Answer:
-7, -4, 3
Step-by-step explanation:
Tn = 2n² - 3n - 6
T1= 2*1²- 3*1- 6= 2- 9= - 7T2= 2*2²- 3*2- 6= 8- 12= - 4T3= 2*3²- 3*3- 6= 18- 15= 3For the diagram shown, which pairs of angles are vertical angles? Select all that apply. Angle1 and Angle3 Angle2 and Angle4 Angle2 and Angle3 Angle5 and Angle7 Angle5 and Angle8 Angle8 and Angle6
Answer:
2 & 4
1 & 3
5 & 7
8 & 6
Vertical angles are formed in a set of intersecting lines. They are two differrent angles that are opposite of eachother but have the same angle.
Angle pairs that are vertical angles in the diagram shown when a transversal intersects two parallel lines are:
<1 and <3
<2 and <4
<5 and <7; and
<8 and <6
Recall:
Angles that are regarded as pairs of vertical angles share the same vertex and are directly opposite each other at the point of intersection of two straight lines.
From the image given,<1 and <3 are directly opposite each other and share same vertex.
<1 and <3 are therefore are a pair of angles that are vertical angles.
In the same vein, the following pairs:<2 and <4; <5 and <7; and <8 and <6 are all directly opposite each other. They are vertical angles pair.
Therefore, angle pairs that are vertical angles in the diagram shown when a transversal intersects two parallel lines are:
<1 and <3
<2 and <4
<5 and <7; and
<8 and <6
Learn more here:
https://brainly.com/question/2889556
Suppose the lengths of the pregnancies of a certain animal are approximately normally distributed with mean mu equals 247 days and standard deviation sigma equals 16 days. Complete parts (a) through (f) below.
Answer:
The answer is given below
Step-by-step explanation:
a) What is the probability that a randomly selected pregnancy lasts less than 242 days
First we have to calculate the z score. The z score is used to determine the measure of standard deviation by which the raw score is above or below the mean. It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Given that Mean (μ) = 247 and standard deviation (σ) = 16 days. For x < 242 days,
[tex]z=\frac{x-\mu}{\sigma}=\frac{242-247}{16}=-0.31[/tex]
From the normal distribution table, P(x < 242) = P(z < -0.3125) = 0.3783
(b) Suppose a random sample of 17 pregnancies is obtained. Describe the sampling distribution of the sample mean length of pregnancies.
If a sample of 17 pregnancies is obtained, the new mean [tex]\mu_x=\mu=247,[/tex] the new standard deviation: [tex]\sigma_x=\sigma/\sqrt{n} =16/\sqrt{17} =3.88[/tex]
c) What is the probability that a random sample of 17 pregnancies has a mean gestation period of 242 days or less
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} }=\frac{242-247}{16/\sqrt{17} }=-1.29[/tex]
From the normal distribution table, P(x < 242) = P(z < -1.29) = 0.0985
d) What is the probability that a random sample of 49 pregnancies has a mean gestation period of 242 days or less?
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} }=\frac{242-247}{16/\sqrt{49} }=-2.19[/tex]
From the normal distribution table, P(x < 242) = P(z < -2.19) = 0.0143
(e) What might you conclude if a random sample of 49 pregnancies resulted in a mean gestation period of 242 days or less?
It would be unusual if it came from mean of 247 days
f) What is the probability a random sample of size 2020 will have a mean gestation period within 11 days of the mean
For x = 236 days
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} }=\frac{236-247}{16/\sqrt{20} }=-3.07[/tex]
For x = 258 days
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} }=\frac{258-247}{16/\sqrt{20} }=3.07[/tex]
From the normal distribution table, P(236 < x < 258) = P(-3.07 < z < 3.07) = P(z < 3.07) - P(z < -3.07) =0.9985 - 0.0011 = 0.9939
write the monomial in standard form. name it's coefficient and identify its degree.
2/3m^2 n *4.5n^3
Answer:
[tex]Standard\ Form = {3n^2} m^{-2}[/tex]
Step-by-step explanation:
Given
[tex]\frac{2}{3m^2n} * 4.5n^3[/tex]
Required
Write in Standard Form
To start with; the two monomials have to be multiplied together;
[tex]\frac{2}{3m^2n} * 4.5n^3[/tex]
[tex]Standard\ Form = \frac{2 * 4.5n^3}{3m^2n}[/tex]
Split the numerator and the denominator
[tex]Standard\ Form = \frac{2 * 4.5 * n^3}{3 * m^2 * n}[/tex]
Multiply Like terms
[tex]Standard\ Form = \frac{9 * n^3}{3 * m^2 * n}[/tex]
Divide 9 by 3 to give 3
[tex]Standard\ Form = \frac{3 * n^3}{m^2 * n}[/tex]
Divide n³ by n to n²
[tex]Standard\ Form = \frac{3 * n^2}{m^2 }[/tex]
Split fraction
[tex]Standard\ Form = {3 * n^2} * \frac{1}{m^2 }[/tex]
From laws of indices;
[tex]\frac{1}{a^n} = a^{-n}[/tex]
[tex]Standard\ Form = {3 * n^2} * \frac{1}{m^2 }[/tex] becomes
[tex]Standard\ Form = {3 * n^2} * m^{-2}[/tex]
Multiply all together
[tex]Standard\ Form = {3n^2} m^{-2}[/tex]
Which of the following can be represented by the inequality below? 69h + 126 > 540 A. Yvonne is driving more than 540 miles on a trip. She has already driven 126 miles and drives 69 miles each hour. B. Yvonne is driving less than 540 miles on a trip. She has already driven 126 miles and drives 69 miles each hour. C. Yvonne is driving less than 126 miles on a trip. She has already driven 69 miles and drives 540 miles each hour. D. Yvonne is driving more than 540 miles on a trip. She has already driven 69 miles and drives 126 miles each hour.
Answer:
The answer is A.
Step-by-step explanation:
The inequality states that the amount that Yvonne drives is more than 540 miles. Since h represents the number of hours, we know that 69 probably means the number of miles Yvonne can drive per hour. Finally, 126 shows the amount of miles that Yvonne has already driven.
A company rounds its losses to the nearest dollar. The error on each loss is independently and uniformly distributed on [–0.5, 0.5]. If the company rounds 2000 such claims, find the 95th percentile for the sum of the rounding errors.
Answer:
the 95th percentile for the sum of the rounding errors is 21.236
Step-by-step explanation:
Let consider X to be the rounding errors
Then; [tex]X \sim U (a,b)[/tex]
where;
a = -0.5 and b = 0.5
Also;
Since The error on each loss is independently and uniformly distributed
Then;
[tex]\sum X _1 \sim N ( n \mu , n \sigma^2)[/tex]
where;
n = 2000
Mean [tex]\mu = \dfrac{a+b}{2}[/tex]
[tex]\mu = \dfrac{-0.5+0.5}{2}[/tex]
[tex]\mu =0[/tex]
[tex]\sigma^2 = \dfrac{(b-a)^2}{12}[/tex]
[tex]\sigma^2 = \dfrac{(0.5-(-0.5))^2}{12}[/tex]
[tex]\sigma^2 = \dfrac{(0.5+0.5)^2}{12}[/tex]
[tex]\sigma^2 = \dfrac{(1.0)^2}{12}[/tex]
[tex]\sigma^2 = \dfrac{1}{12}[/tex]
Recall:
[tex]\sum X _1 \sim N ( n \mu , n \sigma^2)[/tex]
[tex]n\mu = 2000 \times 0 = 0[/tex]
[tex]n \sigma^2 = 2000 \times \dfrac{1}{12} = \dfrac{2000}{12}[/tex]
For 95th percentile or below
[tex]P(\overline X < 95}) = P(\dfrac{\overline X - \mu }{\sqrt{{n \sigma^2}}}< \dfrac{P_{95}- 0 } {\sqrt{\dfrac{2000}{12}}}) =0.95[/tex]
[tex]P(Z< \dfrac{P_{95} } {\sqrt{\dfrac{2000}{12}}}) = 0.95[/tex]
[tex]P(Z< \dfrac{P_{95}\sqrt{12} } {\sqrt{{2000}}}) = 0.95[/tex]
[tex]\dfrac{P_{95}\sqrt{12} } {\sqrt{{2000}}} =1- 0.95[/tex]
[tex]\dfrac{P_{95}\sqrt{12} } {\sqrt{{2000}}} = 0.05[/tex]
From Normal table; Z > 1.645 = 0.05
[tex]\dfrac{P_{95}\sqrt{12} } {\sqrt{{2000}}} =1.645[/tex]
[tex]{P_{95}\sqrt{12} } = 1.645 \times {\sqrt{{2000}}}[/tex]
[tex]{P_{95} = \dfrac{1.645 \times {\sqrt{{2000}}} }{\sqrt{12} } }[/tex]
[tex]\mathbf{P_{95} = 21.236}[/tex]
the 95th percentile for the sum of the rounding errors is 21.236
A machine in a shoe factory produces shoelaces. The number of shoelaces it produces is proportional to the time. It car
produce twelve shoelaces in three minutes. Write an equation to represent this proportional relationship. In your
answer, make sure to define the variables you used.
Answer:
s = 4t
Step-by-step explanation:
Let number of shoelace produced be S and time taken to produce then be T
If the number of shoelaces it produces is proportional to the time, this can be expressed using a direct relationship as:
S∝T
S = kT where
k is the proportionality constant
If 12 laces of shoes can be produced in 3 minutes, then S = 12 and T = 3
The relationship above on substitution becomes
12 = 3k
k = 12/3
k = 4
If the proportionality constant is 4, then the equation representing the relationship will be:
s = 4t
please mark me brainliest!
Answer: y = 4x (y = shoelaces & x = minutes)
Step-by-step explanation: We know that 12 shoelaces are produced in 3 minutes and that the ratio of shoelaces produced to minutes spent is proportional. We can figure out, therefore, that if you multiply the number of minutes by 4, you will get the number of shoelaces. As an equation, this would be y = 4x (y = shoelaces & x = minutes).
17. The length of a swing is 2.1 m. If the length
of the arc that is made by the swing
4.4 m, calculate the angle swept by the
swing
Answer:
dose it tell you want angle the arc is at?
Step-by-step explanation:
ASAP! A boat travelling at top speed upstream moves at 15km/hr. When it travels downstream, again at top speed< it moves at 25km/hr. What is the boat's top speed in still water?
Answer: 20km/h
Step-by-step explanation:
20km/h. Simply average 15 and 25 by doing (15+25)/2
Hope it helps <3
I do not understand this/ help me answer these
Answer:
-6b -6c3w -122x -246 + 3r8y - 16xStep-by-step explanation:
Please answer this question in two minutes
Answer:
work is shown and pictured
Mrs. Brown has 11 more boys than girls in her class and has a total of 28 students. Which of the following systems of equations could be used to solve this problem?
Answer:
g=number of girls in the class b=number of boy in the class
g+b=28
g=11+b
factorise this expression as fully as possible 2x^2+6x
Answer:
(Factor out 2x from the expression)
2x (x +3)
The play director spent 190190190190 hours preparing for a play. That time included attending 35353535 rehearsals that took varying amounts of time and spending 933493 \dfrac{3}{4}934393, start fraction, 3, divided by, 4, end fraction hours on other responsibilities related to the play. What question does the equation 35x+9334=19035x+93\dfrac{3}{4}=19035x+9343=19035, x, plus, 93, start fraction, 3, divided by, 4, end fraction, equals, 190 help answer?
Answer:
The equation above represents the total time the play director spent preparing for a play.
Step-by-step explanation:
The time spent by the play director for preparing for a play is, 190 hours.
Of these 190 hours, the director spent varying amounts of time attending 35 rehearsals for the play.
Let the varying amounts of time be denoted by, x.
The director also spent 3/4th of an hour, i.e. 45 minutes, on other responsibilities related to the play.
The equation provided is:
[tex]35x+\frac{3}{4}=190[/tex]
The equation above represents the total time the play director spent preparing for a play.
Avery wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 3.2% and the other bank is offering a rate of 3% compounded annually. If Avery decides to deposit $7,000 for 5 years, which bank would be the better deal? 1. a simple interest rate of 3.2% 2. a compound interest rate of 3%
Answer: a simple interest rate of 3.2% will be the better deal.
Step-by-step explanation:
Hi, to answer this question we have to apply the compounded interest formula:
A = P (1 + r/n) nt
Where:
A = Future value of investment (principal + interest)
P = Principal Amount
r = Nominal Interest Rate (decimal form, 3/100= 0.03)
n= number of compounding periods in each year (1)
Replacing with the values given
A = 7000 (1+0.03/1)^(1x5)
A = 7000( 1.03)^5 = $8,114.92
For simple interest:
I = p x r x t
Where:
I = interest
Replacing with the values given:
I = 7000 x (3.2/100) x 5 = $1,120
Adding the principal amount: 7000+1120 = $8,120
Since 8,120 (simple) >8,114.92(compound)
a simple interest rate of 3.2% will be the better deal.
Simple and easy question
please help
Answer:
Volume of a sphere = 4/3πr³
π = 3.14
r = radius which is 3in
Volume = 4/3 × 3.14 × 3²
= 37.68
= 38 cubic inches to the nearest hundredth
Hope this helps
Answer:
38 cubic inches
Step-by-step explanation:
Through any 2 points there is exaclty_____line.
Answer:
One
Step-by-step explanation:
Through any 2 points, there is exactly one line.
Answer:
ONE
Step-by-step explanation:
Through any 2 points there is exaclty ONE line.
What is the range? Explain
Answer:
Range = [5, ∞)
Step-by-step explanation:
The initial number of snakes is 5 and it is increasing at a high rate so the maximum number is infinite. The population is increasing exponentially according to the equation P = 5(2)^t where t = the number of years.
Solve I=PRT for P if I=312.50, r=25%, and T=0.25
Answer: I = $ 19.53
Step-by-step explanation:
First, converting R percent to r a decimal
r = R/100 = 25%/100 = 0.25 per year,
then, solving our equation
I = 312.5 × 0.25 × 0.25 = 19.53125
I = $ 19.53
The simple interest accumulated
on a principal of $ 312.50
at a rate of 25% per year
for 0.25 years is $ 19.53.
Answer:
P = 5000
You need to multiply r and T together, then divide 312.50 by that.
Find the missing side length
WILL GIVE BRAINLEIST!!!
Answer:
40
Step-by-step explanation:
Once you plot the data, the middle values will be 39 and 41. To calculate the median, you add them up and divide by two, which will result in 40!
Median is the middle value.
Write the numbers out from smallest to largest:
35, 38, 38, 39, 39, 41, 42, 43, 43, 44
There are 10 total numbers, find the middle two:
39 and 41
Add them Together and divide by 2:
39 + 41 = 80
80/2 = 40
Median = 40
y=(x+9)÷(x-3)
Find the value of y when x=5
solution,
X=5
[tex]y = \frac{x + 9}{x - 3} \\ = \frac{5 + 9}{5 - 3} \\ = \frac{14}{2} \\ = 7[/tex]
hope this helps...
Good luck on your assignment..
Answer:
When x=5
Y=(5+9)÷(5-3)
= 14 ÷2
= 7
If you are given the graph of h(x) = log6x, how could you graph M(x) = log6(x+3)?
Answer:
Translate 3 units to the left
Step-by-step explanation:
Triangle ABC is rotated 45° about point X, resulting in triangle EFD. Triangle A B C is rotated 45 degrees about point X to form triangle E F D. The lengths of sides A C and D E are congruent, the lengths of sides A B and E F are congruent, and the lengths of sides D F and C B are congruent. If EF = 4.2 cm, DF = 3.6 cm, and DE = 4.5 cm, what is CB? 3.3 cm 3.6 cm 4.2 cm 4.5 cm
Answer:
CB = 3.6 cm
Step-by-step explanation:
Here, triangle ABC is rotated about point X which results in triangle EFD. Since triangle ABC is rotated it retains its shape and dimensions. This means that triangle ABC is parallel to triangle EFD ie, ABC≈EFD, also both dimensions will be congruent.
Thus
AB = EF
BC = FD
AC = ED
CB = DF
BA = FE
CA = DE
Since length of side DF = length of side CB, and DF = 3.6 cm. Therefore, CB = DF = 3.6 cm
Length of CB = 3.6 cm
Answer: B it's B
Step-by-step explanation: I got it right
I need help please help
Answer:
21u-16v+18w
Step-by-step explanation:
(7u-4v+4w) 14u-12v+14w
21u-16v+18w
Answer:
= 21u−16v+18w
Step-by-step explanation:
Let's simplify step-by-step.
7u−4v+4w−2(−7u+6v−7w)
Distribute:
=7u+−4v+4w+(−2)(−7u)+(−2)(6v)+(−2)(−7w)
=7u+−4v+4w+14u+−12v+14w
Combine Like Terms:
=7u+−4v+4w+14u+−12v+14w
=(7u+14u)+(−4v+−12v)+(4w+14w)
=21u+−16v+18w
Answer:
=21u−16v+18w
How is it that it is (-11/4,-1/2) ?
Answer:
Choice 3
Step-by-step explanation:
A(-5,-1) and B(4, 1)
Distance AB is calculated as x²+y², where x= 4-(-5)=9 and y= 1-(-1)=2
Point P is at 1/4 of distance from point A, so its coordinates will be at 1/4 of full distance from A to B in term of both coordinates:
-5 + 9/4= (-20+9)/4= -11/4-1 +2/4= (-4+2)/4= -2/4= -1/2So P= (-11/4, -1/2) and choice 3
CD=17 AM=5 CD=? I've tried everything but I can't figure it out.
Answer:
We can prove that ΔTMB ≅ ΔTMD and ΔTMA ≅ ΔTMC by ASA. This means that BM = MD = BD / 2 = 8.5 and that AM = CM = 5 which means that CD = MD - CM = 8.5 - 5 = 3.5.
What are the solutions to the quadratic equation below? x^2+34x-72=0
Answer:
( x + 36 ) ( x - 2 ) = 0
Step-by-step explanation:
x^2 + 36x - 2x -72 = 0
x ( x + 36 ) - 2 ( x + 36 ) = 0
( x + 36 ) ( x - 2 ) = 0
find a18 of the arithmetic sequence 2, -5, -12, -19
Answer:
The 18th term of the sequence is -117.
Step-by-step explanation:
The given sequence is 2,-5,-12,-19
From this AP,
First term, a = 2
Common difference, d = -5-2 = -7
It is required to find the 18th term of the sequence. The nth term of an AP is given by :
[tex]a_n=a+(n-a)d\\\\a_{18}=a+17d\\\\a_{18}=2+17\times (-7)\\\\a_{18}=-117[/tex]
So, the 18th term of the sequence is -117.
Anyone know please help!!
Answer:
only the inverse is a function
SNOG HELP OR SOMEONE THANK YOUUUU
Which unit rate is equivalent to 14 miles per gallon?
two gallons over thirty two miles
thirty two miles over two gallons
three gallons over forty two miles
forty two miles over three gallons
Answer:
forty two miles over three gallons
Step-by-step explanation:
2 gallons over 32 miles simplifies to 1 gallon over 16 miles, or 1 gallon per 16 miles. This is not the desired result, so we know the first choice is incorrect.
32 miles over 2 gallons simplifies to 16 miles over 1 gallon, or 16 miles per gallon. Again, this is not the desired result, so we know the second choice is also incorrect.
3 gallons over 42 miles simplifies to 1 gallon over 14 miles, or 1 gallon per 14 miles. While this may look correct, note that 1 gallon per 14 miles and 14 miles per gallon are not the same thing, so we know that the third answer is also incorrect.
By process of elimination, we know that the correct answer must be the last option, but let's still simplify it. 42 miles over 3 gallons simplifies to 14 miles over 1 gallon, or 14 gallons per mile. This is in fact the desired result, so we know that the correct answer is the last option. Hope this helps!