Explain the sensory and motor mechanisms by which these
cranial nerve reflexes happen
Masseter reflex

Answers

Answer 1

The Masseter reflex is a cranial nerve reflex that involves sensory and motor mechanisms. It is initiated by stimulation of the masseter muscle and results in the contraction of the jaw muscles.

The sensory component involves the trigeminal nerve (cranial nerve V), which detects the stretch or tension in the masseter muscle. The motor component involves the mandibular branch of the trigeminal nerve, which sends signals to the muscles responsible for jaw closure, leading to the reflexive contraction.

The Masseter reflex is a monosynaptic reflex, meaning it involves a single synapse in the nervous system. When the masseter muscle is stretched or tensed, sensory receptors called muscle spindles within the muscle detect this change. The sensory information is then transmitted via the sensory fibers of the trigeminal nerve (V3 branch) to the brainstem.

In the brainstem, the sensory information is relayed to the motor neurons responsible for controlling the muscles involved in jaw closure. These motor neurons, located in the motor nucleus of the trigeminal nerve, receive the sensory input and generate motor signals. The motor signals travel back through the mandibular branch of the trigeminal nerve to the muscles of mastication, including the masseter muscle.

The motor signals cause the jaw muscles to contract, leading to the reflexive closure of the jaw. This reflex serves a protective function by automatically closing the jaw in response to sudden or excessive stretching of the masseter muscle. It helps maintain the stability and positioning of the jaw during activities such as chewing or biting.

Overall, the Masseter reflex involves sensory detection of muscle tension by the trigeminal nerve and subsequent motor activation of the jaw muscles to produce a reflexive jaw closure.

Learn more about jaw muscles here:

https://brainly.com/question/32220967

#SPJ11


Related Questions

In what part of the kidney can additional water removed from the filtrate? The descending loop of Henle The proximal tubule The ascending loop of Henle The collecting duct

Answers

The collecting duct is the part of the kidney where additional water can be removed from the filtrate. This process occurs in the final step of urine formation and is regulated by antidiuretic hormone (ADH). The kidney is responsible for removing waste products and excess water from the body.

It also helps to regulate the balance of electrolytes and pH in the blood. The process of urine formation occurs in the nephrons, which are the functional units of the kidney.The filtrate, which is the fluid that is initially formed in the nephron, contains water, electrolytes, and waste products. This fluid is then modified as it moves through different parts of the nephron, such as the proximal tubule, the loop of Henle, and the distal tubule.In the collecting duct, additional water can be removed from the filtrate, which helps to concentrate the urine.

This process is regulated by antidiuretic hormone (ADH), which is produced by the hypothalamus and released by the pituitary gland. ADHD acts on the cells of the collecting duct, causing them to become more permeable to water. This allows more water to be reabsorbed from the filtrate and returned to the bloodstream. When there is a high concentration of ADH, more water is reabsorbed, and the urine becomes more concentrated. Conversely, when there is a low concentration of ADH, less water is reabsorbed, and the urine becomes more dilute.

To know more about duct visit:

https://brainly.com/question/12975642

#SPJ11

d- Label the following organisms as prokaryotes or eukaryotes Organism Tiger Fungi Pseudomonas bacteria Algae E. Coli bacteria Mushroom Streptococcus bacteria Human e- Name 2 differences between bacteria and archaea. (1 for each) Bacteria: Archaea: Prokaryote or Eukaryote d- Label the following organisms as prokaryotes or eukaryotes Organism Tiger Fungi Pseudomonas bacteria Algae E. Coli bacteria Mushroom Streptococcus bacteria Human e- Name 2 differences between bacteria and archaea. (1 for each) Bacteria: Archaea: Prokaryote or Eukaryote

Answers

Labeling organisms as prokaryotes or eukaryotes:

Tiger - Eukaryote

Fungi - Eukaryote

Pseudomonas bacteria - Prokaryote

Algae - Eukaryote

E. Coli bacteria - Prokaryote

Mushroom - Eukaryote

Streptococcus bacteria - Prokaryote

Human - Eukaryote

2 differences between bacteria and archaea: One difference between bacteria and archaea is that bacterial cell walls are made of peptidoglycan, while archaeal cell walls lack peptidoglycan. Another difference is that bacteria tend to have a single circular chromosome, while archaea often have several linear chromosomes.

Learn more about prokaryotes from the given link:

https://brainly.com/question/29054000

#SPJ11

If we find species A in Chiayi and Tainan, a closely related species B in Tainan and Kaohsiung, and these two species in Chiayi and Kaohsiung are more similar in certain resource use-related characteristics than they are in Tainan, explain (a) what specific ecological concepts may be used to describe this pattern, and (b) what else need to be confirmed?

Answers

(a) The specific ecological concepts that may be used to describe this pattern are niche differentiation and species coexistence.

(b) To confirm this pattern, further investigation is needed to determine if the differences in resource use-related characteristics between species A and B in Chiayi and Kaohsiung are consistent across different environments, and if these differences contribute to their coexistence. Additionally, genetic analysis should be conducted to confirm the close relationship between species A and B.

Learn more about environments here:

https://brainly.com/question/5511643

#SPJ11

Explain the potential consequences of mutations and how chromosomes determine the sex of a human individual. Determine autosomal and sex-linked modes of inheritance for single-gene disorders and explain what is meant by a carrier.

Answers

Mutations are a change in the genetic sequence, which could cause genetic disorders. The potential consequences of mutations can range from mild, such as producing an incorrect protein, to severe, such as completely preventing the protein from being produced or disrupting normal development or causing cancer.

The chromosomes determine the sex of a human individual because of the X and Y chromosomes. Females have two X chromosomes (XX), while males have one X and one Y chromosome (XY). If an egg cell is fertilized by a sperm cell that carries an X chromosome, the zygote will become a female. On the other hand, if an egg cell is fertilized by a sperm cell that carries a Y chromosome, the zygote will become a male.

Single-gene disorders could be inherited in two ways: autosomal and sex-linked. Autosomal inheritance occurs when the gene is located on one of the 22 pairs of autosomes. The mode of inheritance could be dominant or recessive. Sex-linked inheritance occurs when the gene is located on one of the sex chromosomes. For example, the hemophilia gene is located on the X chromosome and is recessive.

If a female carries one hemophilia gene on one of her X chromosomes, she is considered a carrier. On the other hand, if a male carries the gene on his X chromosome, he will develop hemophilia because there is no corresponding gene on the Y chromosome to mask the hemophilia gene's effects.

To know more about protein visit:

https://brainly.com/question/31017225

#SPJ11

1. If you weigh 130 pounds, how much do you weigh in kg? (2.2 pounds = 1kg). Make the following metric conversions: 2. 3.5m = cm 3. 275g = mg 4. 0.25 L = mL What is the volume of water in each of the measuring devices? A B What is the name of the measuring device used in 10 In an experiment, one group goes through all of the steps of an experiment but lacks or is not exposed to the factor being tested. What is this group?

Answers

The name of the measuring device used in 10 is the control group. In an experiment, one group goes through all of the steps of an experiment but lacks or is not exposed to the factor being tested. This group is referred to as the control group.

1. If you weigh 130 pounds, your weight in kg will be: \[130 \div 2.2=59.09\text{ kg}\]

2. Given: 3.5mTo find: In centimeter (cm)Conversion: 1 meter = 100 cm

Hence, 3.5 m = 3.5 × 100 cm = 350 cm. Therefore, 3.5m is equal to 350cm.

3. Given: 275gTo find: In milligrams (mg)Conversion: 1 gram = 1000 mg Therefore, 275g = 275 × 1000 mg = 275000 mg. Therefore, 275g is equal to 275000mg.

4. Given: 0.25LTo find: In milliliter (mL)Conversion: 1 liter = 1000 mL Therefore, 0.25 L = 0.25 × 1000 mL = 250 mL. Therefore, 0.25L is equal to 250mL.

Volume of water in each of the measuring devices:

A. The graduated cylinder reads as 35 mL, hence the volume of water in measuring device A is 35 mL.

B. The beaker is not graduated, hence it is impossible to tell the exact volume. Therefore, the volume of water in measuring device B cannot be determined. It is important to include a control group in an experiment because it provides a baseline or standard for comparison to the experimental group. It helps to determine the true effect of the variable being tested on the dependent variable.

To know more about control group visit:

https://brainly.com/question/32257330

#SPJ11

What were the improvements to the skeletomuscular system made by
vertebrate fishes, and how did they function to allow these fishes
to grow bigger and stronger than the protochordates?

Answers

The vertebrate fishes made several improvements to the skeletal and muscular systems compared to protochordates, which allowed them to grow bigger and stronger. These improvements include:

1. Endoskeleton: Vertebrate fishes developed an internal skeleton made of bone or cartilage, providing better support and protection for their bodies compared to the notochord found in protochordates. The endoskeleton allowed for more efficient muscle attachment, enabling stronger muscle contractions and greater overall strength.

2. Segmented Muscles: Vertebrate fishes evolved segmented muscles, which are organized into myomeres along the length of their bodies. This segmentation allows for more precise and coordinated movement, facilitating greater agility and maneuverability. The segmented muscles also provide a stronger force for swimming and propulsion through water.

3. Improved Gills: Vertebrate fishes developed specialized gills for efficient oxygen exchange. These gills, protected by gill covers called opercula, increased the capacity for extracting oxygen from water. This enhanced respiratory system enabled fishes to extract more oxygen, allowing for sustained and active swimming, which contributed to their growth and strength.

4. Enhanced Jaw and Feeding Mechanisms: Vertebrate fishes evolved a more sophisticated jaw structure and feeding apparatus, including specialized teeth and jaws capable of capturing and processing a wider range of prey. This improved feeding mechanism allowed fishes to consume larger quantities and more diverse types of food, providing the necessary nutrients for growth and increased strength.

By possessing these improvements in the skeletal and muscular systems, vertebrate fishes were able to achieve larger body sizes, increased muscle mass, and enhanced swimming capabilities compared to protochordates. These adaptations provided advantages in hunting, escaping predators, and occupying different ecological niches, ultimately leading to their success and dominance in aquatic environments.

To know more about muscular systems click here:

https://brainly.com/question/8165532

#SPJ11

fluoxetine can also inhibit atp synthase. Why might long term
use of fluoxetine be a concern?

Answers

Long-term use of fluoxetine may be a problem because it can inhibit ATP synthase, an enzyme that plays a critical role in ATP production. ATP synthase is essential for the production of ATP, a compound that serves as the primary energy source for cells.

As a result, inhibiting ATP synthase could cause cells to become depleted of energy, resulting in a variety of problems in the body. Additionally, long-term use of fluoxetine has been linked to weight gain and bone loss, which could be further exacerbated by the inhibition of ATP synthase.

While fluoxetine has many beneficial effects in the treatment of depression and other mood disorders, it is important to monitor patients for potential side effects, particularly when used over a long period of time.

Fluoxetine, like other selective serotonin reuptake inhibitors (SSRIs), inhibits the uptake of serotonin into nerve cells, resulting in increased levels of serotonin in the brain. This, in turn, can help alleviate symptoms of depression and other mood disorders. However, fluoxetine can also inhibit ATP synthase, an enzyme that plays a critical role in ATP production.

ATP synthase is essential for the production of ATP, a compound that serves as the primary energy source for cells. As a result, inhibiting ATP synthase could cause cells to become depleted of energy, resulting in a variety of problems in the body.

Additionally, long-term use of fluoxetine has been linked to weight gain and bone loss, which could be further exacerbated by the inhibition of ATP synthase. Fluoxetine can also interfere with the function of the liver and kidneys, which are important organs for detoxification and elimination of drugs from the body. This can lead to the accumulation of fluoxetine and its metabolites in the body, increasing the risk of side effects.

It is important to monitor patients for potential side effects, particularly when used over a long period of time.

The long-term use of fluoxetine can be a concern as it can inhibit ATP synthase, an enzyme that plays a critical role in ATP production. Inhibiting ATP synthase could cause cells to become depleted of energy, leading to a variety of problems in the body.

Additionally, fluoxetine has been linked to weight gain and bone loss, which could be further exacerbated by the inhibition of ATP synthase. It is important to monitor patients for potential side effects, particularly when used over a long period of time.

To know more about selective serotonin reuptake inhibitors  :

brainly.com/question/14621915

#SPJ11

Solar radiation is the primary driver of the Earth's climate. Why is this statement true for almost all places on the planet? Explain, using at least one example, how microclimates affect your ecology (i.e., the ecology of an individual human!). Define the terms "soil texture" and "soil porosity". How are these two soil characteristics related? How does having a mainly clay textured soil influence ecosystem characteristics?

Answers

Solar radiation is the primary driver of Earth's climate because it is the ultimate source of energy that drives atmospheric processes. It provides the energy that fuels the greenhouse effect, which helps to regulate the Earth's temperature. It is true for almost all places on the planet because the Earth is a sphere that rotates on its axis and is constantly bathed in solar radiation from the sun. The amount of solar radiation received by different parts of the Earth varies due to differences in latitude and altitude, but the basic mechanism remains the same. For example, the poles receive less solar radiation than the equator, leading to colder temperatures.

Microclimates can have a significant impact on the ecology of an individual human. A microclimate is a small-scale climatic environment that is different from the surrounding area. For example, a person living in an urban area may experience a microclimate that is hotter and more polluted than the surrounding countryside. This can lead to a number of health problems, such as respiratory issues and heat exhaustion.

Soil texture refers to the relative proportions of sand, silt, and clay in the soil. Soil porosity refers to the amount of space between soil particles. These two soil characteristics are related because the more clay there is in the soil, the more tightly packed the soil particles will be, resulting in less porosity. Clay soils are generally more fertile than sandy soils because they are better able to hold onto water and nutrients. However, they can also be more prone to erosion and compaction, which can have negative effects on ecosystem characteristics.

To know more about atmospheric visit:-

https://brainly.com/question/28405832

#SPJ11

What term is used to describe the process of the shedding of one or more limbs and what is the reason for this? Enter your answer here

Answers

The term used to describe the process of the shedding of one or more limbs is known as Autotomy. Autotomy is a phenomenon seen in animals and plants, in which a part or appendage of the body is voluntarily shed by the organism.

The reason for autotomy is to escape predation. Animals that have autotomy usually have weak regeneration abilities. These animals include arthropods (such as lobsters, spiders, and crabs), echinoderms (such as starfish and sea urchins), reptiles (such as geckos, salamanders, and lizards), and amphibians (such as salamanders).

The process of autotomy is a biological adaptation that helps animals to escape from predators, as well as to distract them by shedding a limb while they make their escape. Many animals that are subject to predation are able to perform autotomy. When an animal is being attacked, it can shed one or more of its limbs or appendages, which distracts the predator and allows the animal to escape.

To know more about limbs click here:

https://brainly.com/question/12993363

#SPJ11

correct terms in the answer blanks. 2. Complete the following statements concerning smooth muscle characteristics by inserting the 1. Whereas skeletal muscle exhibits elaborate connective tissue cover

Answers

Smooth muscle and skeletal muscle exhibit distinct characteristics. In contrast to skeletal muscle, smooth muscle lacks elaborate connective tissue cover.

Smooth muscle is a type of muscle tissue found in various organs of the body, such as the walls of blood vessels, digestive tract, and respiratory system. Unlike skeletal muscle, which is attached to bones and exhibits a striped or striated appearance, smooth muscle is non-striated and lacks the distinct banding pattern. Smooth muscle cells are spindle-shaped and have a single nucleus.

One of the significant differences between smooth muscle and skeletal muscle is the presence of connective tissue cover. Skeletal muscle is surrounded by a complex network of connective tissue layers, including the epimysium (outermost layer), perimysium (surrounding muscle bundles), and endomysium (encasing individual muscle fibers).

These connective tissue layers provide structural support, anchor the muscle to bones, and facilitate force transmission during muscle contractions. In contrast, smooth muscle lacks this elaborate connective tissue cover. Instead, smooth muscle cells are connected to one another through gap junctions, allowing coordinated contractions across the muscle tissue.

Overall, while skeletal muscle is characterized by its striated appearance and extensive connective tissue cover, smooth muscle lacks striations and has a simpler organization with minimal connective tissue. These differences contribute to the distinct functional properties and roles of smooth muscle and skeletal muscle in the body.

To learn more about digestive tract visit:

brainly.com/question/9225480

#SPJ11

Which is true of telomeres in the line of cells that undergo Melosis (germ cells) to produce gametes? Telomeres zet shorter with each new generation of cells Telomeres code for protective proteins Telomers are maintained at the same length They are haploid they are plaid

Answers

The correct answer is Telomeres get shorter with each new generation of cells.

Correct option is A.

Telomerase are special stretches of nucleotides located at the end of the chromosomes. They serve a important role in restricting the number of times a cell can divide, and are thus necessary for maintaining the integrity of cells during multiple replication cycles. In gamete-producing cells, telomeres shorten with each cell division.

This process leads to an eventual decline in cell function and mortality of the cell. The shortening of telomeres is caused by the action of an enzyme called telomerase, which is responsible for maintaining the length of the telomeres at a constant level, however, the amount of telomerase present in cells is insufficient to counteract the wearing away of telomeres.

Correct option is A.

know more about Telomeres here

https://brainly.com/question/30669390#

#SPJ11

the ica waveform has a peak-systolic velocity of 597cm/sec, with
end-end diastolic velocity of 223 cm/sec. which of the following
is/are true regarding this waveform?

Answers

The correct option that describes the waveform of ICA is the open systolic window suggests mild-to-moderate stenosis (<50% by diameter) and  the severely elevated peak-systolic velocities and end-diastolic velocities suggest severe ICA stenosis (>80%).  So, option B and D are correct.

What is the ICA waveform?

The internal carotid artery (ICA) waveform, which reflects cerebral blood flow, can be measured using color Doppler ultrasonography. When blood enters and leaves the brain, the waveform is generated, which can be used to evaluate the cerebrovascular state. Waveforms are classified into three categories based on resistance, including high resistance, low resistance, and mixed resistance.

What is a high-resistance waveform?

A high-resistance waveform refers to an arterial waveform that demonstrates a large difference between the highest systolic velocity and the lowest diastolic velocity, with a high-resistance index (RI). High systolic velocities, low diastolic velocities, and a relatively large difference between systolic and diastolic velocities are common characteristics of high-resistance waveforms, such as the ICA waveform.

What is a low-resistance waveform?

A waveform is considered a low-resistance waveform if it exhibits a small difference between the maximum systolic velocity and minimum diastolic velocity, with a low-resistance index (RI). Low resistance flow typically appears in large arteries with strong diastolic flow, such as the renal artery.

What is a mixed-resistance waveform?

The mixed-resistance waveform is a waveform with characteristics of both high and low resistance. In addition, the pulsatility index (PI) and resistance index (RI) of the waveform are calculated using the following equations:

Pulsatility Index (PI) = (Systolic Velocity - Diastolic Velocity) / Mean Velocity

Resistance Index (RI) = (Systolic Velocity - Diastolic Velocity) / Systolic Velocity

Therefore we can say that option B and D are correct answer.

Learn more about the Resistance here: https://brainly.com/question/29457799

#SPJ11

Complete Question:

The ICA waveform has a peak-systolic velocity of 597cm/sec, with end-end diastolic velocity of 223 cm/sec. which of the following is/are true regarding this waveform?

(A) this is within normal limits

(B) the open systolic window suggests mild-to-moderate stenosis (<50% by diameter)

(C) the elevated peak-systolic velocities and significant end-diastolic velocities suggest significant ICA stenosis (>50% diameter)

(D) the severely elevated peak-systolic velocities and end-diastolic velocities suggest severe ICA stenosis (>80%)

The first event to take place in the process of translation in eukaryotes is ..........
the formation of a peptide bond the binding of the two ribosomal subunits together the recognition of the 5' cap by a small ribosomal subunit the binding of the starter tRNA to the start codon

Answers

The first event to take place in the process of translation in eukaryotes is the recognition of the 5' cap by a small ribosomal subunit.

Translation is a process of protein synthesis that occurs in two major steps: initiation, elongation, and termination. Ribosomes, tRNAs, amino acids, mRNA, and other factors such as initiation, elongation, and termination factors are required for this process.

Initiation is the first step in translation, and it begins with the binding of the small ribosomal subunit to the 5’-cap of mRNA. Then, it moves toward the 3’ end of the mRNA, looking for the AUG start codon to bind to.The next event to occur is the binding of the initiator tRNA to the P site of the ribosome, which requires the assistance of the elongation factor eIF2, which is activated by GTP hydrolysis.

The large subunit then binds to the small subunit, and the eIFs are released, allowing the process of elongation to begin.

Therefore, the first event to take place in the process of translation in eukaryotes is the recognition of the 5' cap by a small ribosomal subunit.

To know more about translation, visit:

https://brainly.com/question/29979094

#SPJ11

mRNA degradation occurs in the cytoplasm
a- After exonucleolytic degradation 5–>3' as well as 3–>5'
b- By ribonucleoproteins
c- By endonucleolytic activity
d- By upf proteins
e- By deanilation

Answers

The correct option is B.

mRNA degradation occurs in the cytoplasm by ribonucleoproteins.

What is mRNA degradation?

Messenger RNA (mRNA) degradation is the method by which cells reduce the lifespan of mRNA molecules after they've served their purpose in the cell. The degradation of mRNA molecules begins with the removal of the 5′ cap structure, which is followed by the removal of the poly(A) tail by exonucleases in the 3′ to 5′ direction of the mRNA molecule. After the removal of the cap and tail, the mRNA molecule is broken down into smaller pieces by endonucleases or exonucleases.

This leads to the production of shorter RNA fragments that are then degraded into single nucleotides by RNases in the cytoplasm. The process of mRNA degradation involves a variety of proteins, including ribonucleoproteins, which are complexes of RNA and proteins.

Ribonucleoproteins are thought to be involved in all aspects of mRNA metabolism, from transcription and splicing to mRNA degradation. They bind to specific sequences in the mRNA molecule and help to regulate its stability and translation.MRNA degradation can occur through a variety of mechanisms, including exonucleolytic degradation 5–>3' as well as 3–>5', endonucleolytic activity, and upf proteins. However, ribonucleoproteins are the main proteins involved in mRNA degradation in the cytoplasm. Therefore, option B is correct.

To know more about mRNA, visit -

https://brainly.com/question/29314591

#SPJ11

Define biomagnification. Describe how the concentration of a chemical in an individual organism would compare between a primary producer and a tertiary consumer.

Answers

Biomagnification refers to the process by which the concentration of a chemical in an organism increases as it consumes prey containing the substance.

This is because as the chemical moves up the food chain, it becomes more concentrated in each organism. Primary producers (such as plants) are at the bottom of the food chain and generally have the lowest concentration of the chemical.

Herbivores (primary consumers) consume the plants and accumulate a higher concentration of the chemical in their bodies. Carnivores (secondary and tertiary consumers) consume the herbivores and accumulate an even higher concentration of the chemical in their bodies. Therefore, the highest concentration of the chemical would be expected in a tertiary consumer.

To know more about process visit:

https://brainly.com/question/14832369

##SPJ11

What do Synaptic Scaling & Metaplasticity refer to? please
describe these terms.

Answers

The Synaptic scaling regulates the overall strength of synaptic connections to maintain network stability, while meta plasticity modulates the ability of synapses to undergo further plastic changes based on their past activity patterns.

Synaptic scaling and meta plasticity are two related concepts in the field of neuroscience that describe different mechanisms of neuronal plasticity, which is the ability of the brain's neural connections to change in response to experiences and learning.

Synaptic scaling refers to the homeostatic regulation of synaptic strengths in neural circuits.

It is a process by which neurons adjust the overall strength of their connections to maintain a stable level of activity.

When there is an increase or decrease in neural activity, such as due to changes in input or network activity, synaptic scaling ensures that the overall excitability of the network remains within an optimal range.

This mechanism helps maintain the stability of neural circuits and prevents them from becoming overly excitable or underactive

Meta plasticity, on the other hand, refers to the plasticity of synaptic plasticity itself.

It is a phenomenon in which the history of previous synaptic activity influences the future plasticity of synapses.

Meta plasticity can enhance or suppress the ability of synapses to undergo long-term potentiation (LTP) or long-term depression (LTD), which are forms of synaptic plasticity associated with learning and memory.

It modulates the threshold for inducing synaptic changes, making the synapses more or less likely to undergo further modifications based on their prior activity patterns.

Meta plasticity plays a crucial role in shaping the stability, flexibility, and information processing capabilities of neural circuits.

Both processes contribute to the dynamic nature of neural circuits and are essential for the brain's ability to adapt, learn, and encode memories.

For similar questions on Synaptic scaling

https://brainly.com/question/7972666

#SPJ8

Complete dominance involves the expression of both alleles in
the heterozygote.
True
False

Answers

The given statement is false; Complete dominance involves the expression of only one allele in the heterozygote.

Complete dominance is a type of inheritance where one allele of a gene is dominant over another allele. In this type of inheritance, the dominant allele is expressed while the recessive allele is hidden. For instance, a brown-eyed parent and a blue-eyed parent can produce a child with brown eyes if brown eyes are dominant.

In a heterozygous combination, the genotype is expressed as the phenotype when complete dominance occurs. The heterozygous individual carries two different alleles for a particular trait but expresses only one of them. Therefore, the given statement "Complete dominance involves the expression of both alleles in the heterozygote" is false.

Learn more about inheritance here:

https://brainly.com/question/32109701

#SPJ11

if the distance between the basil and the oregano is 16 in and the distance between the thyme and the oregano is 4 in, what is the distance between the basil and the thyme?

Answers

The distance between the basil and thyme is approximately 16.49 inches.

To find the distance between the basil and thyme, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides.

Let's assign variables to represent the distances between the plants:

Let x be the distance between the basil and the thyme.

Let y be the distance between the basil and the oregano.

Let z be the distance between the thyme and the oregano.

From the problem statement, we know that y = 16 in and z = 4 in.

Using the Pythagorean theorem, we can write:

x^2 = y^2 + z^2

x^2 = 16^2 + 4^2

x^2 = 256 + 16

x^2 = 272

Taking the square root of both sides, we get:

x = sqrt(272)

x ≈ 16.49 in

Therefore, the distance between the basil and thyme is approximately 16.49 inches.

learn more about thyme here

https://brainly.com/question/29397756

#SPJ11

(A) What is Whole-Exome Sequencing(WES)?
(B)Discuss FIVE main steps in the WES workflow.
(C) What is the difference between ChIP-Seq and WES in terms of their applications?
(D) What analysis pipeline can be used to process exome sequencing data?
(E) Give ONE limitation of WES compared to whole-genome sequencing(WGS) in identifying genetic
variants in the human genome.

Answers

(A) Whole-Exome Sequencing (WES) is a technique used to sequence and analyze the exome, which refers to the protein-coding regions of the genome.

(B) The five main steps in the WES workflow are: (1) DNA extraction, (2) exome capture or enrichment, (3) sequencing, (4) data analysis, and (5) variant interpretation.

(C) ChIP-Seq is used to identify protein-DNA interactions, while WES focuses on sequencing the protein-coding regions of the genome to identify genetic variants associated with diseases.

(D) The analysis pipeline commonly used for processing exome sequencing data includes steps such as quality control, read alignment, variant calling, annotation, and filtering.

(E) One limitation of WES compared to whole-genome sequencing (WGS) is that it does not capture non-coding regions of the genome, potentially missing important genetic variants located outside of the exome that could be relevant to disease susceptibility or gene regulation.

A) Whole-Exome Sequencing (WES) is a genomic technique that focuses on sequencing the exome, which represents all the protein-coding regions of the genome.

B) The five main steps in the WES workflow are:

DNA sample preparation: Extracting and preparing DNA from the sample.Exome capture: Using target enrichment techniques to capture and isolate the exonic regions of the genome.Sequencing: Performing high-throughput sequencing of the captured exonic DNA fragments.Data analysis: Processing and analyzing the sequencing data to identify genetic variants.Variant interpretation: Interpreting the identified variants to determine their potential functional impact.

C) ChIP-Seq (Chromatin Immunoprecipitation Sequencing) is used to study protein-DNA interactions, while WES focuses on sequencing protein-coding regions of the genome for variant analysis.

D) Common analysis pipelines for processing exome sequencing data include steps such as quality control, read alignment to a reference genome, variant calling, annotation, and filtering to identify potentially relevant genetic variants.

E) One limitation of WES compared to whole-genome sequencing (WGS) is that it only captures the protein-coding regions, missing non-coding regions and potential regulatory elements, which may contain important genetic variants. WGS provides a more comprehensive view of the entire genome and allows for a broader range of genetic variant discovery.

To learn more about Whole-Exome Sequencing, here

https://brainly.com/question/32113237

#SPJ4

Auxin is a plant
nutrient required for cell wall synthesis.
nutrient required for hormone synthesis.
hormone that inhibits cell elongation.
hormone that stimulates cell elongation.

Answers

Auxin is a hormone that stimulates cell elongation. This hormone has the capacity to transport itself from the tip of a plant to the basal areas, and the action helps in the growth and development of the plant body. So, the correct option is: a hormone that stimulates cell elongation. Auxins are one of the most essential plant hormones that play crucial roles in plant growth, development, and environmental responses. These hormones are synthesized in the shoot and root apical meristem and transported from the apical region to the base to regulate diverse developmental processes, including cell elongation, division, differentiation, tissue patterning, and organogenesis.

Auxins are involved in almost all aspects of plant growth and development, such as root initiation, leaf development, shoot and root elongation, phototropism, apical dominance, gravitropism, fruit development, and senescence.

Apart from auxin, other plant hormones that regulate plant growth and development include gibberellins, cytokinins, abscisic acid, ethylene, and brassinosteroids.

to know more about hormones here:

brainly.com/question/30367679

#SPJ11

A cell has the following molecules and structures enzymes, circular DNA, ribosomes, plasma membrane and a cell wall. It could a cell from Select one OA. an animal, but not a plant B. a plant, but not an animal Ca bacterium, a plant, or an animal Da bacterium. E a plant or an animal

Answers

The cell with enzymes, circular DNA, ribosomes, plasma membrane, and a cell wall could be a bacterium. Bacteria are single-celled organisms that possess all of these components. They have enzymes for various cellular processes, circular DNA as their genetic material, ribosomes for protein synthesis, a plasma membrane that regulates the passage of substances, and a cell wall that provides structural support.

Bacteria can be found in various environments and exhibit diverse characteristics. They can be classified into different types based on their shape, metabolic processes, and other features. While bacteria are present in both plants and animals, the given components are characteristic of a bacterial cell rather than a eukaryotic cell found in plants or animals. Therefore, the most appropriate answer would be option D, a bacterium.

To know more about enzymes,

https://brainly.com/question/31385011

#SPJ11

BIOSTATS AND epidemiology
For the year 2016, the cumulative incidence of a neurological disease is estimated to be 22 per 100,000 and its prevalence 88 per 100,000.
What is its average duration in years?
Please select one answer :
a.It is 5 years.
b.It cannot be calculated.
c.It is 4 years.
d.It is 0.25 years.
e.It is 10 years.

Answers

The average duration of the disease in years is 4 years. Thus, option a is correct.

The correct answer is option a. It is 5 years.

Cumulative incidence of a disease is defined as the number of new cases of the disease that occur over a specified time period. In contrast, prevalence refers to the number of individuals with the disease, both new and old cases, in a defined population during a specified time period.

Cumulative incidence = (Number of new cases during a time period / Total population at risk) * constant

Prevalence = (Number of cases during a time period / Total population) * constant

From the given information:

For the year 2016, the cumulative incidence of a neurological disease is estimated to be 22 per 100,000 and its prevalence 88 per 100,000.The duration of the disease can be calculated by using the formula:

Disease Duration = Prevalence / IncidenceDisease Duration = (88/100,000) / (22/100,000)

Disease Duration = 4

Therefore, the average duration of the disease in years is 4 years. Thus, option a is correct.

To know more about disease visit:

https://brainly.com/question/943439

#SPJ11

Q5.9. As you saw in Section 2 ("DO or Die"), fish are sometimes lost from lakes as eutrophication occurs. Given what you've learned in this tutorial about why these fish kills occur, which of the following might help prevent fish kills as phosphorus concentrations increase? a) Installing aerators that increase the oxygen concentration in the water. b) Periodically adding more algae to the lake throughout the year. c) Adding nitrogen to promote increased algal growth in the lake. d) Trawling the lake with specialized nets to filter out extra zooplankton

Answers

Prevention of fish kills as phosphorus concentrations increase can be achieved by installing aerators that increase the oxygen concentration in the water and trawling the lake with specialized nets to filter out extra zooplankton.

The correct options to the given question are option a and d.

Fish kills occur when the dissolved oxygen in a water body decreases below levels needed by aquatic organisms. This reduction in oxygen can be caused by many factors including natural cycles of lake aging and human-caused disturbances. Fish kills can be prevented by restoring or enhancing the dissolved oxygen levels or by preventing the causes that reduce dissolved oxygen levels in the first place.As phosphorus concentrations increase, installing aerators that increase the oxygen concentration in the water might help prevent fish kills.

Aeration brings water and air into close contact in order to increase the oxygen content of the water and improve its quality. When oxygen levels are low, decomposition of organic matter consumes oxygen that would otherwise be available to fish and other aquatic life forms. Installing aerators that increase the oxygen concentration in the water is a simple and effective method of increasing the dissolved oxygen levels in water bodies.Trawling the lake with specialized nets to filter out extra zooplankton is also a method to prevent fish kills as phosphorus concentrations increase. Zooplankton feed on algae and are important links in the aquatic food web.

However, when excessive nutrients such as phosphorus and nitrogen are added to the water, the algae can grow faster than the zooplankton can eat it. In this case, the algae may grow out of control and block sunlight from reaching other aquatic plants. This can lead to the death of plants, which will cause oxygen levels in the water to drop. By trawling the lake with specialized nets, we can filter out extra zooplankton and hence the algae growth can be prevented.

For more such questions on  concentration , visit:

https://brainly.com/question/26255204

#SPJ8

Students are comparing different tissues under the microscope. One student reports that mitosis was observed in cells of ground tissue. Was the student correct?
A. No, because cells in permanent tissue do not divide, so mitosis would not be observed.
B. No, because cells of some permanent tissues, such as collenchymas, can divide.
C. Yes, because ground tissue is a permanent tissue that may divide under specialized conditions.
D. Yes, because cells of some permanent tissues, such as sclerenchyma, can divide.

Answers

The correct answer is B. No, because cells of some permanent tissues, such as collenchyma, can divide.

Permanent tissues in plants are classified as either meristematic or non-meristematic. Meristematic tissues have the ability to actively divide and differentiate into various cell types. On the other hand, non-meristematic tissues, also known as permanent tissues, have ceased to divide and primarily perform specialized functions.

However, there are exceptions within permanent tissues where cells can still undergo division. Collenchyma is an example of a permanent tissue that retains the ability to divide. Collenchyma cells provide mechanical support to plant organs and have the capacity to elongate and divide in response to growth and developmental needs.

While ground tissue is predominantly composed of non-dividing cells, the presence of collenchyma cells in the ground tissue can allow for mitosis to be observed in certain cases. Therefore, the student's observation of mitosis in cells of ground tissue would be possible if collenchyma cells were present in the tissue being observed.

Learn more about tissue here:

https://brainly.com/question/1433121

#SPJ11

"a. Define the different types of dominance presented in class.
b. Define and describe 2 specific examples of epistasis presented
in class.
5. Describe genotype by environment
interaction.

Answers

Different types of dominance exist in genetics: Complete dominance, Incomplete dominance, and Codominance. Complete dominance occurs when one allele completely masks the expression of the other allele.

In incomplete dominance, the heterozygous phenotype is an intermediate blend of the two homozygous genotypes. Codominance occurs when both alleles are fully expressed, resulting in the simultaneous presence of both phenotypes.

Epistasis is another genetic concept where one gene influences or masks the expression of another gene. For example, the Bombay phenotype in the ABO blood group system and coat color in mice demonstrate epistasis.

Genotype by environment interaction refers to the fact that the effect of a genotype on phenotype depends on the specific environment, highlighting the complex interplay between genes and environment in determining an organism's traits.

For more details regarding Codominance, visit:

https://brainly.com/question/3578928

#SPJ4

15. Match the following descriptions of transport processes with the appropriate terms. a. filtration b: secretion c. excretion. d. absorption e. reabsorption process of eliminating metabolic waste pr

Answers

Transport Processes and their descriptions are matched below:a. Filtration: Process of filtering particles from a fluid by passing it through a permeable material.

Process of movement of a substance from an internal organ or tissue to its exterior.c. Excretion: Process of eliminating metabolic waste products from an organism's body.d. Absorption: Process by which nutrients, drugs or other substances are taken up by the body. Process by which renal tubules and collecting ducts reabsorb useful solutes from the filtrate.

A pair of kidneys filter the blood by removing waste products and excess fluid, which are then eliminated from the body as urine. The blood is then reabsorbed in the body, and the essential nutrients are kept behind to prevent nutrient loss. In order to maintain homeostasis, the kidneys adjust the rate of filtration and reabsorption based on the body's needs and the urine output.If you want to learn about the transport process and related terms, you can study Transport Processes in Biology.

To know more about Filtration visit:

https://brainly.com/question/31609992

#SPJ11

In a garden pea, round seeds are dominant over wrinkled seeds. A random sample of 100 garden peas is tajken from a Hardy Weinberg equilibrium. It is found that 9 are wrinkled seeds and 91 are round seeds. What is the frequency of the wrrinkled seeds in this population?

Answers

The frequency of the wrinkled seed allele in this population is 0.09 or 9%. To determine the frequency of wrinkled seeds in the population, we can use the Hardy-Weinberg equation.

In this case, let's assume that the frequency of the round seed allele (R) is p, and the frequency of the wrinkled seed allele (r) is q.

According to the problem, out of 100 garden peas, 9 are wrinkled seeds and 91 are round seeds. This means that the total number of wrinkled seed alleles (rr) in the population is 9 x 2 = 18, and the total number of round seed alleles (RR + Rr) is 91 x 2 = 182.

To find the frequency of the wrinkled seed allele (q), we can divide the number of wrinkled seed alleles (18) by the total number of alleles (18 + 182 = 200).

q = 18 / 200 = 0.09

Therefore, the frequency of the wrinkled seed allele in this population is 0.09 or 9%.

To learn more about Hardy-Weinberg equation, click here:

https://brainly.com/question/5028378

#SPJ11

Question 21 Dense granules contain all of the following except: O Serotonin Calcium thrombospondin O ADP

Answers

Dense granules contain serotonin, calcium, and ADP, but do not contain thrombospondin. Dense granules are small organelles found in platelets.

Dense granules play a crucial role in hemostasis and blood clot formation. These granules contain various substances that are released upon platelet activation. Serotonin, calcium, and ADP are key components of dense granules, contributing to their physiological functions. Serotonin acts as a vasoconstrictor, helping to constrict blood vessels and reduce blood flow at the site of injury.

Calcium is involved in platelet activation and aggregation, facilitating the clotting process. ADP serves as a signaling molecule, promoting further platelet activation and aggregation. However, thrombospondin, a large glycoprotein, is not typically found in dense granules.

Thrombospondin is primarily located in the alpha granules of platelets, where it plays a role in platelet adhesion and wound healing. Therefore, the correct answer is option 3, thrombospondin.

Learn more about serotonin here:

https://brainly.com/question/31943263

#SPJ11

Briefly, what is the difference between Metaphase I during Meiosis I and Metaphase Il during Meiosis II?

Answers

During meiosis, the chromosome number is reduced to half by two consecutive divisions, meiosis I and meiosis II. There are a few differences between metaphase I and metaphase II of meiosis.

The metaphase of meiosis is characterized by the alignment of chromosomes along the spindle equator, which is the area where they will split during anaphase. During metaphase I, chromosomes align in homologous pairs that are tetrads, each made up of four chromatids from two different homologous chromosomes. During metaphase II, chromosomes align individually along the spindle equator, each having only two chromatids. Metaphase I of meiosis is the phase in which the homologous chromosomes line up at the metaphase plate and are ready for segregation. Metaphase I is the longest phase of meiosis I.

During metaphase I, spindle fibers attach to the kinetochores of the homologous chromosomes and align them along the cell's equator. The spindle fibers are the organelles responsible for moving the chromosomes during mitosis and meiosis. They're responsible for moving the chromosomes to the poles of the cell in an orderly and organized manner. When the spindle fibers are pulling the chromosomes, they will also align themselves with each other at the metaphase plate. Each homologous pair of chromosomes is positioned at a point known as the metaphase plate during metaphase I, and each chromosome's two kinetochores are attached to spindle fibers from opposing poles.

In meiosis II, the spindle fibers attach to the sister chromatids of each chromosome, causing them to align along the cell's equator. When the spindle fibers are done pulling the chromosomes, they are separated into individual chromatids during the process of cytokinesis.The major difference between metaphase I and metaphase II is that in the former, homologous chromosomes line up as pairs, whereas in the latter, individual chromosomes line up. Chromosomes align at the metaphase plate during both phases. Meiosis II proceeds more quickly than meiosis I because the second division does not have an interphase stage. The whole process of meiosis results in four haploid daughter cells.

To know more about meiosis visit :

https://brainly.com/question/29383386

#SPJ11

--A 23-year-old-man is brought to the emergency department after he was stabbed in the right upper quadrant of the abdomen. his blood pressure is 70/42 mm Hg, pulse is 135/min, and respirations are 26/min; pulse oximetry shows oxygen saturation of 95% on room air. Physical examination shows a stab wound 2 cm inferior to the right costal margin. The patient;s abdomen is firm and distended. Focused assessment with sonography for trauma (FAST) is positive for blood in the right upper quadrant. He is taken for immediate laparotomy, and approximately 1 liter of blood is evacuated from the peritoneal cavity.
Brisk, nonpulsatile bleeding is seen emanating from behind the liver. The surgeon occludes the hepatoduodenal ligament, but the patient continues to hemorrhage. Which of the following structures is the most likely source o this patient's bleeding?
Inferior vena cava <-----
Common bile duct
Hepatic artery
Cystic artery
Portal vein

Answers

In this patient with a stab wound in the right upper quadrant of the abdomen and signs of hypovolemic shock, the most likely source of bleeding despite occlusion of the hepatoduodenal ligament is the hepatic artery, option 3 is correct. 

The hepatic artery is a branch of the celiac trunk that supplies oxygenated blood to the liver. It runs alongside the common bile duct and the portal vein within the hepatoduodenal ligament. In this case, the surgeon's inability to control bleeding after occlusion of the hepatoduodenal ligament suggests that the hemorrhage is not originating from a venous source (inferior vena cava or portal vein) or the cystic artery, which is typically encountered during cholecystectomy.
Additionally, the common bile duct does not carry a significant arterial blood supply. Therefore, the most likely source of brisk, nonpulsatile bleeding in this patient is the hepatic artery, which requires prompt surgical intervention to achieve hemostasis and prevent further blood loss, option 3 is correct.


To learn more about hepatic follow the link:

https://brainly.com/question/28208729


#SPJ4


The Complete question is:


A 23-year-old-man is brought to the emergency department after he was stabbed in the right upper quadrant of the abdomen. his blood pressure is 70/42 mm Hg, pulse is 135/min, and respirations are 26/min; pulse oximetry shows oxygen saturation of 95% on room air. Physical examination shows a stab wound 2 cm inferior to the right costal margin. The patient;s abdomen is firm and distended. Focused assessment with sonography for trauma (FAST) is positive for blood in the right upper quadrant. He is taken for immediate laparotomy, and approximately 1 liter of blood is evacuated from the peritoneal cavity.Brisk, nonpulsatile bleeding is seen emanating from behind the liver. The surgeon occludes the hepatoduodenal ligament, but the patient continues to hemorrhage. Which of the following structures is the most likely source o this patient's bleeding?

1) Inferior vena cava 

2) Common bile duct

3) Hepatic artery

4) Cystic artery

5) Portal vein

Other Questions
true or false Here is a phylogeny of eukaryotes determined by DNA evidence. All of the supergroups contain some photosynthetic members. Explain why 5 313 449 3is not a prime factorization and find the prime factorization of th Why is 5 313 449 3not a prime factorization? A. Because not all of the factors are prime numbers B. Because the factors are not in a factor tree C. Because there are exponents on the factors D. Because some factors are missing What is the prime factorization of the number? Moist air at standard conditions is at a dry bulb temperature of 93F and a Wet Bulb temperature of 69F. Use the psychrometric chart to find:- Relative Humidity- Dew Point Temperature- Specific Volume (closest)- Enthalpy ineed help for question b and c. tqQuestion 2 (10 Marks) Figure 4 shows a steel plate specimen. Actual model FEA model Figure 2 (a) Comment on the mesh in FEA model shown in Figure 2. Then, highlight how you can improve the mesh. (Your What structure is necessary for the reversible binding of O2molecules to hemoglobin and myoglobin? At what particular part ofthat structure does the protein-O2 bond form? Case Study: Part One Saria is at the doctor to get the lab results of the samples she brought in to be tested. From the results, it appears that she is getting the rashes due to Pseudomonas aeruginosa infection that she contracted from the sponge she was sharing with her roommates. Now, we have to run further tests to check for the appropriate antibiotic needed to get rid of the infection. We also need to make sure to protect the normal flora in Saica so only the bad germs die. To do this we will use a gene transfer method to protect her healthy germs from the effects of possible antibiotics we can use. Introduction/Background Material: Basics of Bacterial Resistance: Once it was thought that antibiotics would help us wipe out forever the diseases caused by bacteria. But the bacteria have fought back by developing resistance to many antibiotics, Bacterial resistance to antibiotics can be acquired in four ways: 1. Mutations: Spontaneous changes in the DNA are called mutations. Mutations happen in all living things, and they can result in all kinds of changes in the bacterium. Antibiotic resistance is just one of many changes that can result from a random mutation. 2. Transformation: This happens when one bacterium takes up some DNA from the chromosomes of another bacterium 3. Conjugation: Antibiotic resistance can be coded for in the DNA found in a small circle known as a plasmid in a bacterium. The plasmids can randomly pass between bacteria (usually touching as seen in conjugation) 4. Recombination: Sharing of mutations, some of which control resistance to antibiotics. Some examples are: A. Gene cassettes are a small group of genes that can be added to a bacterium's chromosomes. The bacteria can then accept a variety of gene cassettes that give the bacterium resistance to a variety of antibiotics. The cassettes also can confirm resistance against disinfectants and pollutants. B. Bacteria can also acquire some genetic material through transduction (e.g., transfer through virus) or transformation. This material can then lead to change in phenotype after recombination into the bacterial genome. The acquired genetically based resistance is permanent and inheritable through the reproductive process of bacteria, called binary fission. Some bacteria produce their own antibiotics to protect themselves against other microorganisms. Of course, a bacterium will be resistant to its own antibiotic! If this bacterium then transfers its resistance genes to another bacterium, then that other bacterium would also gain resistance. Scientists think, but haven't proved, that the genes for resistance in Saica's case have been transferred between bacteria of different species through plasmid or cassette transfer. Laboratory analysis of commercial antibiotic preparations has shown that they contain DNA from antibiotic-producing organisms. An increase in the money supply would cause the 15 curve to O shift up and to the right as the excess supply of money causes interest rates to fall, resulting in an increase in the aggregate demand fo Strenous exercise should cause an increase in systemic capillary blood flow due to the sympathetic nervous system. True False QUESTION 7 In myocardial contractile cells, the action potential will occu 7. Given that P. 2ax-ay-2az Q. 4ax. 3ay.2az R = -ax+ ay Zaz Find: (a) IP+Q-RI, (b) PI x R. (c) Q x P DR, (d) (PxQ) DQ x R). (e) (PxQ) x (QxR) (1) CosB (g) Sin 1. The stacked bar chart below shows the composition of religious affiliation of incorming refugees to the United States for the months of February-June 2017. a. Compare the percent of Christian, Musl I need help finding what A B C and D are and how to explainit..Experiment 21 C. Four acid and base unknowns. 1. Give your scheme (see Prelaboratory Exercise 5) for identifying the four solutions and observations. Include prediction and observation matrices. Be su Name three activities in routine maintenance of road. 4. Create a box-and-arrow model that shows how information stored in the SRY gene is stored in a somatic cell of a typical male. Your model must be contextualized to this case and should include the following structures, although you may add or repeat structures as needed: nucleotides, chromosomes, DNA, gene 3. DISCUSS THE ZONES OF BASE OF 5TH METATARSAL BONE? In 500-750 words, complete the following:Identify the steps in the high-level value chain required to fulfill the customer requirements from beginning to end.From the high-level value chain steps, identify the operational subprocesses.Identify those metrics that the organization should monitor at both the value chain level and subprocess level.Based upon the process you described above, if an organization needs to improve a process within the value chain, how would you analyze the process and metrics to know that the process is not workingExplain what steps the organization could take based upon your analysis for value chain improvement. pls help if you can asap!! 1. Describe a method of clustering gene expression data obtained from microarray experiments.2. Describe the bioinformatics methods you would use to infer the evolutionary history of genomes in an infectious disease outbreak. Drawing on the theory of the vulnerability (to extinction) of small populations, in the discipline of Conservation Biology, explain why increasing propagule pressure (number of individuals introduced) increases the likelihood of a species establishing a novel alien population, outside its native range. Provide the key fragment structures of the mass spectrometrydata. The possible molecular formula is:C5H9O2BrRelative Intensity 100 80 40 20- o fim 20 40 60 80 Titr 100 120 m/z 140 160 180 200 15.0 28.0 37.0 38.0 39.0 42.0 43.0 49.0 50.0 51.0 52.0 61.0 62.0 63.0 73.0 74.0 75.0 76.0 77.0 89.0 90.0 91.0 91.5 1 A 320-kg space vehicle traveling with a velocity v = ( 365 m/s)i passes through the origin O at t= 0. Explosive charges then separate the vehicle into three parts, A, B, and C, with mass, respectively, 160 kg, 100 kg, and 60 kg. Knowing that at t = 4 s, the positions of parts A and B are observed to be A (1170 m, -290 m, -585 m) and B (1975 m, 365 m, 800 m), determine the corresponding position of part C. Neglect the effect of gravity. The position of part Cis rc=( m)i + ( m)j + ( m)k.