Answer:
0.0228
Step-by-step explanation:
A suitable probability calculator (or spreadsheet) can tell you this.
It is about 0.0228.
A cylinder fits inside a square prism as shown. For every cross section, the ratio of the area of the circle to the area of the square is or . Since the area of the circle is the area of the square, the volume of the cylinder equals the volume of the prism or (2r)(h) or πrh. the volume of the prism or (4r2)(h) or 2πrh. the volume of the prism or (2r)(h) or r2h. the volume of the prism or (4r2)(h) or r2h.
Answer:A cylinder fits inside a square prism as shown. For every cross section, the ratio of the area of the circle to the area of the square is or . Since the area of the circle is the area of the square, the volume of the cylinder equals the volume of the prism or (2r)(h) or πrh. the volume of the prism or (4r2)(h) or 2πrh. the volume of the prism or (2r)(h) or r2h. the volume of the prism or (4r2)(h) or r2h.A cylinder fits inside a square prism as shown. For every cross section, the ratio of the area of the circle to the area of the square is or . Since the area of the circle is the area of the square, the volume of the cylinder equals the volume of the prism or (2r)(h) or πrh. the volume of the prism or (4r2)(h) or 2πrh. the volume of the prism or (2r)(h) or r2h. the volume of the prism or (4r2)(h) or r2h.
A cylinder fits inside a square prism as shown. For every cross section, the ratio of the area of the circle to the area of the square is or . Since the area of the circle is the area of the square, the volume of the cylinder equals the volume of the prism or (2r)(h) or πrh. the volume of the prism or (4r2)(h) or A cylinder fits inside a square prism as shown. For every cross section, the ratio of the area of the circle to the area of the square is or . Since the area of the circle is the area of the square, the volume of the cylinder equals the volume of the prism or (2r)(h) or πrh. the volume of the prism or (4r2)(h) or 2πrh. the volume of the prism or (2r)(h) or r2h. the volume of the prism or (4r2)(h) or r2h.
A cylinder fits inside a square prism as shown. For every cross section, the ratio of the area of the circle to the area of the square is or . Since the area of the circle is the area of the square, the volume of the cylinder equals the volume of the prism or (2r)(h) or πrh. the volume of the prism or (4r2)(h) or 2πrh. the volume of the prism or (2r)(h) or r2h. the volume of the prism or (4r2)(h) or r2h.
A cylinder fits inside a square prism as shown. For every cross section, the ratio of the area of the circle to the area of the square is or . Since the area of the circle is the area of the square, the volume of the cylinder equals the volume of the prism or (2r)(h) or πrh. the volume of the prism or (4r2)(h) or 2πrh. the volume of the prism or (2r)(h) or r2h. the volume of the prism or (4r2)(h) or r2h.
A cylinder fits inside a square prism as shown. For every cross section, the ratio of the area of the circle to the area of the square is or . Since the area of the circle is the area of the square, the volume of the cylinder equals the volume of the prism or (2r)(h) or πrh. the volume of the prism or (4r2)(h) or 2πrh. the volume of the prism or (2r)(h) or r2h. the volume of the prism or (4r2)(h) or r2h.
Step-by-step explanation:
The cylinder is given by A = pi/4 the volume of the prism or π/4 x (4r²h) or π x r² x h
What is a Cylinder?A cylinder is a three-dimensional shape consisting of two parallel circular bases, joined by a curved surface. The center of the circular bases overlaps each other to form a right cylinder. The volume of a cylinder is
Volume of Cylinder = πr²h
Surface area of cylinder = 2πr ( r + h )
where r is the radius of the cylinder
h is the height of the cylinder
Given data ,
Area circle is A = πr²
Area square with side s = s²
The side of the square is equal to the diameter of the circle
Area square = D²
A diameter of square is always twice the radius
Area square = (2r)² = 2²r² = 4r²
So , on simplifying , we get
Area circle/Area square = (πr²)/(4r²)
Area circle/Area square = π/4
Now , The volume Prism = Area Square x h
Volume Prism = 4r²h
Volume of Cylinder= Area Circle x h
Volume of Cylinder = π x r² x h
So , Volume Cylinder/Volume Prism = π x r² x h/4r² x h
Volume of Cylinder/Volume of Prism = π/4
Volume of Cylinder = π/4 x Volume Prism
And , The volume of Cylinder = π/4 x (4r²h)
Hence , the volume of cylinder is V = π/4 x (4r²h)
To learn more about cylinder click :
https://brainly.com/question/16134180
#SPJ5
pleaseeee helppppp meeeee pleaseeeeee
Answer:
(28/33+28 ) *100
Step-by-step explanation:
(28/33+28 ) *100
(28/61)*100
Answer:
it's 2
Step-by-step explanation:
I did it before
i
dont
get
this
help
rn
Answer:
6 first box. 12 second box. 21 third box. 10 fourth box. 4 fifth box.
Step-by-step explanation:
Look for common denominaters, that will show you what to multiply the equation by to get rid of fractions.
A restaurant gat an average of 14 calls in a 2 hr time period. What is the probability that at most 2 calls in 45 min period
Answer:
0.10512
Step-by-step explanation:
Given the following :
Mean number of calls(μ) in 2 hours = 14
2 hours = 60 * 2 = 120 minutes
Average number of calls in 45 minutes :
= (45 / 120) * 14
= 0.375 * 14
= 5.25
Now find P( x ≤ 2) = p(x = 0) + p( x = 1) + p(x = 2)
Using the poisson probability formula:
P(x, μ) = [(e^-μ) * (μ^x)] / x!
Where :
e = euler's constant
μ = 5.25
x = 0, 1, 2
Using the online poisson probability calculator :
P(x, 5.25) = P( x ≤ 2) = p(x = 0) + p(x = 1) + p(x = 2)
P(x, 5.25) = P( x ≤ 2) = 0.00525 + 0.02755 + 0.07232 = 0.10512
A city's population is currently 50,000. If the population doubles every 70 years, what will the population be 280 years from now?
Answer:
200,000
Step-by-step explanation:
The current population: 50,000
Doubling time:70
Population after 280 years=?
280/70=4
50,000*4=200,000
Hope this helps ;) ❤❤❤
Answer: 800,000
Step-by-step explanation: 50,000x2=100,000. That is after 70 years. 100,000x2=200,000. This is after 140 years. 200,000x2=400,000. This is after 210 years. 400,000x2=800,000. This is after 280 years.
Which table represents the inverse of the function defined above?
Hello!
Answer:
Table B.
Step-by-step explanation:
An inverse of a function means that the x and y values are swapped in comparison to the original function. For example:
We can use points on the table:
[tex]f(x)[/tex] = (7, 21)
The inverse of this function would 7 as its y value, and 21 as its x value:
[tex]f^{-1} (x)[/tex] = (21, 7)
The only table shown that correctly shows this relationship is table B.
A party rental company has chairs and tables for rent. The total cost to rent 2 chairs and 3 tables is$31 . The total cost to rent 6 chairs and 5 tables is $59 . What is the cost to rent each chair and each table?
Answer:
The cost to rent each chair is $2.75 and the cost to rent each table is $8.50
Step-by-step explanation:
Let the:
Cost to rent a chair = x
Cost to rent a table = y
We would form an algebraic equation.
The total cost to rent 2 chairs and 3 tables is $31
2x + 3y = 31 ...... Equation 1
The total cost to rent 6 chairs and 5 tables is $59
6x + 5y = 59 ......... Equation 2
We solve the above equation above using elimination method
Multiply Equation 1 all through by the coefficient of x = 6 in Equation 2
Multiply Equation 2 all through by the coefficient of x = 2 in Equation 1
Hence, we have:
2x + 3y = 31 ...... Equation 1 × 6
6x + 5y = 59 ......... Equation 2 × 2
12x + 18y = 186........ Equation 3
12x + 10y = 118 .…...... Equation 4
Subtracting Equation 4 from Equation 3
= 8y = 68
y = 68/8
y = 8.5
Therefore, the cost to rent a table = $8.50
Substituting 8.5 for y in Equation 1 to get the value of x
2x + 3y = 31 ...... Equation 1
2x + 3(8.5) = 31
2x = 31 - 3(8.5)
2x = 31 - 25.5
2x = 5.5
x = 5.5/2
x = 2.75
The cost to rent a chair = $2.75
Therefore, the cost to rent each chair is $2.75 and the cost to rent each table is $8.50
need some help thxx ;)
Answer:
DEA
Step-by-step explanation:
Translate into a variable expression the product of p and the sum of p and 12
They're making me write something here so I can post the answer:
p(p + 12)
Someone help me please
Answer:
3
Step-by-step explanation:
If the cube has 54 stickers across its six faces, and each face has the same number of stickers, first we can find the number of stickers in each face by dividing the number of stickers by the number of faces:
[tex]stickers\ per\ face = number\ of\ stickers / number\ of\ faces[/tex]
[tex]stickers\ per\ face = 54/6 = 9[/tex]
Each face has 9 stickers.
If each row and column has the same number of stickers, we can find the numbers of rows and columns by finding the square root of the number of stickers in the face:
[tex]\ number\ of\ rows = \sqrt{9} = 3[/tex]
If we have 3 rows, and each roll has the same number of stickers, the number of stickers per row or column is:
[tex]stickers\ per\ row = stickers\ per\ face / number\ of\ rows[/tex]
[tex]stickers\ per\ row = 9/3 = 3[/tex]
Help ASAP!!!
Find sin(c). Round to the nearest hundredth if necessary.
A: 0.38
B: 0.92
C:0.42
D:1.08
Answer:
The answer is option A
0.38Step-by-step explanation:
sin ∅ = opposite / hypotenuse
Since we are finding sin (c)
From the question
The opposite is BA
The hypotenuse is AC
So we have
sin c = BA/ AC
BA = 5
AC = 13
sin c = 5/13
sin c = 0.384615
sin (c) = 0.38 to the nearest hundredth
Hope this helps you
Answer:
[tex]\boxed{Sin C = 0.38}[/tex]
Step-by-step explanation:
Sin C = opposite/hypotenuse
Where opposite = 5, hypotenuse = 13
Sin C = 5/13
Sin C = 0.38
The number that is 75% of one less than a number n. As an expression THX!!!! i Promise to mark you brainliset
Answer:
x = [tex]\frac{3}{4}(n-1)[/tex]
Step-by-step explanation:
It's given in the question that '' The number is 75% of one less than a number n"
Let the number is 'x'.
One less than a number 'n' will be = (n - 1)
75% of one less than a number will be = 75% of (n -1)
= [tex]\frac{75}{100}(n-1)[/tex]
= [tex]\frac{3}{4}(n-1)[/tex]
Therefore, the desired expression to get the number 'x' will be,
x = [tex]\frac{3}{4}(n-1)[/tex]
Answer:
3/4(n-1)
Step-by-step explanation:
did it in rsm
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.
Match the trigonometric ratios with their values based on the triangle shown in the diagram.
Answer:
A-2, B-DNE*, C-3, D-DNE, E-4, F-1
---------------------
The first attachment shows the solutions to A and C.
The second attachment shows the solutions to E and F.
There are no real number solutions to systems B and D.
_____
In general, you can solve the linear equation for y, then substitute that into the quadratic. You can subtract the x-term on the left and complete the square to find the solutions.
A.
(3-x) +12 = x^2 +x
15 = x^2 + 2x
16 = x^2 +2x +1 = (x +1)^2 . . . . add the square of half the x-coefficient to complete the square; next take the square root
±4 -1 = x = {-5, 3) . . . . . identifies the second solution set for system A
__
B.
(x -1) -15 = x^2 +4x
-16 = x^2 +3x
-13.75 = x^2 +3x +2.25 = (x +1.5)^2
roots are complex: -1.5 ±i√13.75
__
C.
(1-2x) +5 = x^2 -3x
6 = x^2 -x
6.25 = x^2 -x + .25 = (x -.5)^2
±2.5 +.5 = x = {-2, 3} . . . . . identifies the third solution set for system C
__
remaining problems are done in a similar way.
_____
* DNE = does not exist. There is no matching solution set for the complex numbers that are the solutions to this.
---------------------
Hope this helps!
Brainliest would be great!
---------------------
With all care,
07x12!
What are the next three terms in the sequence -27, -19, -11, -3, 5, ...?
Answer:
13, 21
Step-by-step explanation:
Add 8 to the next number from the left to the right.
Answer:
The next three numbers in the sequence are: 13, 21, 29.
Step-by-step explanation:
Common Pattern: +8
-27 +8 = -19
-19 + 8 = -11
-3 + 8 = 5
5 + 8 = 13
13 + 8 = 21
21 + 8 = 29
PLLZZZZ help me find x you are AWSOME!! I need this ASAP
Answer:
27°
Step-by-step explanation:
D is 72° because it alternates with B, alternate angles are equal.
2x+72°+2x= 180° because it is a straight line.
4x+72°=180°
4x=108°
x=27°
There are 3 times as many novels as comic books in a bookstore.If there are 2480 books altogether, how many comic books are there in the bookstore.
Answer:
there are 620 comic books
Step-by-step explanation:
let number of comic books be x
total books=3x+x
2480=4x
2480/4=x
620=x
Answer:
620Step-by-step explanation:
Let comic books be ' X '
Let Novels be ' 3x '
Now, finding the value of X
According to Question,
[tex]3x + x = 2480[/tex]
Collect like terms
[tex]4x = 2480[/tex]
Divide both sides of the equation by 4
[tex] \frac{4x}{4} = \frac{2480}{4} [/tex]
Calculate
[tex]x = 620[/tex]
Thus, There are 620 comic books in the book store.
Hope this helps...
Best regards!!
The first and last term of an AP are 1 and 121 respectively. If the sum of the series is 671,find a) the number of terms (n) in the AP b) the common
difference between them
Answer:
(a)11
(b)12
Step-by-step explanation:
The first term, a = 1
The last term, l=121
Sum of the series, [tex]S_n=671[/tex]
Given an arithmetic series where the first and last term is known, its sum is calculated using the formula:
[tex]S_n=\dfrac{n}{2}(a+l)[/tex]
Substituting the given values, we have:
[tex]671=\dfrac{n}{2}(1+121)\\671=\dfrac{n}{2} \times 122\\671=61n\\$Divide both sides by 61\\n=11[/tex]
(a)There are 11 terms in the arithmetic progression.
(b)We know that the 11th term is 121
The nth term of an arithmetic progression is derived using the formula:
[tex]a_n=a+(n-1)d[/tex]
[tex]a_{11}=121\\a=1\\n=11[/tex]
Therefore:
121=1+(11-1)d
121-1=10d
120=10d
d=12
The common difference between them is 12.
Use the line of best fit to determine the x-value when the y- value is 190
Answer:
A. 9
Step-by-step explanation:
Well if you go to 190 on the y-axis and go all the way to the right you can see according to the line of best fit A. 9 should be the correct answer.
Thus,
A.9 is the correct answer.
Hope this helps :)
Answer:
A. 9
Step-by-step explanation:
A line of best fit is a line that goes through a scatter plot that will express the relationship between those points. So, if we look at 190 on the y-axis, we can approximate that on the line of best fit it would be closest to 9 on the x-axis.
Graph the line y=4/3x +1
The slope would be 4/3 and the y-intercept is 1
Create a table x and y and in x there is -3/4 and 0 and for the y side is 0 and 1. The line would be in the 2 quadrant with 2 points on on the y axis 1 and the other on the x axis 0.9 and that would be the graphed description of the line. Sorry if this is hard to understand i don’t have a access to draw or insert an image.
The graph of the linear equation is on the image at the end.
How to graph the line?To do it, we need to find two points on the line, so let's evaluate it.
When x = 0
y = (4/3)*0 + 1 = 1 ----> (0, 1)
When x = 3
y = (4/3)*3 + 1 = 5 ---> (3 , 5)
Now just graph these two points and connect them with a line, that will be the graph of the linear equation.
Learn more about linear equations at:
https://brainly.com/question/1884491
#SPJ6
In the diagram of RST, which term describes point U?
A.
Circumcenter
B.
Centroid
C.
Incenter
D.
Orthocenter
A triangle is a three-edged polygon with three vertices. It is a fundamental form in geometry. The correct option is C, Incenter.
What is a triangle?A triangle is a three-edged polygon with three vertices. It is a fundamental form in geometry. The sum of all the angles of a triangle is always equal to 180°.
In a triangle, the point at which all the angle bisectors of the triangle meet is known as the Incenter.
Since In ΔRST, all the angles are bisected by the angle bisector, and the point at which all the angle bisectors meet is represented by U. Thus, it can be concluded that the point U represents the incenter of the triangle.
Learn more about Triangle:
https://brainly.com/question/2773823
#SPJ5
4 solid cubes were made out of the same material. All four have different side lengths: 6cm, 8cm, 10cm, and 12cm. How to distribute the cubes onto two plates of a scale so the scale is balanced?
Answer:
The volumes of the cubes are 6³ = 216, 8³ = 512, 10³ = 1,000 and 12³ = 1,728 for a combined volume of 216 + 512 + 1,000 + 1,728 = 3456 which means that each side of the scale must have a combined volume of 3456 / 2 = 1728. This means that in order for the scale to be balanced we need to put the 12 cm cube on one side and the other 3 cubes on the other side.
The resale value of a certain industrial machine decreases over a 8-year period at a rate that changes with time. When the machine is x years old, the rate at which its value is changing is 200(x - 8) dollars per year. By how much does the machine depreciate during the fifth year
Answer: The machine depreciates during the fifth year by $4000.
Step-by-step explanation:
Given: The resale value of a certain industrial machine decreases over a 8-year period at a rate that changes with time.
When the machine is x years old, the rate at which its value is changing is 200(x - 8) dollars per year.
Then, the machine depreciates A(x) during the fifth year as
[tex]A(x) =\int^{5}_1200(x - 8)\ dx\\\\=200|\frac{x^2}{2}-8x|^{5}_1\\\\=200[\frac{5^2}{2}-\frac{1^2}{2}-8(5)+8(1)]\\\\=200 [12-32]\\\\=200(-20)=-4000[/tex]
Hence, the machine depreciates during the fifth year by $4000.
Determine the measure of the unknown variables.
Answer:
75
Step-by-step explanation:
x = 75°
yes x = 75°(OPPOSITE ANGLES ARE EQUAL)
..
If ABC~DEF and the scale factor from ABC to DEF is 3/4, what is the length of DF?
Answer:
the length of DF = 3/4 AC
see below for explanation
Step-by-step explanation:
ABC is said to be approximately equal to DEF
The scale factor from ABC to DEF = 3/4
From the question, we can tell the original and new shape is a triangle because the lettering to indicate the vertices for both are 3.
We can deduce from the question, ΔABC was dilated to form ΔDEF
In dilation, the length of each of the corresponding side of the new figure is equal to the multiplication of each of the corresponding sides of the old figure and thee scale factor.
In the absence of cordinates for each vertices and length of each sides, ΔABC has 3 sides :
AB, BC and AC
ΔDEF has 3 sides : DE, EF and DF
If AB corresponds to DE
BC corresponds to EF
AC corresponds to DF
Then:
length DE = scale factor × AB = 3/4 AB
length EF = scale factor × BC = 3/4 BC
length DF = scale factor × AC = 3/4 AC
Therefore, the length of DF = 3/4 AC
Use Bayes' theorem to find the indicated probability 5.8% of a population is infected with a certain disease. There is a test for the disease, however the test is not completely accurate. 93.9% of those who have the disease test positive. However 4.1% of those who do not have the disease also test positive (false positives). A person is randomly selected and tested for the disease. What is the probability that the person has the disease given that the test result is positive?
a. 0.905
b. 0.585
c. 0.038
d. 0.475
Answer:
b. 0.585
Step-by-step explanation:
According to Bayes' theorem:
[tex]P(A|B)=\frac{P(B|A)*P(A)}{P(B)}[/tex]
Let A = Person is infected, and B = Person tested positive. Then:
P(B|A) = 93.9%
P(A) = 5.8%
P(B) = P(infected and positive) + P(not infected and positive)
[tex]P(B) = 0.058*0.939+(1-0.058)*0.041\\P(B)=0.09308[/tex]
Therefore, the probability that a person has the disease given that the test result is positive, P(A|B), is:
[tex]P(A|B)=\frac{0.939*0.058}{0.09308}\\P(A|B)=0.585[/tex]
The probability is 0.585.
Create a circle such that its center is point a and b is a point on the circle
Step-by-step explanation:
The center of a circle is the point in the circle which is equidistant to all the edges of thr circle. The point a is the center, while point b is an arbitrary point in the circle. Find attachment for the diagram.
Answer:
i think that this question is wrong
Step-by-step explanation:
The volume of a rectangular prism is (x4 + 4x3 + 3x2 + 8x + 4), and the area of its base is (x3 + 3x2 + 8). If the volume of a rectangular prism is the product of its base area and height, what is the height of the prism? PLEASE COMMENT, I Can't SEE ANSWERS CAUSE OF A GLITCH
Answer:
x + 1 - ( 4 / x³ + 3x² + 8 )
Step-by-step explanation:
If the volume of this rectangular prism ⇒ ( x⁴ + 4x³ + 3x² + 8x + 4 ), and the base area ⇒ ( x³ + 3x² + 8 ), we can determine the height through division of each. The general volume formula is the base area [tex]*[/tex] the height, but some figures have exceptions as they are " portions " of others. In this case the formula is the base area [tex]*[/tex] height, and hence we can solve for the height by dividing the volume by the base area.
Height = ( x⁴ + 4x³ + 3x² + 8x + 4 ) / ( x³ + 3x² + 8 ) = [tex]\frac{x^4+4x^3+3x^2+8x+4}{x^3+3x^2+8}[/tex] = [tex]x+\frac{x^3+3x^2+4}{x^3+3x^2+8}[/tex] = [tex]x+1+\frac{-4}{x^3+3x^2+8}[/tex] = [tex]x+1-\frac{4}{x^3+3x^2+8}[/tex] - and this is our solution.
Answer:
[tex]x +1 - \frac{4}{x^3 + 3x^2 + 8}[/tex]
Step-by-step explanation:
[tex]volume=base \: area \times height[/tex]
[tex]height=\frac{volume}{base \: area}[/tex]
[tex]\mathrm{Solve \: by \: long \: division.}[/tex]
[tex]h=\frac{(x^4 + 4x^3 + 3x^2 + 8x + 4)}{(x^3 + 3x^2 + 8)}[/tex]
[tex]h=x + \frac{x^3 + 3x^2 + 4}{x^3 + 3x^2 + 8}[/tex]
[tex]h=x +1 - \frac{4}{x^3 + 3x^2 + 8}[/tex]
At noon a passenger train leaves the Dupont Railway station and travels due east for 2 hours. At 12:45 pm the same day a second passenger train leaves the same railway station and travels due west for 1 hour and 15 minutes at a speed 10 kilometers per hour slower than the first passenger train. At 2pm the two trains were 215 kilometers apart. How fast had each train been traveling
Answer:
The speed of the first train is 70 km/hr
The speed of the second train is 60 km/hr
Step-by-step explanation:
For the first train:
Travel time = 2 hours
The speed = ?
we designate the speed as V
For the second train:
The travel time = 1 hr 15 min = 1.25 hrs (15 minutes = 15/60 hrs)
speed = 10 km/hr slower than that of the first train, we can then say
the speed = V - 10
The total distance traveled by both trains in the opposite direction of one another is 215 km
we can put this problem into an equation involving the distance covered by the trains.
we know that distance = speed x time
the distance traveled by the first train will be
==> 2 hrs x V = 2V
the distance traveled by the second train will be
==> 1.25 hrs x (V - 10) = 1.25(V - 10)
Equating the above distances to the total distance between the trains, we'll have
2V + 1.25(V - 10) = 215
2V + 1.25V - 12.5 = 215
3.25V = 215 + 12.5
3.25V = 227.5
V = 227.5/3.25 = 70 km/hr this is the speed of the first train
Recall that the speed of the second train is 10 km/hr slower, therefore
speed of the second train = 70 - 10 = 60 km/hr
The speed of the trains are 70km/hr and 60km/hr respectively.
The distance of the first train will be represented by: = 2 × D = 2D
The distance of the second train will be represented by: = 1.25 × (D - 10) = 1.25(D - 10).
Based on the information given in the question, the equation to solve the question will be:
2D + 1.25(D - 10) = 215
Collect like terms
2D + 1.25D - 12.5 = 215
3.25D = 215 + 12.5
3.25D = 227.5
D = 227.5/3.25
D = 70km/hour
The speed of the second train will be:
= 70 - 10 = 60km per hour.
Read related link on:
https://brainly.com/question/24720712
Assume that IQ scores are normally distributed, with a standard deviation of 16 points and a mean of 100 points. If 60 people are chosen at random, what is the probability that the sample mean of IQ scores will not differ from the population mean by more than 2 points
Answer:
The probability that the sample mean of IQ scores will not differ from the population mean by more than 2 points is 0.67
Step-by-step explanation:
Please check attachment for complete solution and step by step explanation
A theater is presenting a program on drinking and driving for students and their parents or other responsible adults. The proceeds will be donated to a local alcohol information center. Admission is $6.00 for adults and $3.00 for students. However, this situation has two constraints: The theater can hold no more than 240 people and for every two adults, there must be at least one student. How many adults and students should attend to raise the maximum amount of money?
Answer:
160 adults and 80 students
Step-by-step explanation:
With the information from the exercise we have the following system of equations:
Let x = number of students; y = number of adults
I want to maximize the following:
z = 3 * x + 6 * y
But with the following constraints
x + y = 240
y / 2 <= x
As the value is higher for adults, it is best to sell as much as possible for adults.
So let's solve the system of equations like this:
y / 2 + y = 240
3/2 * y = 240
y = 240 * 2/3
y = 160
Which means that the maximum profit is obtained when there are 160 adults and 80 students, so it is true that added to 240 and or every two adults, there must be at least one student.