Hey there! :)
Answer:
D: [8, 12].
R: [-10, -6].
Step-by-step explanation:
Notice that the endpoints of the graph are closed circles. This means that square brackets will be used:
The graphed equation is from x = 8 to x = 12. Therefore, the domain of the function is:
D: [8, 12].
The range goes from y = -10 to -6. Therefore:
R: [-10, -6].
Answer:
D: [8 , 12]
R: [-10 , -6]
Step-by-step explanation:
Well for this parabola domain and rage are acttually limited because of the solid dots you see on the graph.
So first things first, what is range? Well range is the amount of y values on a line or anything in a graph.
And what’s domain? Domain is the amount of x values on a line or whatnot.
So let’s do domain first.
On the parabola the first x value is 8 and the last is 12 so we have to write this in interval notation which is [8 , 12].
Now for range the lowest y value is -10 and the highest is -6 so in interval notation it is [-10 , -6].
help with this I don't know how to solve
Answer:
86.53
Step-by-step explanation:
Area of Triangle Formula: A = 1/2bh
Pythagorean Theorem: a² + b² = c²
Step 1: Draw altitude and label numbers
If we draw a line down the middle, we can see that we get a perpendicular bisector and that we get 2 right triangles with a hypotenuse of 29 and a leg of 3. We need to find h using Pythagorean Theorem in order to use area formula:
3² + b² = 29²
b² = 29² - 3²
b = √832 = h
Step 2: Plug in known variables into area formula:
A = 1/2(√832)(6)
A = 3√832
A = 86.5332
Construct a confidence interval of the population proportion at the given level of confidence.
x equals =860
n equals =1200
94% confidence
The lower bound of the confidence interval is __?
Answer:
The lower bound of the confidence interval is 0.6922.
Step-by-step explanation:
We have to calculate a 94% confidence interval for the proportion.
The sample proportion is p=0.7167.
[tex]p=X/n=860/1200=0.7167[/tex]
The standard error of the proportion is:
[tex]\sigma_p=\sqrt{\dfrac{p(1-p)}{n}}=\sqrt{\dfrac{0.7167*0.2833}{1200}}\\\\\\ \sigma_p=\sqrt{0.000169}=0.013[/tex]
The critical z-value for a 94% confidence interval is z=1.8808.
The margin of error (MOE) can be calculated as:
[tex]MOE=z\cdot \sigma_p=1.8808 \cdot 0.013=0.0245[/tex]
Then, the lower and upper bounds of the confidence interval are:
[tex]LL=p-z \cdot \sigma_p = 0.7167-0.0245=0.6922\\\\UL=p+z \cdot \sigma_p = 0.7167+0.0245=0.7412[/tex]
The 94% confidence interval for the population proportion is (0.6922, 0.7412).
The figure shows a person estimating the height of a tree by looking at the
top of the tree with a mirror. Assuming that both the person and the tree form
right angles with the ground, which of the following proportions can be used
to estimate the height of the tree
Answer:
[tex]\frac{6}{5} =\frac{x}{12}[/tex]
Step-by-step explanation:
Write a proportion in the form:
Height/side= height/side
The side lengths are 5 and 12.
The height (of the 5 side) is 6.
The proportion can be written as:
[tex]\frac{6}{5} =\frac{x}{12}[/tex]
Beginning three months from now, you want to be able to withdraw $2,300 each quarter from your back account to cover college expenses over the next four years. If the account pays .45 percent interest per quarter, how much do you need to have in your bank account today to meet your expense needs over the next four years?
Answer:
$36,450.46
Step-by-step explanation:
The amortization formula can be used to figure this. For quarterly payment A, the principal invested must be P for interest rate r and compounding n times per year for t years.
A = P(r/n)/(1 -(1 +r/n)^(-nt))
2300 = P(0.0045/4)/(1 -(1 +0.0045/4)^(-4·4))
2300 = P·0.06309934
P = 2300/0.06309934 = 36450.46
You need $36,450.46 in your account today so that you can withdraw $2300 quarterly for 4 years.
Suppose a random variable X is best described by a uniform probability distribution with range 1 to 5. Find the value of that makes the following probability statements true.
a) P(X <-a)= 0.95
b) P(X
c) P(X
d) P(X ->a)= 0.89
e) P(X >a)= 0.31
Answer:
a) 4.8
b) 2.96
c) 4.4
d) 1.44
e) 3.76
Step-by-step explanation:
What we will do is solve point by point, knowing the following:
Fx (x) = P (X <= x) = (x - 1) / 4
a) P (X <-a) = 0.95
Fx (a) = 0.95
(a -1) / 4 = 0.95
a = 1 + 0.95 * 4
a = 4.8
b) P (X <a) = 0.49
Fx (a) = 0.49
(a -1) / 4 = 0.49
a = 1 + 0.49 * 4
a = 2.96
c) P (X <a) = 0.85
Fx (a) = 0.85
(a -1) / 4 = 0.55
a = 1 + 0.85 * 4
a = 4.4
d) P (X> a) = 0.89
P (X <a) = 1 - 0.89 = 0.11
Fx (a) = 0.11
(a -1) / 4 = 0.11
a = 1 + 0.11 * 4
a = 1.44
e) P (X> a) = 0.31
P (X <a) = 1 - 0.31 = 0.69
Fx (a) = 0.69
(a -1) / 4 = 0.69
a = 1 + 0.69 * 4
a = 3.76
whats 1/2 + 2/4 - 5/8?
Answer:
3/8
Step-by-step explanation:
Step 1: Find common denominators
1/2 = 4/8
2/4 = 4/8
Step 2: Evaluate
4/8 + 4/8 - 5/8
8/8 - 5/8
3/8
Alternatively, you can just plug this into a calc to evaluate and get your answer.
Answer:
3/8
Step-by-step explanation:
Look at the denominator:
2, 4, 8. The LCM (Lowest Common Multiple) is 8.
So this equation becomes
4/8+4/8-5/8=3/8
The shape on the left is transformed to the shape on the right. Figure A B C D is rotated to form figure A prime B prime C prime D prime. Which of the following statements describes the transformation? A B C D right-arrow A prime B prime C prime D prime A prime B prime C prime D prime right-arrow A B C D A B C D right-arrow D prime A prime C prime B prime D prime B prime C prime A prime right-arrow C A D B
Answer:
A
Step-by-step explanation:
I did the test and it is the only one that makes sense
Answer:
a
Step-by-step explanation:
You wish to accumulate $14,580 in 6 years. Payments are made at the end of every six-month period into an account earning 7.2% compounded semi-annually. Find the required payment amount to accomplish your goal.
At 95% confidence, how large a sample should be taken to obtain a margin of error of 0.05 for the estimation of a population proportion
Answer:
A sample of 385 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
How large a sample:
We need a sample of n.
n is found when M = 0.05.
We dont know the true proportion, so we work with the worst case scenario, which is [tex]\pi = 0.5[/tex]
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.05 = 1.96\sqrt{\frac{0.5*0.5}{n}}[/tex]
[tex]0.05\sqrt{n} = 1.96*0.5[/tex]
[tex]\sqrt{n} = \frac{1.96*0.5}{0.05}[/tex]
[tex](\sqrt{n})^{2} = (\frac{1.96*0.5}{0.05})^{2}[/tex]
[tex]n = 384.16[/tex]
Rounding up
A sample of 385 is needed.
Which equation, when solved, gives 8 for the value of x?
A: 5/2x+7/2x=3/4x+14
B: 5/4x-9=3/2x-12
C: 5/4x-2=3/2x-4
D: 5/2x-7=3/4x+14
Answer:
Step-by-step explanation:
C. 5x/4-2=3x/2-4
5x/4 -2=6x/4-4
+4 +4
5x/4+2=6x/4
-5x/4
2=x/4
*4
x=8
Answer:
your answer is C
Step-by-step explanation:
g The p-value of a test is the probability of obtaining a result as or more extreme as the one obtained in the sample, assuming the null hypothesis is false
Answer:
The p-value is well defined as per the probability, [under the null hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was truly observed.
Step-by-step explanation:
The p-value is well defined as per the probability, [under the null hypothesis (H₀)], of attaining a result equivalent to or more extreme than what was truly observed.
We reject the null hypothesis if the p-value of a statistic is lower than the level of significance α.
And we fail to eject the null hypothesis if the p-value of a statistic is greater than the level of significance α.
A lower p-value indicates that the result is statistically significant.
And a higher p-value indicates that the result is not statistically significant.
You just purchased two coins at a price of $1,030 each. Because one of the coins is more collectible, you believe that its value will increase at a rate of 7.7 percent per year, while you believe the second coin will only increase at 7.1 percent per year. If you are correct, how much more will the first coin be worth in 20 years
Answer:4541(Rounded) 4541.99779(Unrounded)
Step-by-step explanation:
A= P(1 + r)^T
A= answer
P=principle(amount of money)
r=Rate(percent / 100)
T=Time(Annually)
1030(1 + .077)^20
Brainliest would be appericiated!
PLEASE HELP ASAP!!! A toy store has 10 stores all about the same size in a city the graph shows sales for one of the stores last month. Which statement is best supported by the information in the graph?
Answer:
The first one
Step-by-step explanation:
Took the test
Answer: 1/10 of the store's total sales last month were in appliances (lower right corner)
Step-by-step explanation:
Let's go through the four possible answers
In the upper left corner it says "Total mobile phone sales is likely 27,000" which is a paraphrase of what is given. The chart gives 9000 as the phone sales for that one particular store. If all stores are identical in performance, then we have 4*9000 = 36000 in total mobile phone sales. Of course, it's impossible to know for sure how the other stores did. So we can eliminate this as one of the answers.
In the upper right corner, it says "13% of the stores sales was in car electronics" (also paraphrased). We have 13 thousand in car electronics out of 17+13+6+9+15 = 60 thousand total. Divide the two values: 13/60 = 0.2167 = 21.67% approximately. So we can eliminate this as an answer.
In the lower left corner, it says "the total sales is likely greater than $300,000" but we don't know for sure because again we don't have the other charts for the three other stores. Assuming the four stores perform the same, then we'd have 4*60 = 240 thousand as the total and not 300 thousand. It's safe to say we can eliminate this as an answer.
In the lower right corner, it says "1/10 of the stores sales were appliances". This statement is true. Why? Because 6 thousand is the sales figure for appliances out of 60 thousand total. Divide the values: 6/60 = 1/10. So this is why the lower right corner is the answer.
No one is helping me :( Can someone please give me a hand? :(
Which statement best describes the graph of x^3 – 3x^2
- X + 3?
A.It starts down on the left and goes up on the right
and intersects the x-axis at x = -1, 2, and 3.
B.It starts down on the left and goes up on the right
and intersects the x-axis at x = -1, 1, and 3.
C.It starts up on the left and goes down on the right
and intersects the x-axis at x = -1, 2, and 3.
D.It starts up on the left and goes down on the right
and intersects the x-axis at x = -1, 1, and 3.
I flip a fair coin 17 times. Answer the following questions:
a. What is the probability of getting 9 heads?
b. What is the probability of getting 2 heads?
c.. What is the probability of getting 1 tail?
d. What is the probability of getting 14 or more heads?
e. What is the probability of getting 17 tails?
Answer:
A) 0.1855
B) 0.0010376
C) 0.0001297
D) 0.006363
E) 0.000007629
Step-by-step explanation:
In calculation of a probability, we normally take the ratio of the number of ways to meet a certain condition (i.e. the numerator) divided by the number of ways to pick from a pool (i.e. the denominator).
So what are the number of ways the flip of a coin 17 times can come out?
A coin has a head and tail, so each toss will have two possible results. If we toss once, we have 2 possible results. If we toss, twice we have 2² = 4 possible results.
If we toss thrice, we have 2³ = 8 possible results, etc.
Thus, for 17 tosses, we will have 2^(17) = 131072 possible results.
A) To achieve the probability of getting 9 heads, we will use combination formula;
C(n, k) = n! / (k!(n - k)!)
In this case, n = 17 and k = 9
So,
P(9 heads) = 17! / (9!(17 - 9)!) = 24310
Thus,
P(9 heads in 17 tosses of a fair coin) = 24310/131072 = 0.1855
B) Similar to A above;
P(2 heads) = 17! / (2!(17 - 2)!) = 136
Thus,
P(2 heads in 17 tosses of a fair coin) = 136/131072 = 0.0010376
C) Similar to A above;
P(1 tail) = 17! / (1!(17 - 1)!) = 17
Thus,
P(1 tail in 17 tosses of a fair coin) = 17/131072 = 0.0001297
D) probability of getting 14 or more heads?
Since, there are 17 tosses, this will be;
P(14 or more heads in 17 tosses) = P(14 heads in 17 tosses) + P(15 heads in 17 tosses) + P(16 heads in 17 tosses) + P(17 heads in 17 tosses)
P(14 heads) = 17! / (14!(17 - 14)!) = 680
P(15 heads) = 17! / (15!(17 - 15)!) = 136
P(16 heads) = 17! / (16!(17 - 16)!) = 17
P(17 heads) = 17! / (1!(17 - 17)!) = 1
Thus;
P(14 heads in 17 tosses) = 680/131072 = 0.005188
P(15 heads in 17 tosses) = 136/131072 = 0.0010376
P(16 heads in 17 tosses) = 17/131072 = 0.0001297
P(1 head in 17 tosses) = 1/131072 = 0.00000763
P(14 or more heads in 17 tosses) = 0.005188 + 0.0010376 + 0.0001297 + 0.00000763 = 0.006363
E) Similar to A above;
P(17 tails) = 17! / (17!(17 - 17)!) = 1
Thus,
P(17 tails in 17 tosses of a fair coin) = 1/131072 = 0.000007629
During a 5 5 -day period, a florist served a different number of customers at a flower shop each day. The mean number of daily customers served during this period was 17 17 . In the following month, during another 5 5 -day period, the florist served 16 16 customers per day for four of the days, but served 25 25 customers on the fifth day. What is the difference between the mean number of customers the florist served during each of the two five-day periods?
Answer:
0.8
Step-by-step explanation:
Mean for the first 5 day period = 17
Mean for the second 5 day period = 17.8
Difference 17.8 - 17 = 0.8
The difference between the mean number of customers the florist served during each of the two five-day periods is of 0.8.
-------------------------------
The mean of a data-set is the sum of all values in the data-set divided by the number of values.
-------------------------------
First period:
5 days, mean of 17.
-------------------------------
Second period:
First four days, mean of 16, thus total of [tex]4 \times 16 = 64[/tex]Fifth day, 25 customers.Thus, 64 + 25 = 89 customers in 5 days, and the mean is:
[tex]M = \frac{89}{5} = 17.8[/tex]
-------------------------------
Difference:
17.8 - 17 = 0.8
The difference between the mean number of customers the florist served during each of the two five-day periods is of 0.8.
A similar question is given at https://brainly.com/question/10235056
Solve for y: |6y - 3| + 8 = 35 Select one: a. y = -5 b. y = 5 or y = -4 c. =5=−203 y = 5 o r y = − 20 3 d. y = 5
Answer:
y=5 or y=-4
Step-by-step explanation:
6y - 3| + 8 = 35
|6y-3|=35-8
|6y-3|=27
either 6y-3=-27 then 6y=27+3
y=30/6=5
or 6y-3=-27
6y=-27+3
y=-24/6
y=-4
What is coefficient of the term of degree of degree 5 in the polynomial below 3x^6+5-x^2+4x^5-9 which one is the right answer A. 3 B. 4 C. 6 D. 5
Answer:
B. 4
Step-by-step explanation:
We are looking for the coefficient of the term x⁵. When we see it in the polynomial as 4x⁵, our coefficient and answer would then be 4.
Find the values of x and y in these equations. (x + yi) + (4 + 6i) = 7 − 2i (equation A) (x + yi) − (-8 + 11i) = 5 + 9i (equation B)
Answer:
Step-by-step explanation:
(x+yi)+4+6i=7-2i
x+yi=7-2i-4-6i
x+yi=3-8i
equating real and imaginary parts
x=3,y=-8
B.
x+yi=5+9i+(-8+11i)
x+yi=5+9i-8-11i
x+yi=-3-2i
equating real ,and imaginary parts
x=-3
y=-2
The value of x and y for equation A is
[tex]x=3, y=-8[/tex]
The value of x and y for equation B is
[tex]x=-3 , y=20[/tex]
Given :
[tex](x + yi) + (4 + 6i) = 7 - 2i[/tex]
find the value of x and y in the given equation
Lets open the parenthesis and combine like terms
Equate the real and imaginary part to solve for x and y
[tex]\left(x+4\right)+\left(y+6\right)i=7-2i\\x+4=7\\x=3\\\\y+6=-2\\y=-2-6\\y=-8[/tex]
The value of x=3 and y=-8
Now we do the same with second equation
[tex](x + yi) - (-8 + 11i) = 5 + 9i\\\\x+8+yi-11i=5+9i\\\left(x+8\right)+\left(y-11\right)i=5+9i\\x+8=5\\x=-3\\\\y-11=9\\y=9+11\\y=20[/tex]
The value of x and y is x=-3 and y=20
Learn more : brainly.com/question/18552411
An airplane descends during the last hour of it's flight to prepare for landing. It's altitude changes at an average of -0.15 km per minute for those 60 minutes. Write an expression to represent the total change in the airplane's elevation. ( plz answer, will give brainliest )
Answer:
-.15 km/ minute * 60 minutes
-9 km
Step-by-step explanation:
The rate is -.15 km per minute
We have 60 minutes
distance = rate times time
change in elevation is the same as the distance change
change in elevation = -.15 km/ minute * 60
change in elevation =-9 km
Answer:
(0.15 km/min) * (60 min)
Step-by-step explanation:
We see that the plane descends 0.15 kilometres every minute over the span of 60 minutes.
Use the distance-rate-time formula: d = rt, where d is the distance, r is the rate, and t is the time.
Here, our rate is r = 0.15 km/min and our time is t = 60 minutes. Then the total change in elevation is:
d = rt
d = 0.15 * 60 = 9 km
Note that we disregard the negative sign from -0.15 km/min because the question is asking for the change in elevation. Change is never a negative value.
Hence, the expression will be: 0.15 * 60, which simplifies to 9 km.
~ an aesthetics lover
The mean weight of an adult is 6767 kilograms with a variance of 121121. If 164164 adults are randomly selected, what is the probability that the sample mean would be greater than 64.864.8 kilograms
Answer:
99.48% probability that the sample mean would be greater than 64.8 kilograms.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation(which is the square root of the variance) [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\mu = 67, \sigma = \sqrt{121} = 11, n = 164, s = \frac{11}{\sqrt{164}} = 0.86[/tex]
What is the probability that the sample mean would be greater than 64.8 kilograms?
This is 1 subtracted by the pvalue of Z when X = 64.8.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{64.8 - 67}{0.86}[/tex]
[tex]Z = -2.56[/tex]
[tex]Z = -2.56[/tex] has a pvalue of 0.0052
1 - 0.0052 = 0.9948
99.48% probability that the sample mean would be greater than 64.8 kilograms.
I NEED HELP ASAP,THANKS! :)
Roland’s Boat Tours sells deluxe and economy seats for each tour it conducts. In order to complete a tour, at least 1 economy seats must be sold and at least 6 deluxe seats must be sold. The maximum number of passengers allowed on each boat is 30 Roland’s Boat Tours makes $40 profit for each economy seat sold and $35 profit for each deluxe seat sold. What is the maximum profit from one tour? Show work.
Answer:
$1170
Step-by-step explanation:
Let x and y represent the numbers of economy and deluxe seats sold. The constraints are ...
x ≥ 1y ≥ 6x +y ≤ 30And the objective function we want to maximize is ...
p = 40x +35y
__
I find it convenient to graph the equations and locate the objective function line as far from the origin as possible. The graph is shown, along with the solution.
Here, it's even simpler than that. The profit per seat is the greatest for economy seats, so Roland's should sell as many of those as they can. The only limit is that 6 seats must be deluxe. The remaining 30-6=24 can be economy. So, the profit will be maximized for ...
24 economy seats and 6 deluxe seats
The corresponding profit will be ...
24(40) +6(35) = 1170
The maximum profit from one tour is $1170.
Box A contains 5green and 7 red balls. Box B contains 3green, 3 red and 6 yellow balls. A box is sleeted at random and a ball is drawn at random from it. What is the probability that the drawn ball is green?
Answer:
5/48Step-by-step explanation:
Given
the sample space for box A
green balls = 5
red balls= 7
sample size= 5+7= 12
the sample space for box B
green balls = 3
red balls= 3
yellow balls= 6
sample size= 3+3+6= 12
The probability of drawing a green ball from box A= 5/12
The probability of drawing a green ball from box B= 3/12= 1/4
Therefore the probability of picking a green ball from either of the boxes at random is =[tex]=\frac{5}{12} *\frac{1}{4}[/tex][tex]=\frac{5}{48}[/tex]
Select the expression that is equivalent to (x - 1)2.
O A. x2 - 2x + 2
O B. x2 - x + 2
O C. x2 - x + 1
O D. x2 – 2x + 1
Answer:
D
Step-by-step explanation:
(x - 1)² = (x - 1)(x - 1)
x² - x- x + 1 = x² - 2x + 1
Graph the equation y = 1/8x-7
Answer:
[tex]slope:1/8y-intercept:-7\\COORDINATES(x,-7)\\\\(56,0)[/tex]
Step-by-step explanation:
Mary Jo spends $2,690 to buy stock in two companies. She pays $24 a share to one of the companies and $25 a share to the other. If she ends up with a total of 110 shares, how many shares did she buy at $24 a share and how many did she buy at $25 a share?
Answer:
60 of 24 dollars each and 50 of 25 dollars
Step-by-step explanation:
x= 24 dollars
110 shares, total x at 24 dollars each
110-x at 25 dollars each
24x+25 (110-x)=2690
24x+ 2750 - 25x= 2690
-1x= -60
x= 60
24 multiplied by 60 =1440
2690-1440 =1250
1250 / 25 = 50
can u vote me as brainliest ?
Arrange in ascending order. 8/13, 2/9,28/29
Step-by-step explanation:
he operation of sorting fractions in ascending order: 18/46, 28/41, 29/38, 29/44, 32/30 ... terms equivalents: 18/46=(2×3^2)/(2×23)=((2×3^2)÷2)/((2×23)÷2)=9/23; 28/41 already reduced to ... by the largest exponents: LCM (9, 28, 29)=2^2×3^2× 7×29=7308 Calculate LCM, the least ... /10 </13 </19
Please Help! Select the correct answer. Simon used these steps to solve an equation:
Answer:
A.
Step-by-step explanation:
From Step 3 to Step 4, Simon added -42 to both sides.
This is the addition property of equality: as long as you add the same thing to both sides, the equation remains equal.
A.
Please help! Need Geometry help!!!!!
Answer:
938 feet
Step-by-step explanation:
b/c every angle of a rectangle is 90° u can u Pythagorean theroem to solve the question
a*a+ b*b=c*c
900*900+264*264=c*c
c=√879,696
c=938feet
Answer:
938 feet
Step-by-step explanation:
Well to solve this we need to use the Pythagorean Theorem,
[tex]a^2 + b^2 = c^2[/tex].
So we have a and b which are 900 and 264,
and we need to find c or the walking distance.
So we plug in 900 and 264 for a and b.
[tex](900)^2 + (264)^2 = c^2[/tex]
So, 900*900 = 810,000
264 * 264 = 69696
810000 + 69696 = 879696
So now we have,
879696 = c^2
To get the c by itself we do,
[tex]\sqrt{879696} = \sqrt{c}[/tex]
= c = 937.921105424
c = 938 rounded to the nearest foot
Thus,
the solution is 938.
Hope this helps :)
if there are about 3.346x10^26 molecules of water in a liter of water and the ocean is about 1.26x10^21 liters in volume, how many water molecules are there in the ocean?
Answer: 4.21596 x 10⁴⁷
Step-by-step explanation:
(3.346 x 10²⁶) (1.26 x 10²¹)
= (3.346 x 1.26) x 10²⁶⁺²¹
= 4.21596 x 10⁴⁷