x + 2y - 68.
Rearranging the terms, we have 198x - 98y = 68.
To find the smallest value, we can start by assigning values to x and solving for y. We find that when x = 34, y = 68. Therefore, the smallest value for which the check could have been written is $34.68.
To learn more about check click here:
brainly.com/question/2734173
#SPJ11