Find the average value f ave of the function f on the given interval.
f(x) = √x, [0, 16]
fave

Answers

Answer 1

The average value fave of the function f on the interval [0, 16] is 8/3.

Given function is f(x) = √x, [0, 16].

We need to find the average value of the function f on the given interval [0, 16].

Formula to find average value is f ave = (1 / b - a) ∫a bf(x) dx

Where a and b are the limits of the integral. ∫a b represents the definite integral of f(x) on the interval [a, b].

By substituting the given values in the formula, we get f ave = (1 / 16 - 0) ∫0 16√x dx= (1 / 16) [2/3 x^3/2] from 0 to 16= (1 / 16) [2/3 (16)^3/2 - 0]= (1 / 16) [2/3 (64) - 0]= (1 / 16) [128 / 3]= 8 / 3

Hence, the average value f ave of the function f on the interval [0, 16] is 8/3.

To know more about average value visit:

brainly.com/question/32538188

#SPJ11


Related Questions

There are 1,094,755 active lawyers living in the country. If 71.6 % of these lawyers are male, find (a) the percent of the lawyers who are female and (b) the number of lawyers who are female.

Answers

(a) The percent of lawyers who are female is 100% - 71.6% = 28.4%.

(b) The number of lawyers who are female is 0.284 * 1,094,755 = 311,304.

(a) To find the percent of lawyers who are female, we subtract the percent of male lawyers (71.6%) from 100%. Therefore, the percent of lawyers who are female is 100% - 71.6% = 28.4%.

(b) To find the number of lawyers who are female, we multiply the percent of female lawyers (28.4%) by the total number of lawyers (1,094,755). Therefore, the number of lawyers who are female is 0.284 * 1,094,755 = 311,304.

The percent of lawyers who are female is 28.4%, and the number of lawyers who are female is 311,304.

To know more about lawyers, visit

https://brainly.com/question/12688444

#SPJ11

ement of the progress bar may be uneven because questions can be worth more or less (including zero ) depending on your answer. Find the equation of the line that contains the point (4,-2) and is perp

Answers

The equation of the line perpendicular to y = -2x + 8 and passing through the point (4, -2) is y = (1/2)x - 4.

To find the equation of a line perpendicular to another line, we need to determine the slope of the original line and then find the negative reciprocal of that slope.

The given line is y = -2x + 8, which can be written in the form y = mx + b, where m is the slope. In this case, the slope of the given line is -2.

The negative reciprocal of -2 is 1/2, so the slope of the line perpendicular to the given line is 1/2.

We are given a point (4, -2) that lies on the line we want to find. We can use the point-slope form of a line to find the equation.

The point-slope form of a line is: y - y1 = m(x - x1), where (x1, y1) is a point on the line and m is the slope.

Plugging in the values, we have:

y - (-2) = (1/2)(x - 4)

Simplifying:

y + 2 = (1/2)x - 2

Subtracting 2 from both sides:

y = (1/2)x - 4

Therefore, the equation of the line that contains the point (4, -2) and is perpendicular to the line y = -2x + 8 is y = (1/2)x - 4.

Complete Question: ement of the progress bar may be uneven because questions can be worth more or less (including zero ) depending on your answer. Find the equation of the line that contains the point (4,-2) and is perpendicular to the line y=-2x+8 y=(1)/(-x-4)

Read more about Equation of the line here: https://brainly.com/question/28063031

#SPJ11

Let the joint pdf (probability density function) of two random variables X and Y be given as f(x,y)={ e −(x+y)
0

if x>0 and y>0
otherwise. ​
(a) Why is this a valid probability density function? (b) Are X and Y independent?

Answers

We can say that the two random variables X and Y are not independent.

a) The given joint PDF is a valid probability density function for two random variables X and Y since;

The given function satisfies the condition that the joint PDF of the two random variables must be non-negative for all possible values of X and Y

The integral of the joint PDF over the region in which the two random variables are defined must be equal to one. In this case, it is given as follows:

∫∫f(x,y)dxdy=∫∫e−(x+y)dxdy

Here, we are integrating over the region where x and y are greater than zero. This can be rewritten as:∫0∞∫0∞e−(x+y)dxdy=∫0∞e−xdx.

∫0∞e−ydy=(−e−x∣∣0∞).(−e−y∣∣0∞)=(1).(1)=1

Thus, the given joint PDF is a valid probability density function.

b) The two random variables X and Y are independent if and only if the joint PDF is equal to the product of the individual PDFs of X and Y. Let us calculate the individual PDFs of X and Y:

FX(x)=∫0∞f(x,y)dy

=∫0∞e−(x+y)dy

=e−x.(−e−y∣∣0∞)

=e−x

FY(y)

=∫0∞f(x,y)dx

=∫0∞e−(x+y)dx

=e−y.(−e−x∣∣0∞)

=e−y

Since the joint PDF of X and Y is not equal to the product of the individual PDFs of X and Y, we can conclude that X and Y are not independent.

Therefore, we can say that the two random variables X and Y are not independent.

To know more about independent, visit:

https://brainly.com/question/27765350

#SPJ11

Practice Which fractions have a decimal equivalent that is a repeating decimal? Select all that apply. (13)/(65) (141)/(47) (11)/(12) (19)/(3)

Answers

The fractions that have decimal equivalents that are repeating decimals are (11)/(12) and (19)/(3).

To determine which fractions have a decimal equivalent that is a repeating decimal, we need to convert each fraction into decimal form and observe the resulting decimal representation. Let's analyze each fraction given:

1. (13)/(65):

To convert this fraction into a decimal, we divide 13 by 65: 13 ÷ 65 = 0.2. Since the decimal terminates after one digit, it does not repeat. Thus, (13)/(65) does not have a repeating decimal equivalent.

2. (141)/(47):

To convert this fraction into a decimal, we divide 141 by 47: 141 ÷ 47 = 3. This decimal does not repeat; it terminates after one digit. Therefore, (141)/(47) does not have a repeating decimal equivalent.

3. (11)/(12):

To convert this fraction into a decimal, we divide 11 by 12: 11 ÷ 12 = 0.916666... Here, the decimal representation contains a repeating block of digits, denoted by the ellipsis (...). The digit 6 repeats indefinitely. Hence, (11)/(12) has a decimal equivalent that is a repeating decimal.

4. (19)/(3):

To convert this fraction into a decimal, we divide 19 by 3: 19 ÷ 3 = 6.333333... The decimal representation of (19)/(3) also contains a repeating block, with the digit 3 repeating indefinitely. Therefore, (19)/(3) has a decimal equivalent that is a repeating decimal.

Learn more about fractions at: brainly.com/question/10354322

#SPJ11

In order to be accepted into a prestigious Musical Academy, applicants must score within the top 4% on the musical audition. Given that this test has a mean of 1,200 and a standard deviation of 260 , what is the lowest possible score a student needs to qualify for acceptance into the prestigious Musical Academy? The lowest possible score is:

Answers

The lowest possible score a student needs to qualify for acceptance into the prestigious Musical Academy is 1730.

We can use the standard normal distribution to find the lowest possible score a student needs to qualify for acceptance into the prestigious Musical Academy.

First, we need to find the z-score corresponding to the top 4% of scores. Since the normal distribution is symmetric, we know that the bottom 96% of scores will have a z-score less than some negative value, and the top 4% of scores will have a z-score greater than some positive value. Using a standard normal distribution table or calculator, we can find that the z-score corresponding to the top 4% of scores is approximately 1.75.

Next, we can use the formula for converting a raw score (x) to a z-score (z):

z = (x - μ) / σ

where μ is the mean and σ is the standard deviation. Solving for x, we get:

x = z * σ + μ

x = 1.75 * 260 + 1200

x ≈ 1730

Therefore, the lowest possible score a student needs to qualify for acceptance into the prestigious Musical Academy is 1730.

Learn more about qualify from

https://brainly.com/question/27894163

#SPJ11

Use quadratic regression to find the equation of a quadratic function that fits the given points. X 0 1 2 3 y 6. 1 71. 2 125. 9 89. 4.

Answers

The equation of the quadratic function that fits the given points is y = -5.2x² + 70.3x + 6.1.

The given table is

x       y

0     6.1

1      71.2

2     125.9

3     89.4

Using a quadratic regression to fit the points in the given data set, we can determine the equation of the quadratic function.

To solve the problem, we will need to set up a system of equations and solve for the parameters of the quadratic function. Let a, b, and c represent the parameters of the quadratic function (in the form y = ax² + bx + c).

For the given data points, we can set up the following three equations:

6.1 = a(0²) + b(0) + c

71.2 = a(1²) + b(1) + c

125.9 = a(2²) + b(2) + c

We can then solve the equations simultaneously to find the three parameters a, b, and c.

The first equation can be written as c = 6.1.

Substituting this value for c into the second equation, we get 71.2 = a + b + 6.1. Then, subtracting 6.1 from both sides yields a + b = 65.1 -----(i)

Next, substituting c = 6.1 into the third equation, we get 125.9 = 4a + 2b + 6.1. Then, subtracting 6.1 from both sides yields 4a + 2b = 119.8  -----(ii)

From equation (i), a=65.1-b

Substitute a=65.1-b in equation (ii), we get

4(65.1-b)+2b = 119.8

260.4-4b+2b=119.8

260.4-119.8=2b

140.6=2b

b=140.6/2

b=70.3

Substitute b=70.3 in equation (i), we get

a+70.3=65.1

a=65.1-70.3

a=-5.2

We can now substitute the values for a, b, and c into the equation of a quadratic function to find the equation that fits the given data points:

y = -5.2x² + 70.3x + 6.1

Therefore, the equation of the quadratic function that fits the given points is y = -5.2x² + 70.3x + 6.1.

Learn more about the quadratic function here:

https://brainly.com/question/18958913.

#SPJ4

An
autonomous first-order differential equation can be solved using
the guide to separable equations.
True or False

Answers

False. Autonomous first-order differential equations can be solved using various methods, but the "guide to separable equations" is not specific to autonomous equations.

Separable equations are a specific type of differential equation where the variables can be separated on opposite sides of the equation. Autonomous equations, on the other hand, are differential equations where the independent variable does not explicitly appear. They involve the derivative of the dependent variable with respect to itself. The solution methods for autonomous equations may include separation of variables, integrating factors, or using specific techniques based on the characteristics of the equation.

Learn more about differential equations here :-

https://brainly.com/question/32645495

#SPJ11

F1-5 Roll two 4 sided dice with the numbers 1 through 4 on each die, the value of the roll is the number on the side facing downward. Assume equally likely outcomes. Find: - P{ sum is at least 5} - P{ first die is 2} - P{ sum is at least 5∣ first die is 2}

Answers

P{sum is at least 5 | first die is 2} = 2/4 = 0.5, The probability of finding the sum to be at least 5 is 0.5, the probability of finding that the first die is 2 is 0.25, and the probability of finding the sum to be at least 5 when the first die is 2 is 0.5.

Two 4-sided dice with the numbers 1 through 4 on each die have been rolled. The probability of finding the sum to be at least 5, finding that the first die is 2, and finding the sum to be at least 5 when the first die is 2 have to be calculated.

Step 1: Find the total number of possible outcomes. Two dice with 4 sides each can have (4 x 4) = 16 possible outcomes.

Step 2: Find the number of outcomes in which the sum is at least 5. We must first list the possible outcomes that meet the criterion of sum being at least 5: (1, 4), (2, 3), (3, 2), (4, 1), (2, 4), (3, 3), (4, 2), and (4, 3)

So, there are 8 outcomes in which the sum is at least 5.

Therefore, P{sum is at least 5} = 8/16 = 0.5

Step 3: Find the number of outcomes in which the first die is 2.

Since each die has 4 sides, there are 4 possible outcomes for the first die to be 2. Hence, the number of outcomes in which the first die is 2 is 4.

Therefore, P{first die is 2} = 4/16 = 0.25

Step 4: Find the number of outcomes in which the sum is at least 5 when the first die is 2.There are only two outcomes where the first die is 2 and the sum is at least 5, namely (2, 3) and (2, 4).

Learn more about probability

https://brainly.com/question/31828911

#SPJ11

Guess A Particular Solution Up To U2+2xuy=2x2 And Then Write The General Solution.

Answers

To guess a particular solution up to the term involving the highest power of u and its derivatives, we assume that the particular solution has the form:

u_p = a(x) + b(x)y

where a(x) and b(x) are functions to be determined.

Substituting this into the given equation:

u^2 + 2xu(dy/dx) = 2x^2

Expanding the terms and collecting like terms:

(a + by)^2 + 2x(a + by)(dy/dx) = 2x^2

Expanding further:

a^2 + 2aby + b^2y^2 + 2ax(dy/dx) + 2bxy(dy/dx) = 2x^2

Comparing coefficients of like terms:

a^2 = 0        (coefficient of 1)

2ab = 0        (coefficient of y)

b^2 = 0        (coefficient of y^2)

2ax + 2bxy = 2x^2        (coefficient of x)

From the equations above, we can see that a = 0, b = 0, and 2ax = 2x^2.

Solving the last equation for a particular solution:

2ax = 2x^2

a = x

Therefore, a particular solution up to u^2 + 2xuy is:

u_p = x

To find the general solution, we need to add the homogeneous solution. The given equation is a first-order linear PDE, so the homogeneous equation is:

2xu(dy/dx) = 0

This equation has the solution u_h = C(x), where C(x) is an arbitrary function of x.

Therefore, the general solution to the given PDE is:

u = u_p + u_h = x + C(x)

where C(x) is an arbitrary function of x.

Learn more about arbitrary function here:

https://brainly.com/question/33159621

#SPJ11

Find the slope of the line that passes through Point A(-2,0) and Point B(0,6)

Answers

The slope of a line measures the steepness of the line relative to the horizontal line. It is calculated using the slope formula, which is a ratio of the vertical and horizontal distance traveled between two points on the line.

To find the slope of the line that passes through point A(-2,0) and point B(0,6), you can use the slope formula:\text{slope} = \frac{\text{rise}}{\text{run}} where the rise is the vertical change and the run is the horizontal change between two points.In this case, the rise is 6 - 0 = 6, and the run is 0 - (-2) = 2. So, the slope is:\text{slope} = \frac{6 - 0}{0 - (-2)} = \frac{6}{2} = 3.

Therefore, the slope of the line that passes through point A(-2,0) and point B(0,6) is 3.In coordinate geometry, the slope of a line is a measure of how steep the line is relative to the horizontal line. The slope is a ratio of the vertical and horizontal distance traveled between two points on the line. The slope formula is used to calculate the slope of a line.

The slope formula is a basic algebraic equation that can be used to find the slope of a line. It is given by:\text{slope} = \frac{\text{rise}}{\text{run}} where the rise is the vertical change and the run is the horizontal change between two points.The slope of a line is positive if it goes up and to the right, and negative if it goes down and to the right.

The slope of a horizontal line is zero, while the slope of a vertical line is undefined. A line with a slope of zero is a horizontal line, while a line with an undefined slope is a vertical line.

To know more about slope visit :

https://brainly.com/question/28869523

#SPJ11

Consider the following set of 3 records. Each record has a feature x and a label y that is either R (red) or B (blue):
The three (x,y) records are (-1,R), (0,B), (1,R)
Is this dataset linearly separable?
A.No
B.Yes

Answers

No, the dataset is not linearly separable based on analyzing the given data.

To determine if the dataset is linearly separable, we can examine the given set of records and their corresponding labels:

Step 1: Plot the points on a graph. Assign 'x' to the x-axis and 'y' to the y-axis. Use different colors (red and blue) to represent the labels.

Step 2: Connect the points of the same label with a line or curve. In this case, connect the red points with a line.

Step 3: Evaluate whether a line or curve can be drawn to separate the two classes (red and blue) without any misclassification. In other words, check if it is possible to draw a line that completely separates the red points from the blue points.

In this dataset, when we plot the given points (-1,R), (0,B), and (1,R), we can observe that no straight line or curve can be drawn to completely separate the red and blue points without any overlap or misclassification. The red points are not linearly separable from the blue point.

Based on the above analysis, we can conclude that the given dataset is not linearly separable.

To know more about dataset, visit:

https://brainly.com/question/32543766

#SPJ11

Show whether the following relation R is reflexive, symmetric, or transitive. Let A be the relation defined on the set R as follows: For all x,y∈R, xAy⇔xy≥0.

Answers

(a) The relation A is reflexive.

Reflexive: A relation R on a set A is reflexive if for all a∈A, (a,a)∈R. In this case, we have xAx ⇔ xx ≥ 0. Since any real number squared is non-negative, we have xx ≥ 0 for all x∈R, which means that xAx is true for all x∈R. Therefore, the relation A is reflexive.

(b) Symmetric: A relation R on a set A is symmetric if for all a,b∈A, if (a,b)∈R, then (b,a)∈R. In this case, if xAy, then we have xy ≥ 0. The question is whether this implies that yAx, or equivalently, yx ≥ 0. This is not necessarily true, since the product of two negative numbers is positive. For example, if x = -1 and y = -2, then xy = 2, which is positive, but yx = -2, which is negative. Therefore, the relation A is not symmetric.

(c) Transitive: A relation R on a set A is transitive if for all a,b,c∈A, if (a,b)∈R and (b,c)∈R, then (a,c)∈R. In this case, if xAy and yAz, then we have xy ≥ 0 and yz ≥ 0. We need to show that this implies x*z ≥ 0. This is true, since the product of two non-negative numbers is non-negative. Therefore, the relation A is transitive.

In summary, the relation A is reflexive and transitive, but not symmetric.

Learn more about "Reflexive" : https://brainly.com/question/15828363

#SPJ11

The four cylinder Continental A-65 has a total piston
displacement of 170.96 cubic inches and a bore of 3 7/8". What is
the stroke?

Answers

The stroke of the four-cylinder Continental A-65 engine is approximately 167.085 inches.

The stroke of an engine refers to the distance that the piston travels inside the cylinder from top dead center (TDC) to bottom dead center (BDC). To calculate the stroke, we need to subtract the bore diameter from the piston displacement.

Given that the bore diameter is 3 7/8 inches, we can convert it to a decimal form:

3 7/8 inches = 3 + 7/8 = 3.875 inches

Now, we can calculate the stroke:

Stroke = Piston displacement - Bore diameter

Stroke = 170.96 cubic inches - 3.875 inches

Stroke ≈ 167.085 inches

Therefore, the stroke of the four-cylinder Continental A-65 engine is approximately 167.085 inches.

In an internal combustion engine, the stroke plays a crucial role in determining the engine's performance characteristics. The stroke length affects the engine's displacement, compression ratio, and power output. It is the distance the piston travels along the cylinder, and it determines the swept volume of the cylinder.

In the given scenario, we are provided with the total piston displacement, which is the combined displacement of all four cylinders. The bore diameter represents the diameter of each cylinder. By subtracting the bore diameter from the piston displacement, we can determine the stroke length.

In this case, the stroke is calculated as 167.085 inches. This measurement represents the travel distance of the piston from TDC to BDC. It is an essential parameter in engine design and affects factors such as engine efficiency, torque, and power output.

Learn more about diameter here:

brainly.com/question/32968193

#SPJ11

The expression (3b ^6 c ^6) ^1 (3b ^3 a ^1 ) ^−2 equals na ^r b ^s c^ t where n, the leading coefficient, is: and r, the exponent of a, is: and s, the exponent of b, is: and finally t, the exponent of c, is:

Answers

The values of n, r, s, and t are 1/3, 4, 12, and 6.

Given expression:

                 (3b^6c^6)^1(3b^3a^-2)^-2

By using the law of exponents,

                  (a^m)^n=a^mn

So,

(3b^6c^6)^1=(3b^6c^6)                      and

(3b^3a^-2)^-2=1/(3b^3a^-2)²

                     =1/9b^6a^4

So, the given expression becomes;

(3b^6c^6)(1/9b^6a^4)

Now, to simplify it we just need to multiply the coefficients and add the like bases;

(3b^6c^6)(1/9b^6a^4)=3/9(a^4)(b^6)(b^6)(c^6)

                                  =1/3(a^4)(b^12)(c^6)

Thus, the leading coefficient, n = 1/3

The exponent of a, r = 4The exponent of b, s = 12The exponent of c, t = 6. Therefore, the values of n, r, s, and t are 1/3, 4, 12, and 6 respectively.

To know more about exponent here:

https://brainly.com/question/30391617

#SPJ11

conduct a test at a level of significance equal to .05 to determine if the observed frequencies in the data follow a binomial distribution

Answers

To determine if the observed frequencies in the data follow a binomial distribution, you can conduct a hypothesis test at a significance level of 0.05. Calculate the chi-squared test statistic by comparing the observed and expected frequencies, and compare it to the critical value from the chi-squared distribution table. If the test statistic is greater than the critical value, you reject the null hypothesis, indicating that the observed frequencies do not follow a binomial distribution. If the test statistic is smaller, you fail to reject the null hypothesis, suggesting that the observed frequencies are consistent with a binomial distribution.

To determine if the observed frequencies in the data follow a binomial distribution, you can conduct a hypothesis test at a significance level of 0.05. Here's how you can do it:

1. State the null and alternative hypotheses:
  - Null hypothesis (H0): The observed frequencies in the data follow a binomial distribution.
  - Alternative hypothesis (Ha): The observed frequencies in the data do not follow a binomial distribution.

2. Calculate the expected frequencies:
  - To compare the observed frequencies with the expected frequencies, you need to calculate the expected frequencies under the assumption that the data follows a binomial distribution. This can be done using the binomial probability formula or a binomial distribution calculator.

3. Choose an appropriate test statistic:
  - In this case, you can use the chi-squared test statistic to compare the observed and expected frequencies. The chi-squared test assesses the difference between observed and expected frequencies in a categorical variable.

4. Calculate the chi-squared test statistic:
  - Calculate the chi-squared test statistic by summing the squared differences between the observed and expected frequencies, divided by the expected frequencies for each category.

5. Determine the critical value:
  - With a significance level of 0.05, you need to find the critical value from the chi-squared distribution table for the appropriate degrees of freedom.

6. Compare the test statistic with the critical value:
  - If the test statistic is greater than the critical value, you reject the null hypothesis. If it is smaller, you fail to reject the null hypothesis.

7. Interpret the result:
  - If the null hypothesis is rejected, it means that the observed frequencies do not follow a binomial distribution. If the null hypothesis is not rejected, it suggests that the observed frequencies are consistent with a binomial distribution.

Learn more about hypothesis testing :

https://brainly.com/question/33445215

#SPJ11


The y intercept in a regression equation is represented by Y
hat.
a. True
b. False

Answers

Option (b) is correct that the y-intercept in a regression equation is not represented by Y hat. Here, we will discuss the concept of the y-intercept, regression equation, and Y hat.

Regression analysis is a statistical tool used to analyze the relationship between two or more variables. It helps us to predict the value of one variable based on another variable's value. A regression line is a straight line that represents the relationship between two variables.

Thus, Y hat is the predicted value of Y. It's calculated using the following formulary.

hat = a + bx

Here, Y hat represents the predicted value of Y for a given value of x. In conclusion, the y-intercept is not represented by Y hat. The y-intercept is represented by the constant term in the regression equation, while Y hat is the predicted value of Y.

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

In supply (and demand) problems, yy is the number of items the supplier will produce (or the public will buy) if the price of the item is xx.
For a particular product, the supply equation is
y=5x+390y=5x+390
and the demand equation is
y=−2x+579y=-2x+579
What is the intersection point of these two lines?
Enter answer as an ordered pair (don't forget the parentheses).
What is the selling price when supply and demand are in equilibrium?
price = $/item
What is the amount of items in the market when supply and demand are in equilibrium?
number of items =

Answers

In supply and demand problems, "y" represents the quantity of items produced or bought, while "x" represents the price per item. Understanding the relationship between price and quantity is crucial in analyzing market dynamics, determining equilibrium, and making production and pricing decisions.

In supply and demand analysis, "x" represents the price per item, and "y" represents the corresponding quantity of items supplied or demanded at that price. The relationship between price and quantity is fundamental in understanding market behavior. As prices change, suppliers and consumers adjust their actions accordingly.

For suppliers, as the price of an item increases, they are more likely to produce more to capitalize on higher profits. This positive relationship between price and quantity supplied is often depicted by an upward-sloping supply curve. On the other hand, consumers tend to demand less as prices rise, resulting in a negative relationship between price and quantity demanded, represented by a downward-sloping demand curve.

Analyzing the interplay between supply and demand allows economists to determine the equilibrium price and quantity, where supply and demand are balanced. This equilibrium point is critical for understanding market stability and efficient allocation of resources. It guides businesses in determining the appropriate production levels and pricing strategies to maximize their competitiveness and profitability.

In summary, "x" represents the price per item, and "y" represents the quantity of items supplied or demanded in supply and demand problems. Analyzing the relationship between price and quantity is essential in understanding market dynamics, making informed decisions, and achieving market equilibrium.

To know more supply and demand about refer here:

https://brainly.com/question/32830463

#SPJ11

A 17-inch piecelyf steel is cut into three pieces so that the second piece is twice as lang as the first piece, and the third piece is one inch more than five fimes the length of the first piece. Find

Answers

The length of the first piece is 5 inches, the length of the second piece is 10 inches, and the length of the third piece is 62 inches.

Let x be the length of the first piece. Then, the second piece is twice as long as the first piece, so its length is 2x. The third piece is one inch more than five times the length of the first piece, so its length is 5x + 1.

The sum of the lengths of the three pieces is equal to the length of the original 17-inch piece of steel:

x + 2x + 5x + 1 = 17

Simplifying the equation, we get:

8x + 1 = 17

Subtracting 1 from both sides, we get:

8x = 16

Dividing both sides by 8, we get:

x = 2

Therefore, the length of the first piece is 2 inches. The length of the second piece is 2(2) = 4 inches. The length of the third piece is 5(2) + 1 = 11 inches.

To sum up, the lengths of the three pieces are 2 inches, 4 inches, and 11 inches.

COMPLETE QUESTION:

A 17-inch piecelyf steel is cut into three pieces so that the second piece is twice as lang as the first piece, and the third piece is one inch more than five times the length of the first piece. Find the lengths of the pieces.

Know more about length  here:

https://brainly.com/question/32060888

#SPJ11

Qd=95−4P
Qs=5+P

a. What is Qd if P=5 ? b. What is P if Qs=20 ? β=9 c. If Qd=Qs, solve for P.

Answers

P = 90 is the solution for the given equation.

Given: Qd=95−4

PQs=5+P

To find Qd if P=5:

Put P = 5 in the equation

Qd=95−4P

Qd = 95 - 4 x 5

Qd = 75

So, Qd = 75.

To find P if Qs = 20:

Put Qs = 20 in the equation

Qs = 5 + PP

= Qs - 5P

= 20 - 5P

= 15

So, P = 15.

To solve Qd=Qs, substitute Qd and Qs with their respective values.

Qd = Qs

95 - 4P = 5 + P

Subtract P from both sides.

95 - 4P - P = 5

Add 4P to both sides.

95 - P = 5

Subtract 95 from both sides.

- P = - 90

Divide both sides by - 1.

P = 90

Thus, P = 90 is the solution for the given equation.

To know more about substitute visit

https://brainly.com/question/29383142

#SPJ11

3. Given the following open-loop single-input, single-output four-dimensional linear time-invariant state equations, namely, ⎣


x
˙
1

(t)
x
˙
2

(t)
x
˙
3

(t)
x
˙
4

(t)




= ⎣


0
0
0
−680

1
0
0
−176

0
1
0
−86

0
0
1
−6







x 1

(t)
x 2

(t)
x 3

(t)
x 4

(t)




+ ⎣


0
0
0
1




u(t)
y(t)=[ 100

20

10

0

] ⎣


x 1

(t)
x 2

(t)
x 3

(t)
x 4

(t)




+[0]u(t)

find the associated open-loop transfer function H(s).

Answers

The transfer function H(s) is given by the ratio of the output Y(s) to the input U(s):

H(s) = Y(s)/U(s) = C(sI - A)^(-1)B + D

To find the open-loop transfer function H(s) associated with the given state equations, we need to perform a Laplace transform on the state equations.

The state equations can be written in matrix form as:

ẋ(t) = A*x(t) + B*u(t)

y(t) = C*x(t) + D*u(t)

Where:

ẋ(t) is the vector of state derivatives,

x(t) is the vector of state variables,

u(t) is the input,

y(t) is the output,

A is the system matrix,

B is the input matrix,

C is the output matrix,

D is the feedforward matrix.

Given the system matrices:

A = ⎣

0

0

0

−680

1

0

0

−176

0

1

0

−86

0

0

1

−6

, B = ⎣

0

0

0

1

, C = [100 20 10 0], and D = [0]

We can write the state equations in Laplace domain as:

sX(s) = AX(s) + BU(s)

Y(s) = CX(s) + DU(s)

Where:

X(s) is the Laplace transform of the state variables x(t),

U(s) is the Laplace transform of the input u(t),

Y(s) is the Laplace transform of the output y(t),

s is the complex frequency variable.

Rearranging the equations, we have:

(sI - A)X(s) = BU(s)

Y(s) = CX(s) + DU(s)

Solving for X(s), we get:

X(s) = (sI - A)^(-1) * BU(s)

Substituting X(s) into the output equation, we have:

Y(s) = C(sI - A)^(-1) * BU(s) + DU(s)

Finally, the transfer function H(s) is given by the ratio of the output Y(s) to the input U(s):

H(s) = Y(s)/U(s) = C(sI - A)^(-1)B + D

Substituting the values of A, B, C, and D into the equation, we can calculate the open-loop transfer function H(s).

Learn more about transfer function here

https://brainly.com/question/31310297

#SPJ11

(b) Given that the curve y=3x^(2)+2px+4q passes through (-2,6) and (2,6) find the values of p and q.

Answers

(b) Given that the curve y = 3x² + 2px + 4q passes through (-2, 6) and (2, 6), the values of p and q are 0 and 3/2 respectively.

To determine the values of p and q, we will need to substitute the coordinates of (-2, 6) and (2, 6) in the given equation, so:

When x = -2, y = 6 => 6 = 3(-2)² + 2p(-2) + 4q

Simplifying, we get:

6 = 12 - 4p + 4q(1)

When x = 2, y = 6 => 6 = 3(2)² + 2p(2) + 4q

Simplifying, we get:

6 = 12 + 4p + 4q(2)

We now need to solve these two equations to determine the values of p and q.

Subtracting (1) from (2), we get:

0 = 8 + 6p => p = -4/3

Substituting p = -4/3 in either equation (1) or (2), we get:

6 = 12 + 4p + 4q

6 = 12 + 4(-4/3) + 4q

Simplifying, we get:

6 = 3 + 4q => q = 3/2

Therefore, the values of p and q are p = -4/3 and q = 3/2 respectively.

We are given that the curve y = 3x² + 2px + 4q passes through (-2, 6) and (2, 6)

To determine the values of p and q, we substitute the coordinates of (-2, 6) and (2, 6) in the given equation.

When x = -2, y = 6

=> 6 = 3(-2)² + 2p(-2) + 4q

When x = 2, y = 6

=> 6 = 3(2)² + 2p(2) + 4q

We now have two equations with two unknowns, p and q.

Subtracting the first equation from the second, we get:

0 = 8 + 6p => p = -4/3

Substituting p = -4/3 in either equation (1) or (2), we get:

6 = 12 + 4p + 4q6 = 12 + 4(-4/3) + 4q

Simplifying, we get:

6 = 3 + 4q => q = 3/2

Therefore, the values of p and q are p = -4/3 and q = 3/2 respectively.

Learn more about the curve: https://brainly.com/question/30511233

#SPJ11

At the Muttart Conservatory, the arid pyramid
has 4 congruent triangular faces. The base of
each face has length 19.5 m and the slant height:
of the pyramid is 20.5 m. What is the measure
of each of the three angles in the face? Give the
measures to the nearest degree.

Answers

The measure of each of the three angles in the face of the arid pyramid, to the nearest degree, is 31 degrees.

To find the measure of each of the three angles in the face of the arid pyramid, we can use trigonometric ratios based on the given information.

The slant height of the pyramid (20.5 m) can be thought of as the hypotenuse of a right triangle, with the base of each face (19.5 m) as one of the legs.

The other leg can be calculated as the height of the triangle.

Using the Pythagorean theorem, we can find the height (h) of the triangle:

[tex]h^2[/tex] = (slant height)^2 - (base)^2

[tex]h^2 = 20.5^2 - 19.5^2[/tex]

[tex]h^2 = 420.25 - 380.25[/tex]

[tex]h^2 = 40[/tex]

h = √40

h = 2√10

Now, we can calculate the sine of one of the angles (θ) in the face:

sin(θ) = opposite/hypotenuse

sin(θ) = h/slant height

sin(θ) = (2√10)/20.5.

Taking the inverse sine of both sides, we can find the measure of the angle θ:

θ = [tex]sin^{(-1)[/tex]((2√10)/20.5)

θ ≈ 30.5 degrees

Since there are three congruent angles in the face of the pyramid, each angle measures approximately 30.5 degrees.

For similar question on pyramid.

https://brainly.com/question/30615121  

#SPJ8

determine whether you would take a census or use a sampling to collect data for the study described below. the average credit card debt of the 40 employees of a company

Answers

Whether to take a census or use sampling to collect data for the study on the average credit card debt of the 40 employees of a company depends on various factors, including the resources available, time constraints, and the level of accuracy required.

A census involves gathering information from every individual or element in the population. In this case, if it is feasible and practical to collect credit card debt data from all 40 employees of the company, then a census could be conducted. This would provide the exact average credit card debt of all employees without any estimation or uncertainty.

However, conducting a census can be time-consuming, costly, and may not always be feasible, especially when dealing with large populations or limited resources. In such cases, sampling can be used to collect data from a subset of the population, which can still provide reliable estimates of the average credit card debt.

If the goal is to estimate the average credit card debt of all employees with a certain level of confidence, a random sampling approach can be employed. A representative sample of employees can be selected from the company, and their credit card debt data can be collected. Statistical techniques can then be used to analyze the sample data and infer the average credit card debt of the entire employee population.

Ultimately, the decision to take a census or use sampling depends on practical considerations and the specific requirements of the study. If it is feasible and necessary to collect data from every employee, a census can be conducted. However, if a representative estimate is sufficient and resource limitations exist, sampling can be a viable alternative.

To learn more about sampling

https://brainly.com/question/2767965

#SPJ11

Let P be the set of people in a group, with ∣P∣=p. Let C be a set of clubs formed by the people in this group, with ∣C∣=c. Suppose that each club contains exactly g people, and each person is in exactly j clubs. Use two different ways to count the number of pairs (b,h)∈P×C such that person b is in club h, and deduce a combinatorial identity.

Answers

The number of pairs (b, h) ∈ P × C, where person b is in club h, is equal to the product of the number of people in the group (p) and the number of clubs each person belongs to (j), or equivalently, p = c * g, where c is the number of clubs and g is the number of people per club.

To count the number of pairs (b, h) ∈ P × C, where person b is in club h, we can approach it in two different ways:

Method 1: Counting by People (b)

Since each person is in exactly j clubs, we can count the number of pairs by considering each person individually.

For each person b ∈ P, there are j clubs that person b belongs to. Therefore, the total number of pairs (b, h) can be calculated as p * j.

Method 2: Counting by Clubs (h)

Since each club contains exactly g people, we can count the number of pairs by considering each club individually.

For each club h ∈ C, there are g people in that club. Since each person is in exactly j clubs, for each person in the club, there are j possible pairs (b, h). Therefore, the total number of pairs (b, h) can be calculated as c * g * j.

Combining the results from both methods, we have:

p * j = c * g * j.

Canceling the common factor of j from both sides of the equation, we obtain:

p = c * g.

This is the combinatorial identity deduced from the two different ways of counting the pairs (b, h) ∈ P × C. It states that the number of people in the group (p) is equal to the product of the number of clubs (c) and the number of people per club (g).

To learn more about equations visit : https://brainly.com/question/29174899

#SPJ11

Find the critical​ value(s) and rejection​ region(s) for the indicated​ t-test, level of significance alpha​, and sample size n. Left-tailed test, alpha = 0.10​,n =25
determine the critical values and rejection regions

Answers

For this specific t-test with alpha = 0.10 and n = 25, the critical value is -1.711, and the rejection region consists of t-values less than -1.711.

To find the critical value(s) and rejection region(s) for a left-tailed t-test with a level of significance (alpha) of 0.10 and a sample size (n) of 25, we need to refer to the t-distribution table or use statistical software.

For a left-tailed test, we are interested in the critical value that corresponds to the alpha level and the degrees of freedom (df = n - 1). In this case, the degrees of freedom is 25 - 1 = 24.

From the t-distribution table or using software, we find the critical value for alpha = 0.10 and 24 degrees of freedom to be approximately -1.711.

The rejection region for a left-tailed test is any t-value less than the critical value.

Learn more about rejection region here :-

https://brainly.com/question/14542038

#SPJ11

a population has a standard deviation a=24.9.How large a sample must be drawn so that a 95% confidence interval foru will have a margin of error equal to 4.4

Answers

A sample size of at least 107 must be drawn in order to obtain a 95% confidence interval with a margin of error equal to 4.4, assuming a population standard deviation of 24.9.

To determine the sample size required for a 95% confidence interval with a specific margin of error, we can use the formula:

n = (Z * σ / E)^2

where:

n = required sample size

Z = Z-score corresponding to the desired confidence level (in this case, for a 95% confidence level, Z ≈ 1.96)

σ = population standard deviation

E = margin of error

Given:

σ = 24.9

E = 4.4

Plugging in these values into the formula, we get:

n = (1.96 * 24.9 / 4.4)^2 ≈ 106.732

Rounding up to the nearest whole number, the sample size required is approximately 107.

Therefore, a sample size of at least 107 must be drawn in order to obtain a 95% confidence interval with a margin of error equal to 4.4, assuming a population standard deviation of 24.9.

Learn more about  population from

https://brainly.com/question/25896797

#SPJ11

G(Z)=z+1/3z−2, Find G(A+H)−G(A)/2

Answers

The expression G(A+H) - G(A)/2 simplifies to (2A + H + 1)/(3A - 6).

To evaluate the expression G(A+H) - G(A)/2, we first substitute A+H and A into the expression G(Z) = Z + 1/(3Z - 2).

Let's start with G(A+H):

G(A+H) = (A + H) + 1/(3(A + H) - 2)

Next, we substitute A into the function G(Z):

G(A) = A + 1/(3A - 2)

Substituting these values into the expression G(A+H) - G(A)/2:

(G(A+H) - G(A))/2 = [(A + H) + 1/(3(A + H) - 2) - (A + 1/(3A - 2))]/2

To simplify this expression, we need to find a common denominator for the fractions. The common denominator is 2(3A - 2)(A + H).

Multiplying each term by the common denominator:

[(A + H)(2(3A - 2)(A + H)) + (3(A + H) - 2)] - [(2(A + H)(3A - 2)) + (A + H)] / [2(3A - 2)(A + H)]

Simplifying the numerator:

(2(A + H)(3A - 2)(A + H) + 3(A + H) - 2) - (2(A + H)(3A - 2) + (A + H)) / [2(3A - 2)(A + H)]

Combining like terms:

(2A^2 + 4AH + H^2 + 6A - 4H + 3A + 3H - 2 - 6A - 4H + 2A + 2H) / [2(3A - 2)(A + H)]

Simplifying the numerator:

(2A^2 + H^2 + 9A - 3H - 2) / [2(3A - 2)(A + H)]

Finally, we can write the simplified expression as:

(2A^2 + H^2 + 9A - 3H - 2) / [2(3A - 2)(A + H)]

Learn more about denominator here:

brainly.com/question/32621096

#SPJ11

When the function f(x) is divided by x+1, the quotient is x^(2)-7x-6 and the remainder is -3. Find the furstion f(x) and write the resul in standard form.

Answers

The function f(x) is given by x^3-6x^2-13x-3. The function f(x) is equal to x^2 - 15x - 13 when divided by x + 1, with a remainder of -3.

The quotient of f(x) divided by x+1 is x^2-7x-6. This means that the function f(x) can be written as the product of x+1 and another polynomial, which we will call g(x).

We can find g(x) using the Remainder Theorem. The Remainder Theorem states that if a polynomial f(x) is divided by x-a, then the remainder is f(a). In this case, when f(x) is divided by x+1, the remainder is -3. So, g(-1) = -3.

We can also find g(x) using the fact that the quotient of f(x) divided by x+1 is x^2-7x-6. This means that g(x) must be of the form ax^2+bx+c, where a, b, and c are constants.

Substituting g(-1) = -3 into the equation g(-1) = a(-1)^2+b(-1)+c, we get -3 = -a+b+c. Solving this equation, we get a=-1, b=-6, and c=-3.

Therefore, g(x) = -x^2-6x-3. The function f(x) is then given by (x+1)g(x) = x^3-6x^2-13x-3.

Visit here to learn more about equation:

brainly.com/question/29174899

#SPJ11

Match the solution region of the following system of linear inequalities with one of the four regions x+3y<=15 2x+y<=10 x>=0 y>=0 shown in the figure. Identify the unknown corner point of

Answers

The solution region of the following system of linear inequalities x + 3y ≤ 15, 2x + y ≤ 10, x ≥ 0, and y ≥ 0 shown in the figure is the shaded region, and the unknown corner point is (-5, 20).

The figure that shows the solution region of the following system of linear inequalities x + 3y ≤ 15, 2x + y ≤ 10, x ≥ 0, and y ≥ 0 is as follows:

Figure that shows the solution region of the given system of linear inequalities

The solution region of the given system of linear inequalities is the shaded region as shown in the figure above.

The corner points of the solution region of the given system of linear inequalities are (0, 0), (0, 5), (2.5, 2.5), and (6, 0).

To find the unknown corner point of the solution region of the given system of linear inequalities, we need to solve the system of linear inequalities x + 3y ≤ 15 and 2x + y ≤ 10 as an equation using substitution method.

2x + y = 10y = -2x + 10

Substitute y = -2x + 10 in x + 3y ≤ 15x + 3(-2x + 10) ≤ 15x - 6x + 30 ≤ 153x ≤ -15x ≤ -5

Thus, the unknown corner point of the solution region of the given system of linear inequalities is (-5, 20).

Hence, the solution region of the following system of linear inequalities x + 3y ≤ 15, 2x + y ≤ 10, x ≥ 0, and y ≥ 0 shown in the figure is the shaded region, and the unknown corner point is (-5, 20).

To learn more about linear inequalities

https://brainly.com/question/21404414

#SPJ11

A comparison of students’ High School GPA and Freshman Year GPA was made. The results were: First screenshot


Using this data, calculate the Least Square Regression Model and create a table of residual values. What do the residuals tell you about the data?

Answers

The Least Square Regression Model for predicting Freshman Year GPA based on High School GPA is Freshman Year GPA = -3.047 + 0.813 * High School GPA

Step 1: Calculate the means of the two variables, High School GPA (X) and Freshman Year GPA (Y). The mean of High School GPA is

=> (20+26+28+31+32+33+36)/7 = 29.

The mean of Freshman Year GPA is

=>  (16+18+21+20+22+26+30)/7 = 21.14.

Step 2: Calculate the differences between each High School GPA value (X) and the mean of High School GPA (x), and similarly for Freshman Year GPA (Y) and its mean (y). Then, multiply these differences to obtain the products of (X - x) and (Y - y).

X x Y y (X - x) (Y - y) (X - x)(Y -y )

20 29 16 21.14 -9 -5.14 46.26

26 29 18 21.14 -3 -3.14 9.42

28 29 21 21.14 -1 -0.14 0.14

31 29 20 21.14 2 -1.14 -2.28

32 29 22 21.14 3 0.86 2.58

33 29 26 21.14 4 4.86 19.44

36 29 30 21.14 7 8.86 61.82

Step 3: Calculate the sum of (X - x)(Y - x), which is 137.48.

Step 4: Calculate the sum of the squared differences between each High School GPA value (X) and the mean of High School GPA (x).

Step 5: Calculate the sum of (X - x)², which is 169.

Step 6: Using the calculated values, we can determine the slope (b) and the y-intercept (a) of the regression line using the formulas:

b = Σ((X - x)(Y - y)) / Σ((X - x)^2)

a = x - b * x

b = 137.48 / 169 ≈ 0.813

a = 21.14 - 0.813 * 29 ≈ -3.047

To know more about regression here

https://brainly.com/question/14184702

#SPJ4

Complete Question:

A comparison of students' High School GPA and Freshman Year GPA was made. The results were

High School GPA    Freshman Year GPA

20                                                16

26                                                18

28                                                21

31                                                 20

32                                                22

33                                               26

36                                                30

Using this data, calculate the Least Square Regression Model and create a table of residual values What do the residuals tell you about the data?

Other Questions
Divide the first polynomial by the second. State the quotient and the remainder. x^(3)-2x^(2)-17x+10 x-5 when elise visited disney world last month, she was amazed that every staff member she talked to was able to answer her question regardless of whether it was about a hotel, restaurant, parade time, or fireworks display. she was very impressed. which type of excellence does this represent? Now that you have calculated various measures of association from this case-control study, what are the other possible explanations for the apparent association? Select all that apply.selection biasinformation bias confoundinginvestigator error none of the above if the necome akatiment 15. interest only is refieited un tie cash fiow statemtene. c. Mshe of thie abover. It interest anif principal needs to be reflected under current and not currens liatiaties sectom of the statement of financial porsition. Which of the foliowisg statements is true? a. Divoenes are ony nswed if the board of directors deciares them. b. Dividends are guaraneed to preferred shareholders. c. Orvidends accurtulate on common thares. d Fwidends are puid to all classes of shares or the same bask. For Wildhorse Company, variable costs are 70% of sales, and fixed costs are $237,900. Management's net income goal is $91,500. Compute the required sales in dollars needed to achieve management's target net income of $91,500. (Use the contribution margin approach.) Required sales $ A hospital medication order calls for the administration of 60 g of mannitol to a patient as an osmotic diuretic over a 12-hour period. Calculate (a) how many milliliters of a 250mg/mL mannitol injection should be administered per hour, and (b) how many milliosmoles of mannitol would be represented in the prescribed dosage. (Note: mannitol mw=182;MW/ Number of species =mg/mOsmol). 1. a) 15 mL; b) 283.8mOsmol 2. a) 20 mL; b) 329.7mOsmol 3. a) 10 mL; b) 195.2mOsmol 4. a) 25 mL; b) 402.3mOsmol Technology forces an employer to learn, to acquire, to adapt and to change its mindset. A. Explain THREE (3) ways a manager can create change in an organization. B. Discuss TWO (2) reasons why technology is important in an organization. C. Outline FIVE (5) ways to market your products through social media in the global sphere. A line has a slope of - Which ordered pairs could be points on a parallel line? Select two options.(-8, 8) and (2, 2)(-5, -1) and (0, 2)(-3, 6) and (6,-9)(-2, 1) and (3,-2)(0, 2) and (5, 5) Given the data set below, calculate the range, variance, and standard deviation. 27,9,20,23,52,16,37,16,46 range = variance = standard deviation = 23) You want to foster group cohesiveness and facilitate performance measurement. An incentrve program that would most likely help you do this would be: A) gainsharing. B) a plantwide plan. C) a corporate-based plan. D) a team-based plan. - Exercise Objectives - Use single decision statements, convert variable types between string and integer - Use basic arithmetic operations and simple built-in functions - Use basic user inputs and formatting outputs - Learn pseudocodes - Use docstrings and commenting options - Use single, double and triple-quoted strings in I/O Write a program that will do the following: - Ask the user for their hypothetical 3 test grades in this course as integer variables - Calculate the total grade by summing 3 grades - Calculate the average grade from the total - Find the maximum and minimum of 3 grades (DO NOT USE Built-In max or min functions. Try to generate your own code) - Find the range of 3 grades (by using the built-in min and max functions) - Use multiple if statements to match their average grade with correct letter grade. The pseudocode will look like: The Pseudocode of Assignment 1 . Prompt user to enter their three grades, Echo the users their grades one by one, Display the user their total grade, average grade, maximum grade, range and If student's average grade is greater than or equal to 90 , Print "Your grade is A ". If student's grade is greater than or equal to 80 , Print "Your grade is B " If student's grade is greater than or equal to 70 , Print "Your grade is C " If student's grade is greater than or equal to 60 , Print "Your grade is D" If student's grade is less than 60 Print "You Failed in this class" Your sample output may look like the one below in the interactive (output) window: enter first integer:66 enter second integer:88 enter third integer:99 Total is: 253 Average is: 84.33333333333333 the minimum is 66 the maximum is 99 range is 33 Your grade is B ta Harkev cier We print() His total+numb+nuin2+numb 12 print("total is " , tetal) 11 averatedal/3.0 11 mintiventuet 1if if manteinhim: 21 lavisuresual (1) Hif ove 3e bei in 4 itet Calculate the molarities of the ionic species in 150.0mL of aqueoussolution that contains 5.38g of aluminium nitrate1) (Al^3+),M2) (NO3^-),M which of the following are the t causes of reversible cardiac arrest? Hypovolemia, Hypothermia, Thrombosis (Pulmonary), Tension pneumothorax, Toxins. Read the article:Consistent Application of Risk Management for Selection of Engineering Design Options in Mega-Projects and provide your analysis: Strengths of the article. (EPCRA) What is the difference, OTHER than content, between a Tier I and a Tier II chemical inventory form? (answer and refs) 4 Question 14 ( 1 point) (ESA) You are prohibited from harassing the egg of an endangered bird. What three references together tell us that? (cite the refs,and provide a brief statement as a label for each of the three refs.) Select the item that is not a part of the segmenting and targeting process. 7. Show that the set of functions C={c n(t)=cosnt:n=0,1,2,3} is linearly independent as a set of functions on R(vectors in an approipriate function space.) how that the function defined for real x by f(x)= { e 1/(1x 2),0, forx pick 11 point A fair coin is flipped twice. You win: - +$ 6 if the result is two heads. - +$ 2 if the result is one head and one tail in any order - -$ 4 if the result is two tails (i.e The industry-low, industry-average, and industry-high benchmarks on pp. 67 of each issue of the Camera & Drone Journal are worth careful scrutiny because in the event the camera/drone benchmarking data signals that their company's costs/operating profits for one or more of the benchmarks are not the best or close to the best in one or more regions, their managers are always well advised to take action to drive down their company's costs closer to the industry-low value in each region and to drive their company's operating profits per unit sold closer to the industry-high in each region in the upcoming decision round. are most valuable to the managers of those companies whose costs are close to the industry-low values and to the managers of companies whose operating profits and operating profit margins are at or close to the industry-high benchmarks. are worth careful scrutiny by the managers of all companies because when the camera/drone benchmarking data signals that a company's costs/operating profits for one or more of the benchmarks are clearly out-of-line (or unappealing), managers are well advised to take corrective action in the upcoming decision round. have the greatest value to the managers of companies that have a negative operating profit per camera or drone sold in one or more geographic regions-negative operating profits clearly signal that the company's marketing and/or administrative expenses per cameraldrone sold in the region are alarmingly high and require immediate cost-cutting actions in the upcoming decision round. are of considerable value to the managers of companies pursuing a low-cost strategy but are of very limited value to managers of companies pursuing all other types of strategies to outcompete and outperform rival companies. Every assignment must be typed, use function notation, and show a sufficient amount of work. Graphs must be in excel. The annual federal minimum hourly wage (in current dollars and constant dollars) a