Answer:
Solution : 6 + 6i
Step-by-step explanation:
[tex]-3\left[\cos \left(\frac{-\pi }{4})\right+i\sin \left(\frac{-\pi }{4}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{-\pi }{2}\right)+i\sin \left(\frac{-\pi }{2}\right)\right][/tex]
This is the expression we have to solve for. Now normally we could directly apply trivial identities and convert this into standard complex form, but as the expression is too large, it would be easier to convert into trigonometric form first ----- ( 1 )
( Multiply both expressions )
[tex]-6\sqrt{2}\left[\cos \left(\frac{-\pi }{4}+\frac{-\pi \:\:\:}{2}\right)+i\sin \left(\frac{-\pi \:}{4}+\frac{-\pi \:\:}{2}\right)\right][/tex]
( Simplify [tex]\left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] for both [tex]\cos \left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] and [tex]i\sin \left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] )
[tex]\left(\frac{-\pi }{4}+\frac{-\pi }{2}\right)[/tex] = [tex]\left(-\frac{3\pi }{4}\right)[/tex]
( Substitute )
[tex]-6\sqrt{2}\left(\cos \left(-\frac{3\pi }{4}\right)+i\sin \left(-\frac{3\pi }{4}\right)\right)[/tex]
Now that we have this in trigonometric form, let's convert into standard form by applying the following identities ----- ( 2 )
sin(π / 4) = √2 / 2 = cos(π / 4)
( Substitute )
[tex]-6\sqrt{2}\left(-\sqrt{2} / 2 -i\sqrt{2} / 2 )[/tex]
= [tex]-6\sqrt{2}\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)[/tex] = [tex]-\frac{\left(-\sqrt{2}-\sqrt{2}i\right)\cdot \:6\sqrt{2}}{2}[/tex]
= [tex]-3\sqrt{2}\left(-\sqrt{2}-\sqrt{2}i\right)[/tex] = [tex]-3\sqrt{2}\left(-\sqrt{2}\right)-\left(-3\sqrt{2}\right)\sqrt{2}i[/tex]
= [tex]3\sqrt{2}\sqrt{2}+3\sqrt{2}\sqrt{2}i:\quad 6+6i[/tex] - Therefore our solution is option a.
The owner of a deli gathered data about the number of flavored bagels and plain bagels sold during the first hour of business for several days. He organized the data in a scatter plot, with x representing the number of flavored bagels and y representing the number of plain bagels sold. Then he used a graphing tool to find the equation of the line of best fit: y = 1.731x + 6.697. Based on the line of best fit, approximately how many flavored bagels can the deli expect to sell during an hour when 50 plain bagels are sold?
Answer:
Approximately 25 flavored bagels.
Step-by-step explanation:
The scatter plot is a graph on cartesian plane where;
y-axis represents the number of plain bagels sold.
x-axis representing the number of flavored bagels sold.
The equation of the straight line on the graph is;
y = 1.731x + 6.697
The graph formed is as attached below.
The slope of the graph means that for every 1 flavored bagel sold, 1.731 plain bagels are sold within one hour.
When y = 50 ;
50 = 1.731x + 6.697
x = [tex]\frac{50 - 6.697}{1.731}[/tex] = 25.01617562 ≈ 25 flavored bagels.
Answer:
25
Step-by-step explanation:
y varies directly as the square of R. If y is 7 when R is 3, find y when R is 15 . a) Write the variation. b) Find y when R is 15.
Step-by-step explanation:
a.
[tex]y = k {r}^{2} [/tex]
[tex]7 = k {3}^{2} [/tex]
[tex]7 = 9k[/tex]
[tex]k \: = \frac{7}{9} [/tex]
[tex]y \: = \frac{7}{9} {r}^{2} [/tex]
b.
[tex]y \: = \frac{7}{9} \times {15}^{2} [/tex]
[tex]y = \frac{7}{9} \times 225[/tex]
y = 175
g A slot machine has three slots; each will show a cherry, a lemon, a star, or a bar when spun. The player wins if all three slots show the same three items. a. How many simple events are in the sample space
Answer:
64
Step-by-step explanation:
Let us consider E_abc to be the event that a, b and c appear on the first, second and third slot of the spin machine.
Now, we are told that each slot has 4 possibilities which are a cherry, a lemon, a star, or a bar when spun.
Thus, from mn rule in probability, the total number of simple events in the sample space is = 4³ = 64
The locksmith is 37.9 kilometers west of the bank and 77.9 kilometers west of the garbage dump. The garbage dump is 128.6 kilometers east of the pet store. The pet store is 35.0 kilometers north of the hardware store. Which is closer to the pet store, the hardware store or the locksmith?
The correct answer is Hardware store
Explanation:
In this case, you need to determine the distance between the pet store and the locksmith to know if the distance is longer than the one from the pet store and the hardware (35 kilometers). Now this distance can be calculated by subtracting the distance from the locksmith to the garbage dump from the total distance between the pet store and the garbage dump. This is because the locksmith is between the pet store and the garbage, which means the distance between the pet store and the locksmith is a portion of the total distance, which is the distance from the pet store and the garbage dump. The process is shown below:
128.6 kilometers (distance from the garbage dump to the pet store) - 77.9 kilometers (distance from the garbage dump to the locksmith) = 50.7 (distance from the locksmith to the pet store
50.7 kilometers is greater than 35 kilometers, which means the hardware store is closer to the pet store
Which relation is a function?
Answer:
The second graph is a function.
Step-by-step explanation:
This is the only one that passes the vertical line test.
(If there exits a vertical line which passes through more than one point, then the relation is NOT a function).
Find y. A. √22 B. 8 C. √42 D. 4
Answer:
[tex]\Large \boxed{\mathrm{D. \ 4}}[/tex]
Step-by-step explanation:
The triangle is a right triangle.
We can use trigonometric functions to solve the problem.
tan θ = opp/adj
tan 30 = y/(4√3)
y = 4√3 tan 30
y = 4
PLS HELP:Find the side length, C.
Round to the nearest tenth.
Answer:
[tex]\huge\boxed{c = 14.9}[/tex]
Step-by-step explanation:
Using Cosine Rule
[tex]c^2 = a^2 + b^2 -2abCosC[/tex]
Where a = 11 , b = 7 and C = 110
[tex]c^2 = (11)^2+(7)^2-2(11)(7)Cos 110[/tex]
[tex]c^2 = 121+49-154 (-0.34)\\c^2 = 170+52.7\\c^2 = 222.7[/tex]
Taking sqrt on both sides
c = 14.9
PLEASE ANSWER ASAP!!
How many cubic centimeters (
[tex] {cm}^{3} [/tex]
) are there in a 5 gallon jug of water?
Must show your work!!!
any unrelated answer will be reported
Answer:
[tex]\boxed{\sf A}[/tex]
Step-by-step explanation:
[tex]\sf 1 \ gallon = 3785.41 \ cm^3[/tex]
[tex]\sf 5 \ gallon = \ ? \ cm^3[/tex]
[tex]\sf Multiply \ the \ gallon \ value \ by \ 3785.41.[/tex]
[tex]5 \times 3785.41 = 18927.1[/tex]
[tex]\sf Approximate \ the \ value.[/tex]
[tex]18927.1 \approx 19000[/tex]
Simplify the expression. Write the answer using scientific notation.
(5x107)(6x104)
A) 1.1 x 1012
B) 3.0x 1029
C) 3.0 x 1012
D) 1.1 x 1029
Answer:
3* 10 ^12
Step-by-step explanation:
(5x10^7)(6x10^4)
Multiply the numbers together
5*6 =30
Add the exponents
10^7 * 10 ^ 4 = 10 ^(7+4) = 10 ^11
30 * 10 ^11
But this is not scientific notation since 30 >10
Move the decimal one place to the left and add 1 to the exponent
3* 10 ^12
Answer:
3* 10 ^12
Step-by-step explanation:
Question 20
<
>
The height y (in feet) of a ball thrown by a child is
1
y = 22 + 4x + 5
12
where x is the horizontal distance in feet from the point at which the ball is thrown.
(a) How high is the ball when it leaves the child's hand?
feet
(b) What is the maximum height of the ball?
feet
(C) How far from the child does the ball strike the ground?
feet
Question Help: Message instructor
Submit Question
Answer:
y=4x+13.....................................
This person made a mistake. what is the mistake and what is the correct answer?!!
Answer: 44
Step-by-step explanation:
-5 + 3 and also what is 1/4 of 24
What is the answer i am struggling
Answer:
-5+3=-2
1/4 of 24 = 6
Step-by-step explanation:
Century Page: Date: A man bought a radio for Rs. 2000 and fixed its price so that after giving 20% discount he made 10% profit. Find the fixed price of the radio
With a 10% profit the radio would be 2000 x 1.10 = 2,200
A 20 % discount means it would sell for 80% of the total price.
Divide the 2200 by 80% to get the fixed price:
2200/0.8 = 2750
Fixed price = 2750
can someone help? i can’t figure this out; i’ll give brainliest:))
What we need to memorize when finding the slope is this formula:
[tex] \displaystyle \large{m = \frac{y_2 - y_1}{x_2 - x_1} }[/tex]
m here represents the slope. I hope this does not confuse you with line m.
The problem here is that we do not have any given points, but we have a way.
If we notice on the graph, the graph contains or passes through (2,-1) and (-2,1). We can use these points to find the slope. So let these be the following:
[tex] \displaystyle \large{(x_1,y_1) = (2 ,- 1)} \\ \displaystyle \large{(x_2,y_2) = ( - 2 ,1)} [/tex]
Then we substitute these points in the formula.
[tex] \displaystyle \large{m = \frac{ 1 - ( - 1)}{ - 2 - 2} }[/tex]
negative × negative = positive.
[tex] \displaystyle \large{m = \frac{ 1 + 1}{ - 2 - 2} } \\ \displaystyle \large{m = \frac{ 2}{ - 4} } \longrightarrow \boxed{m = - \frac{1}{2} }[/tex]
Since m represents the slope. Therefore, the slope of line m is -1/2
How many positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13
Answer:
10,000
Step-by-step explanation:
There are 2970 positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13
What is Number system?A number system is defined as a system of writing to express numbers.
We need to find
positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13
Let all 9 numbers ae
a+b+c+d+e+f+g+h+9=13
a+b+c+d+e+f+g+h=13-9
a+b+c+d+e+f+g+h=4
Then we use combinations
(n+k-1)Ck
¹¹C₄
11!/(11-4)!4!
11!/7!4!
330
Three hundred thirty times of nine is two thousand nine hundred seventy.
Now 330 ×9=2970
Hence there are 2970 positive integers less than 1,000,000 have exactly one digit equal to 9 and have a sum of digits equal to 13
To learn more on Number system click:
https://brainly.com/question/22046046
#SPJ1
(math and social studies) The two lines are messing me up and I'm not sure
Answer:
2009
Step-by-step explanation:
A deficit would be the least amount coming in (Revenues). and the most going out (Expenditures). So you look for the biggest gap. It appears the gap is largest in 2009.
Find f(2) given f(x) = -3x^3 + x^2 – 3
Answer:
D
Step-by-step explanation:
f(x) = -3x^3 + x^2 – 3 f(2) means that wherever you see a x, put in a 2.
f(2)= -3(2)^3 + (2)^2 - 3
f(2) = -3*8 + 4 - 3
f(2) = - 24 + 1
f(2) = - 23
[tex]\\ \sf \longmapsto f(2)[/tex]
[tex]\\ \sf \longmapsto -3(2)^3+(2)^2-3[/tex]
[tex]\\ \sf \longmapsto -3(8)+4-3[/tex]
[tex]\\ \sf \longmapsto -24+1[/tex]
[tex]\\ \sf \longmapsto -23[/tex]
Combine like terms to simplify the expression: 2/5k - 3/5 +1/10k
━━━━━━━☆☆━━━━━━━
▹ Answer
1/2k - 3/5
▹ Step-by-Step Explanation
2/5k - 3/5 + 1/10k
Collect like terms:
2/5k + 1/10k = 1/2
Final Answer:
1/2k - 3/5
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
Answer:
1/2k - 3/5
Step-by-step explanation:
Hey there!
Well the only fraction needed to combine are,
2/5 and 1/10.
To add them we need to make 2/5 have a denominator of 10.
To do that we multiply 5 by 2.
5*2 = 10
What happens to the denominator happens to the denominator.
2*2 = 4
Fraction - 4/10
4/10 + 1/10 = 5/10
5/10
simplified
1/2
1/2k - 3/5
Hope this helps :)
The following shows the monthly sales in units of six salespersons before and after a bonus plan was introduced. At 95% confidence, determine whether the bonus plan has increased sales significantly. (For the following matched samples, let the difference "d" be: d = after - before.)
Salesperson After Before
1 94 90
2 82 84
3 90 84
4 76 70
5 79 80
6 85 80
Answer:
Since the calculated value of t= 2.249 does not falls in the rejection region we therefore accept the null hypothesis at 5 % significance level . On the basis of this we conclude that the bonus plan has not increased sales significantly.
Step-by-step explanation:
The null and alternative hypotheses as
H0: μd=0 Ha: μd≠0
Significance level is set at ∝= 0.05
n= 6
degrees of freedom = df = 6-1 = 5
The critical region is t ( base alpha by 2 with df=5) ≥ ± 2.571
The test statistic under H0 is
t = d/ sd/ √n
Which has t distribution with n-1 degrees of freedom
Sales Difference
Person After Before d = after - before d²
1 94 90 4 16
2 82 84 -2 4
3 90 84 6 36
4 76 70 6 36
5 79 80 -1 1
6 85 80 5 25
∑ 18 118
d`= ∑d/n= 18/6= 3
sd²= 1/6( 118- 18²/6) = 1/6 ( 118 - 54) = 10.67
sd= 3.266
t= 3/ 3.266/ √6
t= 2.249
Since the calculated value of t= 2.249 does not falls in the rejection region we therefore accept the null hypothesis at 5 % significance level . On the basis of this we conclude that the bonus plan has not increased sales significantly.
Find the smallest positive integer that satisfies both of the following equations: = 3 (mod4) and = 5 (mod6)
Answer:
x=3mod4
Means that when x is divided by 4 it gives an unknown integer and a remainder of 3.
x/4 = Z + 3/4
Z= (x-3)/4
Where Z is the integer
x=5 mod6
x/6 = Y + 5/6
Y = (x-5)/6
Where Y is the integer
Z-Y must be an integer on equal to zero
(x-3)/4 - (x-5)/6
3(x-3)/12 - 2(x-5)/12
(3x-9-2x+10)/12
(x+1)/12
If it is equal to 0
x=-1. But x should be positive
If it is equal to 1
x=11
Hence the smallest possible number is 11
Find the gradient of the straight line joining the two points. (1,7) and (-1,-7)
Points: (-1,-7), (1,7)
Formula (y=mx+b):
y = 7x
Slope m: 7
Y-intercept b: 0
Parallel lines: 7x + any number
Must click thanks and mark brainliest
“Type ‘equal, supplementary, complementary, or vertical in the space provided’”
Answer:
Supplementary
Step-by-step explanation:
When the sum of 2 angles equal 180°, they are called supplementary angles. And they also form a straight line together.
<AOB (40°) and <BOC (140°) are not equal angles.
<AOB (40°) and <BOC (140°) are not complementary angles. Complementary angles add up to equal 90°.
<AOB (40°) and <BOC (140°) are not vertical angles. Vertical angles are opposite angles formed when two lines intersect.
<AOB (40°) and <BOC (140°) are supplementary angles. They add up to equal 180°.
You are certain to get a red card when selecting 27 cards from a shuffled deck. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusiv
Answer:
If something is guaranteed, it has a probability of 100%, or 1.
Step-by-step explanation:
A standard deck has 52 cards. Of these, half are red cards (diamonds and hearts) and half are black cards (clovers and spades)
Half of the deck is 26 cards (52 ÷ 2 = 26), so you have 26 red and 26 black cards.
What this means in our context is, if we draw 27 cards, even if we drew all 26 black cards, we would still have 1 red card.
So the probability is 100%, or 1, of drawing a red card when we pick 27 cards from a deck, no matter how it's shuffled
The probability of getting a red card is 1.
No matter how you shuffle the cards, the no of cards will remain the same.
Therefore, it will not affect the probability.
What is probability?
Probability is simply how likely something is to happen. Whenever we're unsure about the outcome of an event, we can talk about the probabilities of certain outcomes—how likely they are. The analysis of events governed by probability is called statistics.
Learn more about probability here: https://brainly.com/question/251701
#SPJ2
What is 2-(-8)????? And how do you solve it????
Subtracting a negative is the same as adding a positive. So 2-(-8) is really 2+8 = 10.
With something like 2-8, we start at 2 and move to the left 8 units to arrive at -6 on the number line. When we do 2-(-8), we start at 2 and move 8 units in the opposite direction since -8 is the opposite of 8.
In terms of money, you can think of a negative number as an IOU or it represents the amount of debt. Writing -8 means you are 8 dollars in debt. If we subtract away debt, then we have less of it and effectively its the same as adding dollars to your pocket. Subtracting away 8 dollars of debt is the same as adding 8 dollars to your pocket, which is one interpretation of how 2-(-8) is the same as 2+8.
normal population has a mean of 63 and a standard deviation of 13. You select a random sample of 25. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places): Greater than 65.
Answer:
0.2207
Step-by-step explanation:
Here, we want to find the probability that the sample mean is greater than 25.
What we use here is the z-scores statistic
Mathematically;
z-score = (x-mean)/SD/√n
From the question;
x = 65, mean = 63, SD = 13 and n = 25
Plugging these values in the z-score equation, we have
Z-score = (65-63)/13/√25 = 2/13/5 = 0.77
So the probability we want to calculate is ;
P(z > 0.77)
This can be obtained from the standard normal distribution table
Thus;
P(z > 0.77) = 0.22065 which is 0.2207 to 4 d.p
NEED HELP ASAP!! Trigonometry!! Need to find x
Answer:
Hey there!
We have tangent x=8/10
This simplifies to tangent x=0.8
Arctan=0.8, x=38.7 degrees.
Let me know if this helps :)
Answer:
38.7
Step-by-step explanation:
You are given the lengths of the legs of the triangle.
The trig ratio that relates the lengths of the legs is the tangent.
tan x = opp/adj
tan x = 8/10
tan x = 0.8
Use the inverse tangent function to find x.
tan^(-1) 0.8 = 38.7 deg
Answer: x = 38.7 deg
Let f(x) = x - 1 and g(x) = x^2 - x. Find and simplify the expression. (f + g)(1) (f +g)(1) = ______
Answer:
The simplified answer of the given expression is 1.
Step-by-step explanation:
When you see (f + g)(x), then it means that you are going to add f(x) and g(x) together. So, we are going to add the terms together that are given in the problem. We are also given the value of x which is 1. So, we are going to combine this information together so we can simplify the expression.
(f + g)(1)
f(x) = x - 1
g(x) = x²
(f + g)(1) = (1 - 1) + (1²)
Simplify the terms in the parentheses.
(f + g)(1) = 0 + 1
Add 0 and 1.
(f + g)(1) = 1
So, (f + g)(1) will have a simplified answer of 1.
Complete the recursive formula of the geometric sequence -0.3,0.9,-2.7,8.1
Answer:
[tex]a_{n}[/tex] = - 3[tex]a_{n-1}[/tex] with a₁ = - 0.3
Step-by-step explanation:
The recursive formula for a geometric sequence is of the form
[tex]a_{n}[/tex] = r[tex]a_{n-1}[/tex]
where r is the common ratio
r = [tex]\frac{a_{2} }{a_{1} }[/tex] = [tex]\frac{0.9}{-0.3}[/tex] = - 3 , thus
[tex]a_{n}[/tex] = - 3[tex]a_{n-1}[/tex] with a₁ = - 0.3
Geometry Help needed Quick!!!!! Will give Brainliest to first answer Solve For X and Y
Answer:
x = 8
y = 2√3
Step-by-step explanation:
Since this is a right triangle
x^2 = (4√3)^2 + 4^2 ➡ x^2 = 64 and x = 8
Using Euclidean theorem
y^2 = (x-6)(x - x - 6) = 6x - 36
y^2 = 6×8 - 36
y^2 = 12
y = 2√3
Answer:
1 ) x = 8,
2 ) y = 2√3
Step-by-step explanation:
Take a look at the outermost triangle. I can tell that this is a 30 - 60 - 90 triangle, as if the leg opposite to the 30 degree angle was x, the other respective leg, opposite to the 60 degree angle, would be x√3. Here this " x " would be 4, but don't let that confuse you with the x we have to solve for.
As this outermost triangle is right, x is present as the hypotenuse and we can solve through Pythagorean Theorem,
( 4√3 )² + ( 4 )² = x²,
48 + 16 = x² = 64,
x = √64 = 8
And an inner triangle, present with y being a leg, has a respective leg length of x - 6, or 8 - 6 = 2. Let's solve for y using Pythagorean Theorem once more,
y² + 2² = 4²,
y² = 16 - 4 = 12,
y = √12 = √2 [tex]*[/tex] 2 [tex]*[/tex] 3 = 2√3
Evaluate 2/3 + 1/3 + 1/6 + …
Answer:
7/6
Step-by-step explanation:
The LCD of these three fractions is 6; the denominators 3, 3 and 6 divide evenly into 6.
Therefore we have:
4/6 + 2/6 + 1/6 = 7/6