In this question, we have to identify the zeros of the polynomial, along with a point, and then we get that the formula for the polynomial is:
[tex]p(x) = -0.5(x^3 - x^2 + 6x)[/tex]
------------------------
Equation of a polynomial, according to it's zeros:
Given a polynomial f(x), this polynomial has roots such that it can be written as: , in which a is the leading coefficient.
------------------------
Identifying the zeros:
Given the graph, the zeros are the points where the graph crosses the x-axis. In this question, they are:
[tex]x_1 = -2, x_2 = 0, x_3 = 3[/tex]
Thus
[tex]p(x) = a(x - x_{1})(x - x_{2})(x-x_3)[/tex]
[tex]p(x) = a(x - (-2))(x - 0)(x-3)[/tex]
[tex]p(x) = ax(x+2)(x-3)[/tex]
[tex]p(x) = ax(x^2 - x + 6)[/tex]
[tex]p(x) = a(x^3 - x^2 + 6x)[/tex]
------------------------
Leading coefficient:
Passes through point (2,-8), that is, when [tex]x = 2, y = -8[/tex], which is used to find a. So
[tex]p(x) = a(x^3 - x^2 + 6x)[/tex]
[tex]-8 = a(2^3 - 2^2 + 6*2)[/tex]
[tex]16a = -8[/tex]
[tex]a = -\frac{8}{16} = -0.5[/tex]
------------------------
Considering the zeros and the leading coefficient, the formula is:
[tex]p(x) = -0.5(x^3 - x^2 + 6x)[/tex]
A similar problem is found at https://brainly.com/question/16078990
The formula that represents the polynomial in the figure is [tex]p(x) = x^{3}-x^{2}-6\cdot x[/tex].
Based on the Fundamental Theorem of Algebra, we understand that Polynomials with real Coefficient have at least one real Root and at most a number of Roots equal to its Grade. The Grade is the maximum exponent that Polynomial has and root is a point such that [tex]p(x) = 0[/tex]. By Algebra we understand that polynomial can be represented in this manner known as Factorized form:
[tex]p(x) = \Pi\limits_{i=0}^{n} (x-r_i)[/tex] (1)
Where:
[tex]n[/tex] - Grade of the polynomial.
[tex]i[/tex] - Index of the root binomial.
[tex]x[/tex] - Independent variable.
We notice that polynomials has three roots in [tex]x = -2[/tex], [tex]x = 0[/tex] and [tex]x = 3[/tex], having the following construction:
[tex]p(x) =(x+2)\cdot x \cdot (x-3)[/tex]
[tex]p(x) = (x^{2}+2\cdot x)\cdot (x-3)[/tex]
[tex]p(x) = x^{3}+2\cdot x^{2}-3\cdot x^{2}-6\cdot x[/tex]
[tex]p(x) = x^{3}-x^{2}-6\cdot x[/tex]
The formula that represents the polynomial in the figure is [tex]p(x) = x^{3}-x^{2}-6\cdot x[/tex].
Here is a question related to the determination polynomials: https://brainly.com/question/10241002
I will be honest I'm having a major brain fart.. What's the line called and what's it do again? it's separating numbers.. Looks like this
29
---
3
I know I'm stupid for this one... I've been up for 30 hours studying and now I can't remember this.. I need sleep but can't till i figure this out now...
Answer:
fraction bar. separates numerator and denominator in a fraction
Answer:
basically a dividing symbol, but specifically used for fractions
Step-by-step explanation:
A ball is thrown straight up into the air from an initial height of 5 feet at time t = 0. The height, in feet, of the ball above the ground is given by h(t), where t is measured in seconds for 0 ≤ t ≤ 15. Based on the values of t and h(t) given in the table, for which value of t would the speed of the ball most likely be the greatest?
t (seconds) 0 3 6 9 12 15
h(t) (feet) 5 12 15 11 6 0
Select one:
a. 2 seconds
b. 5 seconds
c. 9 seconds
d. 15 seconds
Answer:
5 seconds
Step-by-step explanation:
The speed of an object is the rate of distance over time. The value of time (t) at the greatest speed of the ball is at 2 seconds
First, we calculate the speed using:
[tex]Speed = \frac{h(t)}{t}[/tex] --- i.e. distance/time
At t = 0, h(t) = 5
So;
[tex]Speed = \frac{5}{0} = unde fine d[/tex]
At t = 3, h(t) = 12
[tex]Speed = \frac{12}{3} = 4[/tex]
At t = 6, h(t) = 15
[tex]Speed = \frac{15}{6} = 2.5[/tex]
At t = 9, h(t) = 11
[tex]Speed = \frac{11}{9} = 1.2[/tex]
At t = 12, h(t) = 6
[tex]Speed = \frac{6}{12} = 0.5[/tex]
At t = 15, h(t) = 0
[tex]Speed = \frac{0}{15} = 0[/tex]
By comparing the above values, we notice that as time and height increases, the value of speed reduces.
This means that the greatest value of speed will be at the least value of time (t).
From the given options, the least value of time is at:
[tex]t = 2[/tex]
Hence, the value of time (t) at the greatest speed of the ball is at 2 seconds
Read more about speed at:
https://brainly.com/question/7359669
If f(x) = x2 + 9x – 14 and g(x) = x2 – x + 3, find (f – g)(x).
Answer:
10x-17
Step-by-step explanation:
f(x) = x^2 + 9x – 14
g(x) = x^2 – x + 3
(f – g)(x)=x^2 + 9x – 14 - (x^2 – x + 3)
Distribute the minus sign
(f – g)(x)=x^2 + 9x – 14 - x^2 + x - 3
Combine like terms
=10x-17
The mass of a species of mouse commonly found in houses is normally distributed with a mean of 20.2 grams with a standard deviation of 0.18 grams. Enter your responses as a decimal with 4 decimal places. (a) What is the probability that a randomly chosen mouse has a mass of less than 19.99 grams?
Answer:
12.1%
Step-by-step explanation:
Given that:
Mean (μ) = 20.2 grams and standard deviation (σ) = 0.18 grams.
The z score is a score used to determine the number of standard deviations by which the raw score is above or below the mean. A positive z score means that the raw score is above the mean and a negative z score means that the raw score is below the mean. It is given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
a) For x < 19.99 g:
[tex]z=\frac{x-\mu}{\sigma}\\\\z=\frac{19.99-20.2}{0.18} \\\\z=-1.17[/tex]
From the normal distribution table, P(x < 19.99) = P(z < -1.17) = 0.1210 = 12.1%
The probability that a randomly chosen mouse has a mass of less than 19.99 grams is 12.1%
15. What is the next number in this series?
6, 11, 9, 14, 12,
a. 17
b. 10
C. 18
d. 16
Answer:
a. 17
Step-by-step explanation:
The pattern is add 5 then subtract 2
What fraction of a pound is an ounce?
Answer:
1/16
Step-by-step explanation:
there are 16 ounces in a pound
Answer:
1/16 pounds
Step-by-step explanation:
(20/2 + 4)/2
^^^ I NEED A EQUATION LIKE THAT BUT FOR IT TO EQUAL 16
Answer:
Here are a few examples.
(30/2 + 1)/2
(26/2 + 3)/2
(28/2 + 2)/2
Please help me to find out the answer
9514 1404 393
Answer:
80.99 m
Step-by-step explanation:
The hypotenuse of the triangle is given, and the desired side length is the one adjacent to the angle marked. The relevant trig relation is ...
Cos = Adjacent/Hypotenuse
Multiplying by the hypotenuse, we find ...
RY = (82 m)cos(9°) ≈ 80.99 m
A train goes at a speed of 70km / h. If it remains constant at that speed, how many km will it travel in 60 minutes?
Answer:
Total distance travel by train = 70 km
Step-by-step explanation:
Given:
Speed of train = 70 km/h
Total time taken = 60 min = 60 / 60 = 1 hour
Find:
Total distance travel by train
Computation:
Distance = Speed × Time
Total distance travel by train = Speed of train × Total time taken
Total distance travel by train = 70 × 1
Total distance travel by train = 70 km
What number represents the same amount as 8 hundreds + 10 tens + 0 ones? i was told 810 is incorrect
Answer:
900
Step-by-step explanation:
You have 10 tens not 1 ten
8 * 100 + 10 * 10 + 0*1
800 + 100 + 0
900
Answer:
[tex]900[/tex]
Step-by-step explanation:
[tex]8 \times 100 + 10 \times 10 + 0 \times 1 \\ 800 + 100 + 0 \\ = 900[/tex]
The age of some lecturers are 42,54,50,54,50,42,46,46,48 and 48 calculate the mean age and standard deviation
Answer:
Mean age: 48
Standard deviation: 4
Step-by-step explanation:
a) Mean
The formula for Mean = Sum of terms/ Number of terms
Number of terms
= 42 + 54 + 50 + 54 + 50 + 42 + 46 + 46 + 48+ 48/ 10
= 480/10
= 48
The mean age is 48
b) Standard deviation
The formula for Standard deviation =
√(x - Mean)²/n
Where n = number of terms
Standard deviation =
√[(42 - 48)² + (54 - 48)² + (50 - 48)² +(54 - 48)² + (50 - 48)² +(42 - 48)² + (46 - 48)² + (46 - 48)² + (48 - 48)² + (48 - 48)² / 10]
= √-6² + 6² + 2² + 6² + 2² + -6² + -2² + -2² + 0² + 0²/10
=√36 + 36 + 4 + 36 + 4 + 36 + 4 + 4 + 0 + 0/ 10
=√160/10
= √16
= 4
The standard deviation of the ages is 4
construct thruth table for each of the following Statement
Rhonda I just got home from
If the mean difference gets larger and sample standard deviation stays the same, what happens to effect size?
Answer:
The effect size of the sample gets larger
Step-by-step explanation:
The effect size of the sample gets larger when the mean difference gets larger and the sample standard deviation stays the same. because the Cohen's effect size is proportional to mean difference and this can be proven below using the Cohen's formula
Cohen's effect size = Mean difference / standard deviation
form the question standard deviation is constant while the mean difference gets larger, hence the effect size will get larger as well
Simplify: y^-3
a) 3/y
b) - 1/y^3
c) -3y
d) 1/y^3
Answer:
1/y^3
Step-by-step explanation:
We know that a^-b = 1/a^b
y ^-3 = 1/y^3
coordinates of England
Answer:
52.3555 north
1.1745 west
Heights of men on a baseball team have a bell-shaped distribution with a mean of and a standard deviation of . Using the empirical rule, what is the approximate percentage of the men between the following values? a.166 cm and 202 cm b. 172cm and 196cm
Let assume that the mean is 184 and the standard deviation is 6
Heights of men on a baseball team have a bell-shaped distribution with a mean 184 of and a standard deviation of 6 . Using the empirical rule, what is the approximate percentage of the men between the following values? a.166 cm and 202 cm b. 172 cm and 196cm
Answer:
P(156<X<202) = 99.7%
P(172<X<196) = 95.5%
Step-by-step explanation:
Given that :
Heights of men on a baseball team have a bell-shaped distribution with a mean of and a standard deviation of . Using the empirical rule, what is the approximate percentage of the men between the following values? a.166 cm and 202 cm b. 172 cm and 196cm
For a.
Using the empirical rule, what is the approximate percentage of the men between the following values 166 cm and 202 cm.
the z score can be determined by using the formula:
[tex]z = \dfrac{X - \mu}{\sigma}[/tex]
[tex]z(166) = \dfrac{166-184}{6}[/tex]
[tex]z(166) = \dfrac{-18}{6}[/tex]
z(166) = -3
[tex]z(202) = \dfrac{202-184}{6}[/tex]
[tex]z(202) = \dfrac{18}{6}[/tex]
z(202) = 3
P(156<X<202) = P( μ - 3σ < X < μ + 3σ )
P(156<X<202) = P( - 3 < Z < 3)
P(156<X<202) = P( Z < 3) - P(Z < -3)
P(156<X<202) = 0.99865- 0.001349
P(156<X<202) = 0.997301
P(156<X<202) = 99.7%
For b.
b. 172 cm and 196cm
[tex]z = \dfrac{X - \mu}{\sigma}[/tex]
[tex]z(172) = \dfrac{172-184}{6}[/tex]
[tex]z(172) = \dfrac{-12}{6}[/tex]
z(172) = -2
[tex]z(196) = \dfrac{196-184}{6}[/tex]
[tex]z(196) = \dfrac{12}{6}[/tex]
z(196) = 2
P(172<X<196) = P( μ - 2σ < X < μ + 2σ )
P(172<X<196) = P( - 2 < Z < 2)
P(172<X<196) = P( Z < 2) - P(Z < -2)
P(172<X<196) = 0.9772 - 0.02275
P(172<X<196) = 0.95445
P(172<X<196) = 95.5%
Billy has x marbles. Write an expression for the number of marbles the following have… a) Charlie has 5 more than Billy b) Danny has 8 fewer than Billy c) Eric has three times as many as Billy
Answer:
Charlie: 5 + xDanny: x - 8Eric: x × 3Can someone please help me solve the equation?
Answer:
B opition is right
Step-by-step explanation:
The domina a function of
Choose the best answer to the following question. Explain your reasoning with one or more complete sentences. At 11:00 you place a single bacterium in a bottle, and at 11:01 it divides into 2 bacteria, which at 11:02 divide into 4 bacteria, and so on. How many bacteria will be in the bottle at 11:30?
Answer:
we could work this out by geometric sequence
Step-by-step explanation:
G1=2, G2=4, we have a formula,Gn=G1r^n-1
G2=G1 (r)^1, 4=2r, r=2
G30=G1 (2)^29=1,073,741,824 bacterium
Last year, Leila had $30,000 to invest. She invested some of it in an account that paid 6% simple interest per year, and she invested the rest in an account that paid 5% simple interest per year. After one year, she received a total of $1580 in interest. How much did she invest in each account?
Answer:
6%: $8,0005%: $22,000Step-by-step explanation:
Let x represent the amount invested at 6%. Then 30000-x is the amount invested at 5%. Leila's total earnings for the year are ...
0.06x +0.05(30000-x) = 1580
0.01x +1500 = 1580 . . . . . . . . . . . . simplify
0.01x = 80 . . . . . . . . . . . subtract 1500
x = 8000 . . . . . . . . . . . . multiply by 100
Leila invested $8000 at 6% and $22000 at 5%.
After running 3/4 of a mile tess has only run 1/3 how long is the race in miles but I want to know how you did it
a student ran out of time on a multiple choice exam and randomly guess the answers for two problems each problem have four answer choices ABCD and only one correct answer what is the probability that he answered neither of the problems correctly
Answer:
The probability that he answered neither of the problems correctly is 0.0625.
Step-by-step explanation:
We are given that a student ran out of time on a multiple-choice exam and randomly guess the answers for two problems each problem have four answer choices ABCD and only one correct answer.
Let X = Number of problems correctly answered by a student.
The above situation can be represented through binomial distribution;
[tex]P(X=r)=\binom{n}{r}\times p^{r}\times (1-p)^{n-r};x=0,1,2,3,....[/tex]
where, n = number of trials (samples) taken = 2 problems
r = number of success = neither of the problems are correct
p = probability of success which in our question is probability that
a student answer correctly, i.e; p = [tex]\frac{1}{4}[/tex] = 0.75.
So, X ~ Binom(n = 2, p = 0.75)
Now, the probability that he answered neither of the problems correctly is given by = P(X = 0)
P(X = 0) = [tex]\binom{2}{0}\times 0.75^{0}\times (1-0.75)^{2-0}[/tex]
= [tex]1 \times 1\times 0.25^{2}[/tex]
= 0.0625
A refrigeration system at your company uses temperature sensors fixed to read Celsius (0C) values, but the system operators in your control room understand only the Fahrenheit scale. You have been asked to make a Fahrenheit (°F) label for the high temperature alarm, which is set to ring whenever the system temperature rises above -10°C. What Fahrenheit value should you write on the label?
Answer:
14 °F
Step-by-step explanation:
To answer this problem, we will use the known celsius to fahrenheit conversion formula.
[Celsius * (9/5)] + 32 = Fahrenheit
Now we just plug in the value of celsius:
[-10 * (9/5)] + 32 = Fahrenheit
[ -2 * 9 ] + 32 = Fahrenheit
[ -18 ] + 32 = Fahrenheit
14 = Fahrenheit
So you should right 14(°F) on the label.
Cheers.
Apply the square root property of equality.
x + =
Answer:
Step-by-step explanation:
Answer:
+ 1/16 = +- 2/3
in figure , EF=1 and FC=2 What is the length of AC?
Step-by-step explanation:
ae=ec
ec=1+2=3
then ae=3
Answer:
6-most likely (AC=6)
Step-by-step explanation:
Because the 2 sides, AE and EC *look the same. Also you can look at the opposite sides.
*This is what I think
3 to the fourth power
Answer:
It's 81
Step-by-step explanation:
You can use a calculator on go.ogle :D
Find the first six partial sums S1, S2, S3, S4, S5, S6 of the sequence whose nth term is given. 1 2 , 1 22 , 1 23 , 1 24 , . .
Answer:
the first partial sum [tex]\mathbf{S_1= \dfrac{1}{2}}[/tex]
the second partial sum [tex]\mathbf{S_2= \dfrac{3}{4} }[/tex]
the third partial sum [tex]\mathbf{S_3= \dfrac{7}{8}}[/tex]
the fourth partial sum [tex]\mathbf{S_4= \dfrac{15}{16}}[/tex]
the fifth partial sum [tex]\mathbf{S_5= \dfrac{31}{32}}[/tex]
the sixth partial sum [tex]\mathbf{S_6= \dfrac{63}{64}}[/tex]
Step-by-step explanation:
The term of the sequence are given as : [tex]\dfrac{1}{2}[/tex], [tex]\dfrac{1}{2^2}[/tex], [tex]\dfrac{1}{2^3}[/tex], [tex]\dfrac{1}{2^4 }[/tex] , . . .
The nth term for this sequence is , [tex]\mathtt{a_n =( \dfrac{1}{2})^n}[/tex]
The nth partial sum of the sequence for [tex]\mathtt{a_1,a_2,a_3.... a_n}[/tex] is [tex]\mathtt{S_n}[/tex]
where;
[tex]\mathtt{S_n = a_1 +a_2+a_3+ ...+a_n}[/tex]
The first partial sum is: [tex]\mathtt{S_1= a_1}[/tex]
[tex]\mathtt{S_1= (\dfrac{1}{2})^1}[/tex]
[tex]\mathbf{S_1= \dfrac{1}{2}}[/tex]
Therefore, the first partial sum [tex]\mathbf{S_1= \dfrac{1}{2}}[/tex]
The second partial sum is: [tex]\mathtt{S_2= a_1+a_2}[/tex]
[tex]\mathtt{S_2= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2}[/tex]
[tex]\mathtt{S_2= \dfrac{1}{2} + \dfrac{1}{4}}[/tex]
[tex]\mathtt{S_2= \dfrac{2+1}{4} }[/tex]
[tex]\mathbf{S_2= \dfrac{3}{4} }[/tex]
Therefore, the second partial sum [tex]\mathbf{S_2= \dfrac{3}{4} }[/tex]
The third partial sum is : [tex]\mathtt{S_3= a_1+a_2+a_3}[/tex]
[tex]\mathtt{S_3= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2+(\dfrac{1}{2})^3 }[/tex]
[tex]\mathtt{S_3= \dfrac{1}{2} + \dfrac{1}{4}+\dfrac{1}{8}}[/tex]
[tex]\mathtt{S_3= \dfrac{4+2+1}{8}}[/tex]
[tex]\mathbf{S_3= \dfrac{7}{8}}[/tex]
Therefore, the third partial sum [tex]\mathbf{S_3= \dfrac{7}{8}}[/tex]
The fourth partial sum : [tex]\mathtt{S_4= a_1+a_2+a_3+a_4}[/tex]
[tex]\mathtt{S_4= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2+(\dfrac{1}{2})^3+(\dfrac{1}{2})^4 }[/tex]
[tex]\mathtt{S_4= \dfrac{1}{2} + \dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}}[/tex]
[tex]\mathtt{S_4= \dfrac{8+4+2+1}{16}}[/tex]
[tex]\mathbf{S_4= \dfrac{15}{16}}[/tex]
Therefore, the fourth partial sum [tex]\mathbf{S_4= \dfrac{15}{16}}[/tex]
The fifth partial sum : [tex]\mathtt{S_5= a_1+a_2+a_3+a_4+a_5}[/tex]
[tex]\mathtt{S_5= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2+(\dfrac{1}{2})^3+(\dfrac{1}{2})^4 +(\dfrac{1}{2})^5 }[/tex]
[tex]\mathtt{S_5= \dfrac{1}{2} + \dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}}[/tex]
[tex]\mathtt{S_5= \dfrac{16+8+4+2+1}{32}}[/tex]
[tex]\mathbf{S_5= \dfrac{31}{32}}[/tex]
Therefore, the fifth partial sum [tex]\mathbf{S_5= \dfrac{31}{32}}[/tex]
The sixth partial sum: [tex]\mathtt{S_5= a_1+a_2+a_3+a_4+a_5+a_6}[/tex]
[tex]\mathtt{S_6= (\dfrac{1}{2})^1 + (\dfrac{1}{2})^2+(\dfrac{1}{2})^3+(\dfrac{1}{2})^4 +(\dfrac{1}{2})^5 +(\dfrac{1}{2})^6 }[/tex]
[tex]\mathtt{S_6= \dfrac{1}{2} + \dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64} }[/tex]
[tex]\mathtt{S_6= \dfrac{32+16+8+4+2+1}{64}}[/tex]
[tex]\mathbf{S_6= \dfrac{63}{64}}[/tex]
Therefore, the sixth partial sum [tex]\mathbf{S_6= \dfrac{63}{64}}[/tex]
A taste test asks people from Texas and California which pasta they prefer, brand A or brand B. The table shows the results. A person is randomly selected from those tested. What is the probability that the person is from Texas, given that the person prefers Brand B? PLEASE HELP! I'll name you Brainliest if you're answer is the best!
Answer:
A
Step-by-step explanation:
It would be A because there are 45 people in Texas that prefer brand B. There are 105 people in total that prefer brand B. 45/105 is .42857... so rounded it would be .43, therefore A. I hope this helps.
Answer:
A
Step-by-step explanation:
What is the surface area?
9 ft
6 ft
3 ft
square feet
Answer:
the answer to this question is equal to 162
A spinner has five congruent sections, one each of blue, green, red, orange, and yellow. Yuri spins the spinner 10 times and records his results in the table. A 2-column table has 5 rows. The first column is labeled Color with entries blue, green, red, orange, yellow. The second column is labeled Number with entries 1, 2, 0, 4, 3. Which statements are true about Yuri’s experiment? Select three options. The theoretical probability of spinning any one of the five colors is 20%. The experimental probability of spinning blue is One-fifth. The theoretical probability of spinning green is equal to the experimental probability of spinning green. The experimental probability of spinning yellow is less than the theoretical probability of spinning yellow. If Yuri spins the spinner 600 more times and records results, the experimental probability of spinning orange will get closer to the theoretical probability of spinning orange.
Answer:
A. The theoretical probability of spinning any one of the five colors is 20%.
C. The theoretical probability of spinning green is equal to the experimental probability of spinning green.
E. If Yuri spins the spinner 600 more times and records results, the experimental probability of spinning orange will get closer to the theoretical probability of spinning orange.
These are the answers on edg 2020, just took the test.
Step-by-step explanation:
Answer:
a, c, e,
Step-by-step explanation:
:)