Explanation of how we can make (a) subject

Explanation Of How We Can Make (a) Subject

Answers

Answer 1

Answer:

Step-by-step explanation:

Explanation Of How We Can Make (a) Subject

Related Questions

determine the formula for calculating distance covered:d=​

Answers

The formula for calculating distance covered is,

⇒ d = s × t

Where, 's' is speed of object and 't' is time.

We have to given that,

To find the formula for calculating distance covered.

Now, We know that,

We can calculate distance traveled by using the formula,

⇒ d = rt

We will need to know the rate at which you are traveling and the total time you traveled.

And, We can multiply these two numbers together to determine the distance traveled.

Thus, The formula for calculating distance covered is,

⇒ d = s × t

Where, 's' is speed of object and 't' is time.

Learn more about the multiplication visit:

https://brainly.com/question/10873737

#SPJ1

Evaluate the line integral ∫ (1,0,1) (2,1,0) F•dR for the conservative vector field F = (y + z^2)i + (x + 1)j + (2xz + 1)k by determining the potential function and the change in this potential.

Answers

The change in potential function is 1.

Given line integral is ∫ (1,0,1) (2,1,0) F·dR for the conservative vector field F = (y + z²)i + (x + 1)j + (2xz + 1)k by determining the potential function and the change in this potential.

Let's find the potential function first.Using the definition of conservative fields, we know that a conservative vector field is the gradient of a potential function V(x, y, z).So, we have to find a function V(x, y, z) whose gradient is equal to F, which is the given vector field.

So, let's find the potential function V using the given vector field F.

To find the potential function, we integrate the given vector field F, such that:∂V/∂x = (y + z²)  ⇒ V = ∫ (y + z²) dx = xy + xz² + c1∂V/∂y = (x + 1) ⇒ V = ∫ (x + 1) dy = xy + y + c2∂V/∂z = (2xz + 1) ⇒ V = ∫ (2xz + 1) dz = xz² + z + c3

Therefore, the potential function V(x, y, z) = xy + xz² + y + z + C is found.To find the change in the potential function, we need to evaluate the potential function at the initial and final points of the curve.

Let's take (1, 0, 1) and (2, 1, 0) as initial and final points respectively.∆V = V(2, 1, 0) - V(1, 0, 1)= (2 × 1 × 0) + 0 + 1 + 0 + C - (1 × 0 × 1) + 0 + 0 + 1 + C= 2 + C - 1 - C = 1

To know more about conservative fields click on below link:

https://brainly.com/question/2279150#

#SPJ11

If you go twice as fast, will your stopping distance increase by: A. Two times. B. Three times. C. Four times. D. Five times

Answers

If you go twice as fast, your stopping distance will increase by four times (option C).

This relationship is based on the laws of physics and the principles of motion.

When an object is in motion, its stopping distance is influenced by its initial speed, reaction time, and braking capabilities. The stopping distance consists of two components: the thinking distance (the distance traveled during the reaction time) and the braking distance (the distance needed to bring the object to a complete stop).

According to the laws of physics, the braking distance is directly proportional to the square of the initial speed. This means that if you double your speed, the braking distance will increase by a factor of four. In other words, going twice as fast will require four times the distance to come to a stop.

It is important to note that this relationship assumes other factors, such as road conditions and braking efficiency, remain constant. However, in real-world scenarios, these factors may vary and can affect the stopping distance to some extent.

To know more about laws of physics refer here:

https://brainly.com/question/13966796

#SPJ11

Find the equation in the xy-plane whose graph includes x = ln(9t) and y = t3.

Answers

The equation in the xy-plane that includes x = ln(9t) and y = t^3 is y = e^(x/3).

To find the equation in the xy-plane that includes the given parametric equations x = ln(9t) and y = t^3, we need to eliminate the parameter t.

Given x = ln(9t), we can rewrite it as t = e^(x/9).

Substituting this value of t into the equation y = t^3, we get y = (e^(x/9))^3.

Simplifying further, we have y = e^(3x/9) = e^(x/3).

Therefore, the equation in the xy-plane that includes x = ln(9t) and y = t^3 is y = e^(x/3).

Learn more about equation  here:

https://brainly.com/question/29657992

#SPJ11

Suppose you have the following information about a set of data. Samples are dependent, and distributed normally. Sample A: x-bar = 35.8 s = 8.58 n = 5 Sample B: x-bar = 26.8 s = 5.07 n = 5 Difference: d-bar = 9.0 s = 7.81 n = 5 What is the 95% confidence interval for the mean most appropriate for this situation? a. (-0.70, 18.70) c. (-1.32, 8.98) b. (-0.11, 12.76) d. (-15.34, 15.43)

Answers

Standard deviation is a measure of the dispersion or spread of a set of data values. It quantifies the average amount of variation or deviation from the mean of a dataset, providing insight into the data's variability.

To find the 95% confidence interval for the mean difference between two dependent samples, we need to use the formula:

d-bar ± t(α/2, n-1) × s/√n

where d-bar is the mean difference, s is the standard deviation of the differences, n is the sample size, and t(α/2, n-1) is the t-value from the t-distribution with n-1 degrees of freedom and a level of significance α/2.

Using the given information, we have:

d-bar = 9.0
s = 7.81
n = 5
t(0.025, 4) = 2.776 (from t-tables or calculator)

Plugging these values into the formula, we get:

9.0 ± 2.776 × 7.81/√5
= 9.0 ± 6.51
= (2.49, 15.51)

Therefore, the most appropriate 95% confidence interval for the mean difference is (2.49, 15.51), which means we can be 95% confident that the true mean difference between the two populations lies within this range.

Answer choice (b) (-0.11, 12.76) is close but not correct, as it does not include the lower end of the confidence interval.

Answer choices (a) and (c) are too narrow, while answer choice (d) is too wide.

To know more about standard deviation visit:

https://brainly.com/question/30634055

#SPJ11

identify the sample space of the probability experiment and determine the number of outcomes in the sample space. randp,ly choosing a number from the odd numbers between 1 and 9 inclusive

Answers

The sample space of a probability experiment consists of all possible outcomes that can occur when an event or experiment is performed.

In this particular experiment, we are randomly choosing a number from the odd numbers between 1 and 9 inclusive.

The odd numbers between 1 and 9 are 1, 3, 5, 7, and 9. Therefore, the sample space for this experiment consists of these five possible outcomes: {1, 3, 5, 7, 9}.

Each outcome in the sample space represents a possible result of the experiment, and the probability of each outcome occurring depends on the number of possible outcomes and the conditions of the experiment.

In this case, since there are five outcomes in the sample space, each outcome has a probability of 1/5, or 0.2, of occurring.

The sample space is an important concept in probability theory as it provides a framework for understanding the possible outcomes of an experiment and calculating probabilities based on these outcomes.

By identifying the sample space and the number of outcomes in it, we can begin to make predictions and draw conclusions about the likelihood of different events occurring.

To know more about sample space refer here:
https://brainly.com/question/31013249#

#SPJ11

Ce

Question 5 of 5

Drag each tile to the correct box.

Tashia is comparing the finance charges for three different loan options. Order Tashia's loan options from least to greatest finance

charge.

Principal Amount

Loan Option

option A

option B

option C

$18,000. 00

$17,000. 00

$15,000. 00

option A

option B

option C

$313. 30

$365. 24

$326. 48

Submit

Monthly Payment Amount

000

Loan Termi

60 months

48 months

4 years

Reset

Answers

Ordering Tashia's loan options from least to greatest finance charge is as follows:

Option C = 2.161%Option A = 1.720%Option B = 1.516%.

What is a finance charge?

A finance charge refers to the interest and other fees charged to a borrower for the extension of credit.

The finance charge is represented by the APR (annual percentage rate).

The finance charge can be computed using an online finance calculator as follows:

Loan Option      Principal    Monthly Payment   Loan Term

Option A         $18,000.00        $313. 30           60 months

Option B         $17,000.00       $365. 24           48 months

Option C        $15,000.00        $326. 48           4 years

Option A:

N (# of periods) = 60 months

PV (Present Value) = $18,000

PMT (Periodic Payment) = $-313.30

FV (Future Value) = $-0

Results:

I/Y = 1.720% if interest compound 12 times per year (APR)

I/Y = 1.734% if interest compound once per year (APY)

I/period = 0.143% interest per period

Sum of all periodic payments = $18,798.00

Total Interest = $798.00

Option B:

N (# of periods) = 48 months

PV (Present Value) = $17,000

PMT (Periodic Payment) = $-365. 24

FV (Future Value) = $-0

Results:

I/Y = 1.516% if interest compound 12 times per year (APR)

I/Y = 1.527% if interest compound once per year (APY)

I/period = 0.126% interest per period

Sum of all periodic payments = $-17,531.52

Total Interest = $531.52

Option C:

N (# of periods) = 48 months

PV (Present Value) = $15,000

PMT (Periodic Payment) = $-326. 48

FV (Future Value) = $-0

Results:

I/Y = 2.161% if interest compound 12 times per year (APR)

I/Y = 2.182% if interest compound once per year (APY)

I/period = 0.180% interest per period

Sum of all periodic payments = $15,671.04

Total Interest = $671.04

Learn more about the finance charge at https://brainly.com/question/30250781.

#SPJ1

21. Let a and b be real numbers. If
(a+bi)-(3-5i) = 7-4i,
what are the values of a and b?
A. a-10, b=-9
B. a 10, b=1
C. a=4, b=-9
D. a=4, b=1

Answers

Answer:

A. a = 10, b = -9

Step-by-step explanation:

Pre-Solving

We are given:

(a+bi)-(3-5i) = 7-4i

We know that a and b are both real numbers, and we want to find what a and b are.

Solving

For imaginary numbers, a is the real part, and bi is the imaginary part. This means that we consider the real numbers like terms, and the imaginary numbers like terms.

So to start, we can open the equation to become:

a + bi - 3 + 5i = 7 - 4i

Based on what we mentioned above:
a - 3 = 7

  + 3   +3

_____________

a = 10

And:

bi + 5i = -4i

    -5i    -5i

____________j

bi = -9i

Divide both sides by i.

bi = -9i

÷i    ÷i

_________

b = -9


So, a = 10, b= -9. The answer is A.

Name the kind or kinds of symmetry the following 2D figure has: point, line, plane, or none. (Select all that apply.) (H)

Answers

The kind of symmetry that the 2D figure has is: Option B: Line

What is the type of transformation symmetry?

Symmetry is defined as a specific type of rigid transformation that involves a reflection, rotation, or even translation of an object in such a manner that the resulting image is congruent to the original. Thus, symmetry is a type of transformation whereby an object is mapped onto itself in a way that preserves its shape and size.

For example, if an object has rotational symmetry, it means that it can be rotated by a certain angle and the resulting image will be congruent to the original. If an object has reflectional symmetry, it means that it can be reflected across a certain line and the resulting image will be congruent to the original.

Now, this object H will undergo a line symmetry because it is a 2D shape. A plane symmetry is used for a 3D shape.

Read more about transformation symmetry at: https://brainly.com/question/29189947

#SPJ1

Variable p is used 2 more than variable d. Variable p is also 1 less than variable d. Which pair of equations best models the relationship between p and d?

Answers

Answer:

  (a) p = d +2; p = d - 1

Step-by-step explanation:

You want to know the pair of equations modeling the relationships ...

p is used 2 more than dp is 1 less than d

Meaning of English

The phrase "2 more than d" means that 2 is added to d. The only offered pair of equations that has 2 added to d is ...

p = d + 2p = d - 1

__

Additional comment

Likewise, "1 less than variable d" means that 1 is subtracted from d: d -1. This is more about reading comprehension than it is about math.

<95141404393>

Problem 13. If V1, V2, ..., vm is a linearly independent list of vectors in V and λ ∈ F with λ ≠ 0, then show that λvi, λv2, ..., λvm is linearly independent. [10 marks]

Answers

The list λv1, λv2, ..., λvm is linearly independent vectos because the only solution to the equation λa1v1 + λa2v2 + ... + λamvm = 0 is a1 = a2 = ... = am = 0, given that V1, V2, ..., Vm is linearly independent and λ ≠ 0.

To prove that the list λv1, λv2, ..., λvm is linearly independent, we need to show that the only solution to the equation

a1(λv1) + a2(λv2) + ... + am(λvm) = 0

is a1 = a2 = ... = am = 0.

We can rewrite the equation as

(λa1)v1 + (λa2)v2 + ... + (λam)vm = 0

Since λ ≠ 0, we can divide each term by λ:

a1v1 + a2v2 + ... + amvm = 0

Now, we know that V1, V2, ..., Vm is a linearly independent list of vectors. Therefore, the only solution to the above equation is a1 = a2 = ... = am = 0.

Hence, we have shown that λv1, λv2, ..., λvm is linearly independent.

To know more about linearly independent vectors:

https://brainly.com/question/31035321

#SPJ4

find the area bounded by the graphs of the indicated equations over the given interval (when stated). compute answers to three decimal places. y=3x2; y=

Answers

The area bounded by the graphs of y = and y = 3x^2 over the interval [0, 1] is -1.

To find the area bounded by the graphs of the equations y = 3x^2 and y = in the given interval, we first need to determine the interval over which we want to find the area. Since the interval is not provided, I will assume it to be from x = 0 to x = 1 for the purpose of this explanation.

The area bounded by the graphs of two equations can be found by calculating the definite integral of the difference between the upper and lower functions over the given interval. In this case, the upper function is y = and the lower function is y = 3x^2.

To find the area, we need to evaluate the definite integral:

Area = ∫[0, 1] ( - 3x^2) dx

Let's calculate the integral step by step:

∫[0, 1] ( - 3x^2) dx = -3 ∫[0, 1] x^2 dx

To integrate x^2, we use the power rule of integration, which states that the integral of x^n is (1/(n+1))x^(n+1). Applying the rule, we have:

-3 ∫[0, 1] x^2 dx = -3 * (1/3)x^3 |[0, 1]

Evaluating the definite integral from 0 to 1:

-3 * (1/3)x^3 |[0, 1] = -x^3 |[0, 1]

Now, substitute the upper limit (1) into the expression and subtract the result of substituting the lower limit (0):

-1^3 - 0^3 = -1

Therefore, the area bounded by the graphs of y = and y = 3x^2 over the interval [0, 1] is -1.

Please note that the result is negative because the upper function (y = ) lies below the lower function (y = 3x^2) over the given interval. The absolute value of the result gives the magnitude of the area.

Learn more about area here

https://brainly.com/question/25292087

#SPJ11

Measures of association that can be computed in a cross-sectional study include which of the following? O Incidence density rate ratio Hazard ratio O Prevalence odds ratio Cumulative incidence risk ratio Relative risk

Answers

Incidence density rate ratio, hazard ratio, and cumulative incidence risk ratio are typically used in longitudinal or cohort studies rather than cross-sectional studies.

Measures of association that can be computed in a cross-sectional study include the following:

Prevalence odds ratio: The prevalence odds ratio compares the odds of a certain outcome or exposure between different groups in a cross-sectional study. It is commonly used to assess the association between a binary outcome and a binary exposure in a population at a specific point in time.

Relative risk: Relative risk, also known as risk ratio, compares the risk of an outcome between different groups in a cross-sectional study. It measures the ratio of the probability of an outcome occurring in one group compared to another group. Relative risk is commonly used to assess the association between an exposure and an outcome in a cross-sectional study.

The measures of association listed above, prevalence odds ratio and relative risk, are commonly used in cross-sectional studies to evaluate the relationship between exposures and outcomes. However, it's important to note that measures such as incidence density rate ratio, hazard ratio, and cumulative incidence risk ratio are typically used in longitudinal or cohort studies rather than cross-sectional studies.

Learn more about longitudinal here

https://brainly.com/question/14364881

#SPJ11

Only solve in spherical coordinates. Please explain how the phi
boundaries where determined inside both of the integrals:
Example 25 Express the volume of the region S bounded above by the sphere x2 + y2 + z2 = 2 and below by the paraboloid z = x2 + y2 a) in spherical coordinates

Answers

In the given example, the region S is a solid bounded above by the sphere [tex]$x^2+y^2+z^2=2$[/tex] and below by the paraboloid[tex]$z=x^2+y^2$[/tex]. We need to express the volume of S in spherical coordinates. The region S is symmetric with respect to the[tex]$xy$[/tex]-plane. So, the integral is taken over the upper hemisphere as well as the region above the [tex]$z$[/tex]-axis and below the paraboloid.

This implies that [tex]$\phi$[/tex] ranges from[tex]$0$ to $\pi/2$[/tex].At the intersection of the sphere and the paraboloid, we get[tex]$$x^2+y^2+z^2=2 \text{ and } z=x^2+y^2.$$[/tex] Solving this system of equations, we get [tex]$$x^2+y^2=1 \text{ and } z=1.$$[/tex] Therefore, the radius[tex]$p$[/tex] ranges from[tex]$0$ to $1$[/tex] and the angle [tex]$\theta$[/tex] ranges from [tex]$0$ to $2\pi$[/tex]. Thus, the volume of the region S in spherical coordinates is given by[tex]$$\iiint_S dp \,d\phi \,d\theta =\int_0^{2\pi}\int_0^{\pi/2}\int_0^1p^2\sin \phi \,dp\,d\phi\,d\theta.$$[/tex] Hence, the[tex]$\phi$[/tex] boundaries are determined as [tex]$\phi$ ranges from $0$ to $\pi/2$.[/tex]

To know more about sphere visit :-

https://brainly.com/question/22849345

#SPJ11

Ethology: The population, P, of fish in a lake t months after a nearby chemical factory commenced operation is given by P = 600(2 + e^-0.2t). Find the number of fish in the lake
(i) in the long run (that is, as t becomes very large).​

Answers

Answer:

The number of fish in the lake is given by the equation P = 600(2 + e^-0.2t).

When t = 0, the number of fish is P = 600(2 + e^0) = 600(2 + 1) = 1200.

Therefore, there are 1200 fish in the lake.

As time goes on, the number of fish will decrease exponentially. This is because the chemical factory is polluting the lake, which is killing the fish.

In 10 months, the number of fish will be P = 600(2 + e^-0.2*10) = 600(2 + 0.125) = 750.

In 20 months, the number of fish will be P = 600(2 + e^-0.2*20) = 600(2 + 0.0625) = 675.

As you can see, the number of fish is decreasing rapidly. In just 20 months, the number of fish will have decreased by more than half.

what are the 2 solutions tot he equation below?

Answers

The solution of the equation are 8 and -8

The equation is b²/4 + 45 =61

b square by four plus forty five equal to sixty one

b is the variable in the equation

We have to find the solution of the equation

b²/4 = 61-45

b²/4 =16

b²=64

b=±8

Hence, the solution of the equation are 8 and -8

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ1

i. A team of six members is chose from a group of eight. How many different teams can be selected? ii. How many three-digit numbers can be made from the following integers 2,3,4,5,6 if: a. Each integer is used only once. b.There is no restriction on the number of times each integer can be used. ill. Find the number of ways in which a committee of four can be chosen from six boys and six girls

Answers

i. To determine the number of different teams that can be selected from a group of eight members, we need to use the concept of combinations. Since the order of selection doesn't matter, we can calculate the number of combinations.

In this case, we need to select six members from a group of eight. The formula for combinations is given by nCr = n! / (r!(n-r)!), where n is the total number of members and r is the number of members to be selected. Substituting the values, we have 8C6 = 8! / (6!(8-6)!) = 8! / (6!2!) = (87) / (21) = 28. Therefore, there are 28 different teams that can be selected.

ii.

a. To find the number of three-digit numbers that can be made using the integers 2, 3, 4, 5, 6 without repetition, we need to calculate the permutations. Since each integer is used only once, we can apply the formula for permutations.

The number of permutations is given by nPr = n! / (n-r)!, where n is the total number of integers and r is the number of digits in the number. In this case, we have 5 integers and 3 digits. So, 5P3 = 5! / (5-3)! = 5! / 2! = (543) / (2*1) = 60.

b. If there is no restriction on the number of times each integer can be used, we can have repetition of digits in the three-digit numbers. In this case, we have five choices for each digit, as we can select any of the five integers. Therefore, the number of three-digit numbers is 5 * 5 * 5 = 125.

iii. To find the number of ways to choose a committee of four from six boys and six girls, we can use the concept of combinations. The total number of members is 6 boys + 6 girls = 12.

We need to select 4 members from this group. Using the formula for combinations, we have 12C4 = 12! / (4!(12-4)!) = 12! / (4!8!) = (1211109) / (4321) = 495. Therefore, there are 495 ways in which a committee of four can be chosen from the group.

Learn more about integers here : brainly.com/question/490943

#SPJ11

A cube has a volume of 512 cubic centimeters. Determine the area of each face of the cube.

Answers

the area of each face of the cube is 64 cm²

How to determine the value

First, we need to know that the formula for calculating the volume of a cube is expressed as;

V = a³

Such that the parameters are;

V is the volume of the cubea is the length of the side

Now, substitute the value, we get;

512 = a³

Find the cube root of both sides, we get;

a = ∛512

a = 8 centimeters

The formula for area of a cube is expressed as;

Area = a²

Substitute the value

Area = 8²

Find the square

Area = 64 cm²

Learn more about cube at: https://brainly.com/question/1972490

#SPJ1

find the value of h in the diagram below. give your answer in degrees.

Answers

28 degrees is the value of h in the given diagram with vertical angles

We have to find the value of h

The two angles are vertical

We know that the vertical angles are equal

408-12h= 72

Add 12 h on both sides

408=72+12h

Subtract 72 from both sides

408-72 =12h

336 = 12h

Divide both sides by 12

h=336/12

h=28

Hence, the value of h in the given diagram with vertical angles is 28 degrees

To learn more on Angles click:

https://brainly.com/question/28451077

#SPJ1

An object in the shape of a rectangular prism has a length of 9 inches, a width of 7 inches, and a height of 4 inches. The object’s density is 18.9 grams per cubic centimeters. Find the mass of the object to the nearest gram.

Answers

The calculated mass of the object is 78048 grams

Calculating the mass of the object

From the question, we have the following parameters that can be used in our computation:

length of 9 inches, a width of 7 inches, and a height of 4 inches.

So, the volume of the object is

Volume = 9 * 7 * 4

Evaluate

Volume = 252 cubic inches

Convert to cubic cm

Volume = 4129.54 cubic cm

The object’s density is 18.9 grams per cubic centimeters

So, we have

Mass = 18.9 * 4129.54

Evaluate

Mass = 78048

Hence, the mass of the object is 78048 grams

Read more about density at

https://brainly.com/question/1354972

#SPJ1

find an equation for the ellipse that shares a vertex and a focus with the parabola x^2 y=100

Answers

The equation of the ellipse that shares a vertex and a focus with the parabola x² y = 100 is ((x²)/(a²)) + ((y²)/(b²)) = 1. This equation represents an ellipse centered at the origin, with the x-axis as its major axis and the y-axis as its minor axis.

To find the equation of the ellipse, we need to determine the values of a and b, which represent the lengths of the major and minor axes, respectively. The vertex and focus of the ellipse coincide with those of the given parabola, which is in the form x²y = 100.

We start by considering the vertex. For the parabola, the vertex is located at the origin (0, 0). Hence, the center of the ellipse is also at the origin. Therefore, the x-coordinate and y-coordinate of the vertex of the ellipse are both zero.

Next, we consider the focus. In the equation of the parabola, we can rewrite it as y = 100/x². By comparing this with the standard equation of a parabola, y = 4a(x-h)² + k, where (h, k) is the vertex, we can deduce that

h = 0 and k = 0.

Thus, the focus of the parabola is located at (h, k + 1/(4a)), which in this case simplifies to (0, 1/(4a)). As the focus of the ellipse coincides with the focus of the parabola, we conclude that the focus of the ellipse is also (0, 1/(4a)).

Using the properties of the ellipse, we know that the distance between the center and either the vertex or the focus along the major axis is equal to a. In our case, the distance between the origin and the vertex is zero, so a = 0.

Also, the distance between the origin and the focus is equal to 1/(4a), so we have 1/(4a) = a. Solving this equation, we find a⁴ - 4a² - 1 = 0.

Solving this quartic equation, we find two positive real solutions for a: a = sqrt(100 + sqrt(101)) and a = sqrt(100 - sqrt(101)). These values represent the lengths of the semi-major axis of the ellipse.

Finally, we can write the equation of the ellipse as ((x²)/(a²)) + ((y²)/(b²)) = 1, where b represents the length of the semi-minor axis. Since the ellipse is symmetric, we have b = sqrt(a² - 1).

Plugging in the values of a, we obtain b = sqrt(100 - sqrt(101)).

Therefore, the equation of the ellipse that shares a vertex and a focus with the parabola x²y = 100 is ((x²)/(a²)) + ((y²)/(b²)) = 1,

where a = sqrt(100 + sqrt(101)) and b = sqrt(100 - sqrt(101)).

Learn more about Parabola:

brainly.com/question/29267743

#SPJ11

Use the properties of equality to find the value of x in this equation.

4(6x – 9.5) = 46
x = –1.5
x = 0.3
x = 1.79
x = 3.5

Answers

Answer:

x = 3.5

Step-by-step explanation:

4(6x - 9.5) = 46 ← divide both sides by 4

6x - 9.5 = 11.5 ← add 9.5 to both sides

6x = 21 ← divide both sides by 6

x = 3.5

Find the following logarithm using the change-of-base formula. 7 log 45
log 45= Use a calculator to find n log 9100/log 190 log 9100/log 190=
Express in terms of logarithms without exponents. Log b(xy6z-9)

Answers

To find the logarithm using the change-of-base formula,  can apply it to evaluate 7 log base 45 of 45. Additionally, using a calculator, can find the value of n log base 9100 of 190.

   Finding the logarithm using the change-of-base formula:

   To evaluate 7 log base 45 of 45, it can use the change-of-base formula, which states that log base a of b is equal to log base c of b divided by log base c of a. Applying this formula, have:

   7 log base 45 of 45 = 7 (log base 10 of 45 / log base 10 of 45) = 7.

   Calculating n log base 9100 of 190:

   Using a calculator, can find the value of n log base 9100 of 190 by dividing the logarithm of 9100 base 10 by the logarithm of 190 base 10:

   n log base 9100 of 190 = log base 10 of 9100 / log base 10 of 190.

   Expressing log base b of (xy^6z^-9) without exponents:

   To express the expression log base b of (xy^6z^-9) without exponents, we can use logarithmic properties. Specifically, can rewrite the expression as:

   log base b of (x) + 6 log base b of (y) - 9 log base b of (z).

To learn more about calculator- brainly.com/question/28586167

#SPJ11

find the general solution of the given differential equation. x dy/dx + 6y - x³ - x
y(x) = ...

Answers

The "general-solution" of differential-equation, "x(dy/dx) + 6y = x³ - x" is y(x) = (x³/9) - (x/7) + c/x⁶.

The differential-equation is given as : x(dy/dx) + 6y = x³ - x,

We first divide the whole "differential-equation" by variable "x",

So, we get,

dy/dx + (6/x)y = x² - 1,

The next-step, we integrate, it can be written as :

y×[tex]e^{\int{\frac{6}{x} } \, dx }[/tex] = ∫[tex]e^{\int{\frac{6}{x} } \, dx }[/tex].(x² - 1),

y.x⁶ = ∫(x⁸ - x⁶).dx

y.x⁶ = x⁹/9 - x⁷/7 + c,

Dividing both the sides by x⁶, we get

y = (x⁹/9)/x⁶ - (x⁷/7)/x⁶ + c/x⁶,

So, y(x) = (x³/9) - (x/7) + c/x⁶,

Therefore, the required general-solution is y(x) = (x³/9) - (x/7) + c/x⁶.

Learn more about Differential Equation here

https://brainly.com/question/30828690

#SPJ4

The given question is incomplete, the complete question is

Find the general solution of the given differential equation. x(dy/dx) + 6y = x³ - x.

what are the mean, median, and mode of the data set? mean: 87.2; median: 85.5; mode: 83 mean: 87; median: 85.5; mode: 85 mean: 87.1; median: 85; mode: 83 mean: 87.5; median: 85; mode: 83

Answers

Answer:

Step-by-step explanation:

The correct answer for the mean, median, and mode of the data set is:

mean: 87.2; median: 85.5; mode: 83

Mean: The mean is the average value of a data set. In this case, the mean is calculated to be 87.2.

Median: The median is the middle value of a sorted data set. In this case, the median is 85.5.

Mode: The mode is the value that appears most frequently in a data set. In this case, the mode is 83.

Therefore, the correct answer is:

mean: 87.2; median: 85.5; mode: 83

What are the roots of the quadratic equation f(x)=x2+3x−5 ?

Answers

i think it’s this but i’m not too sure…lmk

A study investigating the links between health risks and education surveyed adults in a metropolitan area and found that 19% of those without a high school degree, 15% of those with a high school degree/GED, and 7% of those with a college degree smoke cigarettes daily.
If you randomly selected 5 people in this area who do not have a high school degree, what is the probability that at least one of them smokes daily?

Answers

The probability that at least one of the randomly selected 5 people without a high school degree smokes cigarettes daily is approximately 0.67232 or 67.232%.

To find the probability that at least one of the randomly selected 5 people who do not have a high school degree smokes cigarettes daily, we can calculate the probability of the complement event (none of them smoke daily) and subtract it from 1.

Let's denote the event "at least one of them smokes daily" as A. The complement event "none of them smoke daily" is denoted as A'.

The probability that an individual without a high school degree smokes daily is 19%. Therefore, the probability that an individual does not smoke daily is 100% - 19% = 81%.

Assuming independence among individuals, the probability that none of the 5 randomly selected people smokes daily is:

P(A') = (0.81)^5

Thus, the probability that at least one of them smokes daily (P(A)) is:

P(A) = 1 - P(A')

= 1 - (0.81)^5

Calculating this expression:

P(A) ≈ 1 - 0.32768

≈ 0.67232

Therefore, the probability that at least one of the randomly selected 5 people without a high school degree smokes cigarettes daily is approximately 0.67232 or 67.232%.

Learn more about probability here:

https://brainly.com/question/32004014

#SPJ11

2(3x−4)+1=5
SOS hellp

Answers

To solve the equation 2(3x - 4) + 1 = 5, we will follow the order of operations (PEMDAS) which is Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction in that order.

First, we will simplify the expression inside the parentheses.

2(3x - 4) + 1 = 5

6x - 8 + 1 = 5

6x - 7 = 5

Next, we will isolate the variable term by adding 7 to both sides of the equation.

6x - 7 + 7 = 5 + 7

6x = 12

Finally, we will solve for x by dividing both sides by 6.

6x/6 = 12/6

x = 2

Therefore, the solution to the equation 2(3x - 4) + 1 = 5 is x = 2.

Answer :

x = 2

Step-by-step explanation:

2(3x−4)+1=5

6x - 8 + 1 = 5

6x - 7 = 5

6x = 5 + 7

6x = 12

x = 12 : 6

x = 2

Q5
QUESTION 5. 1 POINT Find the first five terms of the following sequence, starting with n = Give your answer as a list, separated by commas. an = (−1)"+¹(6n² – 10)

Answers

The first five terms of the sequence are -4, -14, 44, -86 and 140

Calculating the first five terms of the sequence

From the question, we have the following sequence notation that can be used in our computation:

aₙ = (-1)ⁿ ⁺ ¹ * (6n² - 10)

Set n = 1 to 5

So, we have the following representation

First term:

a₁ = (-1)¹ ⁺ ¹ * (6(1)² - 10) = -4

Second term:

a₂ = (-1)² ⁺ ¹ * (6(2)² - 10) = -14

Third term:

a₃ = (-1)³ ⁺ ¹ * (6(3)² - 10) = 44

Fourth term:

a₄ = (-1)⁴ ⁺ ¹ * (6(4)² - 10) = -86

Fifth term:

a₅ = (-1)⁵ ⁺ ¹ * (6(5)² - 10) = 140

Hence, the first five terms of the sequence are -4, -14, 44, -86 and 140

Read more about sequence at

https://brainly.com/question/30499691

#SPJ4

Help!! Complete the square x^2 -10x -24=0. Please label the answers in the sections to help me further understand where to put the answer! thanks :)

Answers

hello

the answer to the question is:

if ax² + bx + c = 0 ----> Δ = b² - 4ac ----> Δ = 100 - 96 = 4

if Δ > 0 ----> x1,2 = (- b ± √Δ)/2a ---->

x1 = 6, x2 = 4

Other Questions
specific people such as mothers, fathers, siblings, and peers that are irreplaceable to us are known as . chapter 2 Sikh sacred texts in addition to the Adi Granth includea. The Rig Veda and the Code of Manub. The Dasam Granth and the rahit-namac. The Qur'an and the Hadithsd. The Dhammapada and Questions of King Milinda Voltaire was a deist who viewed God as akin to aa. loving father who intervened when necessary in human affairs.b. clockmaker who set the universe in motion and then ceased to intervene in human affairs.c. king who required Christians to be intolerant of any who did not worship him correctly.d.farmer who carefully tended his crops from planting through harvest. Consider the set U = {f(x) E C (R)|f" + F" +9f' +9f =0}given that C^0 (R) is the vector space of all continuous functions on the reals, show that U is also a vector space. Can you find a basis for U and verify that it's a basis.and then conclude the problem by stating the dimensions of U the agile software development methodology is categorized by all of the following, except: Sasha has four 20 point projects for math class. Sasha'sscores on the first 3 projects is shown below:Project #1: 18Project #2: 15Project #3: 16Project #4: ??What does she need to score on Project #4 so that theaverage for the projects is a 17? An argumentative speech establishes a position on a topic in a concise manner by: (Select all that apply) Group of answer choices citing evidence . establishing a clear, concise claim . making logical connections between evidence and conclusions introducing a summary. Two vectors A and B are added together to give a resultant vector R: R = A + B. The magnitudes of A and B are 3 m and 8 m, respectively, but the vectors can have any orientation.What is (a) the maximum possible value and (b) the minimum possible value for the magnitude of R? Which of the following are usually needed as input to an RNN layer when dealing with time-series data? All of the above Batch size Dimensionality Time steps PQR is a right-angled triangle. R9. 6 cm5. 2 cmeWork out the size of the angle marked x. Give your answer correct to 1 decimal place. (2 marks) Which of the following roles is most commonly responsible for observing system and user activity, looking for violations, trends toward bottlenecks, and attempts to perform violations? a) Network administrators b) Support supervisors c) Senior management d) Auditors 9.0 g of aluminum at 200C and 20 g of copper are dropped into 44 cm3 of ethyl alcohol at 15C. The temperature quickly comes to 23 C. signs and symptoms of a stroke depend upon quizlet while changing the dressing of a client with a leg ulcer, the nurse observes a red, tender, and swollen wound at the site of the lesion. before reporting this finding to the healthcare provideer, the nurse should note which of the client's laboratory results? TRUE OR FALSE when the u.s. dollar appreciates in value, the united states will export fewer goods, ceteris startstrue or false 8. 1. 8. Groupwork Programming Challenge : ASCII Art the surface water circulation around antarctica is unique because Jim works for Joe is his hydraulic pump factory. Joe gives jim specific permission to buy raw material for the business. Which of the following describes Jim's legal position? A. Apparent agent B. Express agent C. Agent by ratification D. Impiled agent When analyzing a medical term, which is the recommended sequence?a) root, prefix, suffix.b) prefix, root, suffix.c) suffix, prefix, root.d) suffix, root, prefix wireless security was implemented well in the original 802.11 standard.