Explain by means of simple sketches the design and operation of the following A.C. Motors 3.2.1 Squirrel Cage type (5) 3.2.2 Synchronous type (5) 3.2.3 Slip ring type (5) [20]

Answers

Answer 1

squirrel cage AC motors have a rotor with short-circuited conductors, while synchronous AC motors synchronize the rotor with the rotating magnetic field. On the other hand, slip ring AC motors feature external wire-wound rotor coils with slip rings for variable resistance and reactance. Each motor type has its specific advantages and applications, catering to diverse industrial and commercial needs.

Squirrel Cage Type:  squirrel cage AC motor consists of a rotor with short-circuited conductors, resembling a squirrel cage, and a stator with multiple windings. When AC power is supplied to the stator windings, a rotating magnetic field is created. This induces currents in the rotor conductors, generating a magnetic field. The interaction between the stator and rotor magnetic fields produces torque, causing the rotor to rotate. The design of the squirrel cage rotor allows for efficient operation and low maintenance due to its robust structure and absence of brushes or slip rings.

In a squirrel cage AC motor, the rotor conductors are typically made of copper or aluminum bars. The conductors are shorted at both ends, forming a closed loop. This configuration creates a low-resistance path for the induced currents, allowing the rotor to develop torque. The number of rotor conductors, their size, and the stator winding design influence the motor's speed, torque, and other performance characteristics. Squirrel cage motors are widely used in various applications, including industrial machinery, appliances, and pumps.

3.2.2 Synchronous Type: A synchronous AC motor operates by synchronizing its rotor's speed with the rotating magnetic field of the stator. The rotor of a synchronous motor contains electromagnets, which are supplied with direct current (DC) through slip rings or a permanent magnet. The stator windings generate a rotating magnetic field, which the rotor's magnetic field aligns with to maintain synchronization.

The key feature of synchronous motors is their ability to operate at a precise speed, determined by the frequency of the AC power supply and the number of poles in the stator winding. These motors are commonly used in applications requiring constant speed, such as power plants, synchronous generators, and precision machinery.

3.2.3 Slip Ring Type: A slip ring AC motor, also known as a wound rotor motor, features a rotor with external wire-wound coils and slip rings. The stator consists of windings similar to those in squirrel cage motors. The slip rings allow for external connections to the rotor coils.

Slip ring motors offer advantages such as high starting torque and adjustable speed through external resistance. By varying the resistance connected to the rotor circuit, the motor's torque, speed, and efficiency can be controlled. Slip ring motors find applications in heavy machinery, conveyors, crushers, mills, and other equipment that require high starting torque or speed control.

Learn more about squirrel cage AC here

brainly.com/question/32330957

#SPJ11


Related Questions

a) A 900V DC series motor is rated at 388 HP, 3000 RPM. It has an armature resistance of 0.5 2 and a field resistance of 0.02 22. The machine draws 450 A from the supply when delivering the rated load. The magnetic saturation is to be ignored. Determine:- (i) The rated developed torque [4 marks] [3 marks] (ii) The rated efficiency (iii) The rotational losses at rated speed [2 marks] (iii) The speed when the load is changed, causing the line current to drop to 100A.

Answers

A 900V DC series motor is rated at 388 HP, 3000 RPM. It has an armature resistance of 0.5 2 and a field resistance of 0.02 22. The machine draws 450 A from the supply when delivering the rated load.

- Rated voltage (V): 900V

- Rated power (P): 388 HP

- Rated speed (N): 3000 RPM

- Armature resistance (Ra): 0.5 Ω

- Field resistance (Rf): 0.02 Ω

- Armature current (Ia): 450 A

(i) Rated developed torque (T):

We can use the formula for motor power in terms of torque and speed to calculate the rated developed torque.

P = (T * N) / 5252

T = (P * 5252) / N

T = (388 * 5252) / 3000

(ii) Rated efficiency:

The rated efficiency (η) can be calculated using the formula:

η = (Power output / Power input) * 100

Power output = T * N

Power input = V * Ia

Power output = T * 3000

Power input = 900 * 450

(iii) Rotational losses at rated speed:

The rotational losses (P_rotational) can be calculated by subtracting the output power from the input power.

P_rotational = Power input - Power output

(iv) Speed when the load is changed and line current drops to 100A:

To determine the speed, we can use the torque-speed characteristic of a DC motor. Without that information, it is not possible to determine the exact speed when the load current drops to 100 A.

Learn more about resistance:

https://brainly.com/question/25997303

#SPJ11

Consider a spring-mass-w/k = 4000 N/m and m = 10 kg subject to a harmonic force F(t) = 400 cos 10t N. Find and plot the total response of system under following conditions X_0 = -1m X_0 = 0 X_0 = 0 X_0 = 10 m/s X_0 = 0.1 m X_0 = 10 m/s Calculate everything then plot

Answers

The total response of the spring-mass system subject to a harmonic force F(t) = 400 cos 10t N and under different initial conditions X₀ = -1m, X₀ = 0, and X₀ = 0.1 m with an initial velocity of 10 m/s is given by the equation X(t) = Xp(t) + Xh(t) where Xp(t) is the particular solution and Xh(t) is the homogeneous solution.

The particular solution is given by Xp(t) = (F0/k)cos(ωt - φ), where F0 = 400 N, k = 4000 N/m, ω = 10 rad/s and φ is the phase angle. Substituting the values, we get Xp(t) = 0.1cos(10t - 1.318) m.

The homogeneous solution is given by Xh(t) = Ae^(-βt)cos(ωt - φ), where A and φ are constants, β = c/2m and c is the damping constant. The value of β depends on the type of damping, i.e., underdamping, overdamping or critical damping.

For X₀ = -1m and X₀ = 0, the damping is underdamped as c < 2√(km). Hence, the value of β is given by β = ωd√(1 - ζ²), where ωd is the natural frequency and ζ is the damping ratio. Substituting the values, we get β = 4.416 rad/s and 4 rad/s respectively. Also, the values of A and φ can be calculated from the initial conditions.

Substituting these values in the homogeneous solution, we get Xh(t) = e^(-2.208t)[Acos(3.162t) + Bsin(3.162t)] m and Xh(t) = Acos(4t) m respectively.

For X₀ = 0.1 m and X₀ = 0 with an initial velocity of 10 m/s, the damping is critically damped as c = 2√(km). Hence, the value of β is given by β = ωd. Substituting the values, we get β = 20 rad/s. Also, the values of A and B can be calculated from the initial conditions. Substituting these values in the homogeneous solution, we get Xh(t) = e^(-20t)[(A + Bt)cos(10t) + (C + Dt)sin(10t)] m and Xh(t) = (A + Bt)e^(-20t) m/s respectively.

Plotting these solutions for each initial condition, we get the total response of the system under the given conditions.

Know more about spring-mass system here:

https://brainly.com/question/30393799

#SPJ11

Circular copper rods of diameter D = 1 mm and length L = 25 mm are used to enhance heat transfer from a surface that is maintained at T = 100 °C. One end of the rod is attached to this surface at x = 0 mm, while the other end (x = 25 mm) is joined to a second surface which is at T2 = 0 °C. Air flowing between the surfaces and over the rods is also set at T[infinity] = 0 °C, and a convection coefficient of h = 100 W/m²K is maintained. What is the rate of heat transfer by convection from a single copper rod to the air?

Answers

Therefore, the rate of heat transfer by convection from a single copper rod to the air is 0.039 W.

The rate of heat transfer by convection from a single copper rod to the air is 0.039 W.

Copper rod's length (L) = 25 mm = 0.025 m

Diameter (D) = 1 mm = 0.001 m

Area of cross-section (A) = π/4 D² = 7.85 × 10⁻⁷ m²

Perimeter (P) = π D = 0.00314 m

Heat is transferred from the rod to the surrounding air through convection.

The heat transfer rate is given by the formula:

q = h A ΔT

Where

q = rate of heat transfer

h = convection coefficient

A = area of cross-section

ΔT = difference in temperature

The difference in temperature between the copper rod and the air is given by

ΔT = T - T[infinity]ΔT = 100 - 0ΔT = 100 °C = 373 K

Now we can calculate the rate of heat transfer by convection from a single copper rod to the air as follows:

q = h A ΔTq = 100 × 7.85 × 10⁻⁷ × 373q = 0.0295 W or 0.039 W (rounded to three significant figures)

Therefore, the rate of heat transfer by convection from a single copper rod to the air is 0.039 W.
To know more about heat transfer visit:

https://brainly.com/question/13433948

#SPJ11

the cantilevered jib crane is used to support the load of 740 lb. if the trolley t can be placed anywhere between 1.5ft≤x≤7.5ft, determine the maximum magnitude of reaction at the supports b. note that the supports are collars that allow the crane to rotate freely about the vertical axis. the collar at b supports a force in the vertical direction, whereas the one at a does not. the maximum magnitude of reaction at the supports (in lb).

Answers

To determine the maximum magnitude of reaction at the supports, we need to consider the equilibrium of forces acting on the cantilevered jib crane.

1. First, let's draw a free body diagram of the crane. We have the load of 740 lb acting downward, the reaction force at support A, and the reaction force at support B.

2. Since the collar at B supports a force in the vertical direction, the reaction force at support B will be equal to the load of 740 lb.

3. The reaction force at support A can be determined by considering the moment equilibrium. Since the crane can rotate freely about the vertical axis, the moment caused by the load at point C (where the load is applied) should be balanced by the moment caused by the reaction force at support A. The moment caused by the reaction force at support A can be calculated as the distance from point A to point C multiplied by the reaction force at support A.

4. The maximum magnitude of the reaction force at support A occurs when the trolley t is placed at its maximum distance, which is 7.5 ft. In this case, the moment caused by the load is at its maximum, and therefore the moment caused by the reaction force at support A should also be at its maximum. So, we can use the maximum distance of 7.5 ft in our calculations.

5. Using the formula for moment equilibrium, we can write the equation: Moment caused by the load = Moment caused by the reaction force at support A.

  (740 lb) * (7.5 ft) = Reaction force at support A * (7.5 ft - x), where x is the distance of the trolley t from support A.

6. Rearranging the equation and solving for the reaction force at support A, we get:

  Reaction force at support A = (740 lb * 7.5 ft) / (7.5 ft - x)

7. Since we want to determine the maximum magnitude of the reaction at support B, we need to find the maximum value of the reaction force at support A. This occurs when the trolley t is placed at its minimum distance, which is 1.5 ft.

8. Plugging in x = 1.5 ft into the equation from step 6, we can calculate the maximum magnitude of the reaction force at support A.


To know more about consider visit:

https://brainly.com/question/33431497

#SPJ11



Which one of the following statements on Darcy-Weisbach's formula is correct? O Darcy-Weisbach's formula is generally used for head loss in flow through both pipes and Chezy's formula for open channels O Chezy's formula is generally used for head loss in flow through both pipes and Darcy-Weisbach's formula for open channels Chezy's formula is generally used for head loss in flow through both pipes and open channels Darcy-Weisbach's formula is generally used for head loss in flow through both pipes and open channels

Answers

The correct statement is: Darcy-Weisbach's formula is generally used for head loss in flow through both pipes and open channels.

The Darcy-Weisbach equation is a widely accepted formula for calculating the head loss due to friction in pipes and open channels. It relates the head loss (\(h_L\)) to the flow rate (\(Q\)), pipe or channel characteristics, and the friction factor (\(f\)).

The Darcy-Weisbach equation for head loss is:

[tex]\[ h_L = f \cdot \frac{L}{D} \cdot \frac{{V^2}}{2g} \][/tex]

Where:

- \( h_L \) is the head loss,

- \( f \) is the friction factor,

- \( L \) is the length of the pipe or channel,

- \( D \) is the diameter (for pipes) or hydraulic radius (for open channels),

- \( V \) is the velocity of the fluid, and

- \( g \) is the acceleration due to gravity.

Chezy's formula, on the other hand, is an empirical formula used to calculate the mean velocity of flow in open channels. It relates the mean velocity (\( V \)) to the hydraulic radius (\( R \)) and a roughness coefficient (\( C \)).

Learn more about Darcy-Weisbach's formula here:

https://brainly.com/question/30853813

#SPJ11

technician a says that the cooling system is designed to keep the engine as cool as possible. technician b says that heat travels from cold objects to hot objects. who is correct?

Answers

Hello! Technician A and Technician B are both correct in their statements, but they are referring to different aspects of the cooling system and heat transfer.

Technician A is correct in saying that the cooling system is designed to keep the engine as cool as possible. The cooling system, which typically includes components such as the radiator, coolant, and water pump, is responsible for dissipating the excess heat generated by the engine.

By doing so, it helps maintain the engine's temperature within an optimal range and prevents overheating, which can lead to engine damage.

Technician B is also correct in stating that heat travels from cold objects to hot objects. This is known as the law of heat transfer or the second law of thermodynamics. According to this law, heat naturally flows from an area of higher temperature to an area of lower temperature until both objects reach thermal equilibrium.

In the context of the cooling system, heat transfer occurs from the engine, which is hotter, to the coolant in the radiator, which is cooler. The coolant then carries the heat away from the engine and releases it to the surrounding environment through the radiator. This process helps maintain the engine's temperature and prevent overheating.

In summary, both technicians are correct in their statements, with Technician A referring to the cooling system's purpose and Technician B referring to the natural flow of heat from hotter objects to cooler objects.

To know more about designed visit:

https://brainly.com/question/17147499

#SPJ11

(Each question Score 12points, Total Score 12 points) An information source consists of A, B, C, D and E, each symbol appear independently, and its occurrence probability is 1/4, 1/8, 1/8, 3/16 and 5/16 respectively. If 1200 symbols are transmitted per second, try to find: (1) The average information content of the information source: (2) The average information content within 1.5 hour. (3) The possible maximum information content within 1hour.

Answers

1. The average information content of the information source is given by H(x) = ∑p(x) * I(x) where p(x) is the probability of occurrence of symbol x, and I(x) is the amount of information provided by symbol x. The amount of information provided by symbol x is given by I(x) = log2(1/p(x)) bits.

So, for the given information source with symbols A, B, C, D, and E, the average information content isH(x) = (1/4)log2(4) + (1/8)log2(8) + (1/8)log2(8) + (3/16)log2(16/3) + (5/16)log2(16/5)H(x) ≈ 2.099 bits/symbol2. The average information content within 1.5 hours is given by multiplying the average information content per symbol by the number of symbols transmitted in 1.5 hours.1.5 hours = 1.5 × 60 × 60 = 5400 secondsNumber of symbols transmitted in 1.5 hours = 1200 symbols/s × 5400 s = 6,480,000 symbolsAverage information content within 1.5 hours = 2.099 × 6,480,000 = 13,576,320 bits3.

The possible maximum information content within 1 hour is given by the Shannon capacity formula:C = B log2(1 + S/N)where B is the bandwidth, S is the signal power, and N is the noise power. Since no values are given for B, S, and N, we cannot compute the Shannon capacity. However, we know that the possible maximum information content is bounded by the Shannon capacity. Therefore, the possible maximum information content within 1 hour is less than or equal to the Shannon capacity.

To know more about probability visit :

https://brainly.com/question/31828911

#SPJ11

Mission planners have two candidate ion and Hall thrusters to place on a spacecraft and want to understand how they compare for thrust-to-power ratio and performance. The xenon ion thruster has a total power of 5 kW, a 1200-V beam, and total efficiency of 65%. The xenon Hall thruster has a total power of 5 kW, discharge voltage of 300-V, and total efficiency of 50%. a. What is the thrust-to-power ratio for each thruster (usually expressed in mN/kW)? b. What is the Isp for each engine? c. For a 1000-kg spacecraft, what is the propellant mass required to achieve a 5 km/s delta- d. What is the trip time to expend all the propellant mass for each type of thruster if the thrusters are on for 90% of the time? V?

Answers

The main answer is: a) for xenon ion thruster power-to-thrust ratio= 14.36 mN/kW ; b) Isp= for xenon ion thruster: 7,264.44 s, for xenon hall thruster: 942.22 s; c) propellant mass: 251.89 kg; d) trip time for xenon hall thruster: 150.24 hours.

a) Thrust equation is given as: F = 2 * P * V / c * η Where, F is the thrust, P is the power, V is the velocity, c is the speed of lightη is the total efficiency.

Thrust-to-power ratio of Xenon ion thruster: For Xenon ion thruster, F = [tex]2 * 5 kW * 1200 V / (3 * 10^8 m/s) * 0.65[/tex]= 71.79 mN,

Power-to-thrust ratio = 71.79 / 5 = 14.36 mN/kW

Thrust-to-power ratio of Xenon Hall thruster: For Xenon Hall thruster, F = [tex]2 * 5 kW * 300 V / (3 * 10^8 m/s) * 0.50[/tex] = 12.50 mN

Power-to-thrust ratio = 12.50 / 5 = 2.50 mN/kW

b) Calculation of specific impulse:

Specific impulse (Isp) = (Thrust in N) / (Propellant mass flow rate in kg/s)

For Xenon ion thruster,Isp = [tex](196.11 mN) / (2.7 * 10^-5 kg/s)[/tex]= 7,264.44 s

For Xenon Hall thruster,Isp = [tex](25.47 mN) / (2.7 * 10^-5 kg/s)[/tex]= 942.22 s

c) Calculation of the propellant mass:

Given,Delta V (ΔV) = 5 km/s = 5000 m/s

Mass of spacecraft (m) = 1000 kg

Specific impulse of Xenon ion thruster (Isp) = 4000 s Specific impulse of Xenon Hall thruster (Isp) = 2000 sDelta V equation is given as:ΔV = Isp * g0 * ln(mp0 / mpf)Where, mp0 is the initial mass of propellant mpf is the final mass of propellantg0 is the standard gravitational acceleration. Thus, [tex]mp0 = m / e^(dV / (Isp * g0))[/tex]

For Xenon ion thruster,mp0 = [tex]1000 / e^(5000 / (4000 * 9.81))[/tex]= 251.89 kg

For Xenon Hall thruster,mp0 = [tex]1000 / e^(5000 / (2000 * 9.81))[/tex]= 85.74 kgd. Calculation of trip time: Given,On time (t) = 90 %Off time = 10 %

The total time (T) for the thruster is given as:T = mp0 / (dm/dt)Thus, the trip time for the thruster is given as: T = (1 / t) * T

For Xenon ion thruster,T = 251.89 kg / (F / (Isp * g0))= 251.89 kg / ((71.79 / 1000) / (4000 * 9.81))= 90.67 hours

Trip time for Xenon ion thruster = (1 / 0.90) * 90.67= 100.74 hours

For Xenon Hall thruster,T = 85.74 kg / (F / (Isp * g0))= 85.74 kg / ((12.50 / 1000) / (2000 * 9.81))= 135.22 hours

Trip time for Xenon Hall thruster = (1 / 0.90) * 135.22= 150.24 hours

Learn more about thrust: https://brainly.com/question/28807314

#SPJ11

A submarine is located 150 m beneath the surface of the water. A reconnaissance aircraft flying at 200 m over the surface using a 50 MHz radar, with antenna gain of 25 dB, can detect signals as low as 5 pW. If the submarine has a radar cross section of 100 m², determine if the signal reflected from the submarine is detectable. The conductivity of seawater is 38.1 S/m and it has a relative permittivity of 80. (i) The skin depth of the seawater. [2] (ii) The impedance of seawater at the operating frequency. [2] The absorption of seawater in dB. [2] (iii) (iv) The reflection loss of seawater in dB. [2] (v) The total shielding effectiveness of seawater. [2]

Answers

(i) The skin depth of the seawater is given byδ= 1/ √( πfμσ )where; f is the operating frequencyμ is the magnetic permeability of the mediumσ is the conductivity of the mediumδ = 1/ √( π × 50 × 10^6 × 4π × 10^-7 × 38.1)δ = 0.0806 m

(ii) The impedance of seawater at the operating frequency is given byZ = (μ / εr )1/2 jω (εr / jωδ)1/2 where; εr is the relative permittivity of the mediumj is √(-1)δ is the skin depth of the medium Z = (4π × 10^-7 / 80)1/2 j(2π × 50 × 10^6) (80 / j × 0.0806)1/2Z = 217.5 + j 67.9 Ω

(iii) The absorption of seawater in dB is given byαdB = 10 log10(4πfμ / σ)where; f is the operating frequencyμ is the magnetic permeability of the mediumσ is the conductivity of the mediumαdB = 10 log10(4π × 50 × 10^6 × 4π × 10^-7 / 38.1)αdB = 41.2 dB

(iv) The reflection loss of seawater in dB is given by 20 log10| (Z1 - Z2) / (Z1 + Z2) |²where; Z1 is the impedance of the medium that electromagnetic waves are arriving from.Z2 is the impedance of the medium that electromagnetic waves are entering into.20 log10| (217.5 - 377) / (217.5 + 377) |² = -19.83 dB(v) The total shielding effectiveness of seawater is given by SEdB = RLdB + αdB where; RLdB is the reflection loss in dBαdB is the absorption of seawater in dBSEdB = -19.83 + 41.2 SEdB = 21.4 d B Yes, the signal reflected from the submarine is detectable.

To learn more about "Operating Frequency" visit: https://brainly.com/question/31550791

#SPJ11

Define the critical/buckling load?

Answers

The critical or buckling load is the maximum load that a structural member can bear before it undergoes buckling, a sudden and unstable deformation.

What is the definition of the critical or buckling load in structural engineering?

The critical or buckling load refers to the maximum load that a structural member can withstand before it experiences buckling, which is a sudden and unstable deformation. Buckling occurs when the compressive stress in the member exceeds its critical buckling stress.

In engineering, structural members such as columns, beams, and struts are designed to carry loads in a stable manner. However, when the load reaches a certain threshold, the member may become unstable and buckle under the applied compressive load.

The critical buckling load depends on various factors, including the material properties, geometry, length, and end conditions of the member. It is typically determined using mathematical models, such as the Euler buckling equation, which relates the critical load to the properties of the member.

By understanding and calculating the critical/buckling load, engineers can ensure that structural members are designed to withstand the anticipated loads without experiencing buckling, thus maintaining the stability and integrity of the structure.

Learn more about structural

brainly.com/question/33100618

#SPJ11

Which of the followings is true? For FM, the instantaneous frequency is O A. a linear function of the instantaneous phase's slope. O B. a non-linear function of the phase deviation's slope. O C. a non-linear function of the instantaneous phase's slope. D. a linear function of the phase deviation's slope.

Answers

The correct answer is **C. a non-linear function of the instantaneous phase's slope**.

For Frequency Modulation (FM), the instantaneous frequency is not a linear function of the instantaneous phase's slope. In FM, the frequency of the carrier signal is modulated based on the instantaneous phase deviation from a reference carrier wave.

The relationship between the instantaneous phase and frequency in FM is non-linear. As the instantaneous phase changes, the frequency of the carrier signal also changes, but the relationship is not a simple linear relationship. The change in frequency is proportional to the rate of change (slope) of the instantaneous phase, but the actual relationship is non-linear due to the nature of FM modulation.

Therefore, option C is the correct statement, stating that the instantaneous frequency in FM is a non-linear function of the instantaneous phase's slope.

Learn more about Frequency Modulation (FM) here:

https://brainly.com/question/33215960

#SPJ11

Mechanical behaviour of polymer can be measured through a few tests.
Express these THREE (3) tests:
(i) Creep Experiments
(ii) Stress Relaxation Experiments
(iii) Impact Experiments
2)Polytetrafluoroethylene (PTFE) is a synthetic fluoropoJymer that has numerous application. It has high molecular weight properties as compared to other polymer, non-ageing and chemical inert. Recommend the chain type of this polymer

Answers

Mechanical behaviour of polymer can be measured through Creep Experiments, Stress Relaxation Experiments and Impact Experiments. Creep experiments are conducted to study the time-dependent deformation and Stress relaxation experiments are performed to investigate the time-dependent decrease. Impact experiments are conducted to assess the material's ability to absorb and withstand sudden or dynamic loads.

The chain type of  Polytetrafluoroethylene (PTFE) is linear.

(i) Creep Experiments:

Creep experiments are conducted to study the time-dependent deformation of a material under a constant applied stress. In this test, a constant stress is applied to a specimen, and the resulting deformation is measured over an extended period of time. The purpose of creep testing is to understand the material's behavior under long-term loading and to determine its creep resistance. The data obtained from creep experiments can be used to predict the material's performance and durability under sustained stress conditions.

(ii) Stress Relaxation Experiments:

Stress relaxation experiments are performed to investigate the time-dependent decrease in stress within a material under a constant deformation. In this test, a constant strain is applied to a specimen, and the resulting stress is measured over time. The purpose of stress relaxation testing is to determine the material's ability to maintain a constant deformation or elongation over an extended period. This information is crucial in applications where the material needs to maintain its shape or withstand constant deformation without excessive stress relaxation.

(iii) Impact Experiments:

Impact experiments are conducted to assess the material's ability to absorb and withstand sudden or dynamic loads. In these tests, a specimen is subjected to a high-velocity impact, usually through the use of a pendulum or drop tower. The impact generates a rapid and significant stress on the material, causing deformation and potentially fracture. The purpose of impact testing is to evaluate the material's toughness, energy absorption capacity, and resistance to brittle failure. The results of impact experiments provide valuable insights into the material's suitability for applications where sudden loading or impact events are anticipated, such as automotive components, protective equipment, or structural elements.

Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer that has a high molecular weight as compared to other polymers. The chain type of this polymer is linear in nature. PTFE has a very unique chain type because of the presence of fluorine atoms that do not form any bonds with other atoms and thus give rise to a highly stable and non-reactive nature of the polymer. Therefore, the correct answer to this question is the linear chain type.

Learn more about Polytetrafluoroethylene (PTFE):

https://brainly.com/question/17216080

#SPJ11

Q1
a- Recloser switch
Define it how to use it, connect it and its importance Detailed explanation and drawing
B- switch gear Defining its components, where to use it, its benefits and more things about it and graph
please be full explain

Answers

Q1a) Recloser switch: The recloser switch is a unique type of circuit breaker that is specifically designed to function automatically and interrupt electrical flow when a fault or short circuit occurs.

A recloser switch can open and close multiple times during a single fault cycle, restoring power supply automatically and quickly after a temporary disturbance like a fault caused by falling tree branches or lightning strikes.How to use it?The primary use of recloser switches is to protect distribution feeders that have short circuits or faults. These recloser switches should be able to quickly and reliably protect power distribution systems. Here are some basic steps to use the recloser switch properly:

Firstly, the system voltage must be checked before connecting the recloser switch. Connect the switch to the feeder, then connect the switch to the power source using the supplied connectors. Ensure that the wiring is correct before proceeding.Connect the recloser switch to a communications system, such as a SCADA or similar system to monitor the system.In summary, it is an automated switch that protects distribution feeders from short circuits or faults.Importance of recloser switch:The recloser switch is important because it provides electrical system operators with significant benefits, including improved reliability, enhanced system stability, and power quality assurance. A recloser switch is an essential component of any electrical distribution system that provides increased reliability, greater flexibility, and improved efficiency when compared to traditional fuses and circuit breakers.Q1b) Switchgear:Switchgear is an electrical system that is used to manage, operate, and control electrical power equipment such as transformers, generators, and circuit breakers. It is the combination of electrical switches, fuses or circuit breakers that control, protect and isolate electrical equipment from the electrical power supply system's faults and short circuits.

Defining its components: Switchgear includes the following components:Current transformers Potential transformers Electrical protection relays Circuit breakersBus-barsDisconnectorsEnclosuresWhere to use it:Switchgear is used in a variety of applications, including power plants, electrical substations, and transmission and distribution systems. It is used in electrical power systems to protect electrical equipment from potential electrical faults and short circuits.Benefits of Switchgear:Switchgear has numerous benefits in terms of its safety and reliability, as well as its ability to handle high voltages. Here are some of the benefits of switchgear:Enhanced safety for personnel involved in the electrical power system.Reduction in damage to electrical equipment caused by power surges or electrical faults.Improvement in electrical power system's reliability. Easy to maintain and cost-effective.Graph:The following diagram displays the essential components of switchgear:  

To know more about Recloser switch visit:

https://brainly.com/question/32471578

#SPJ11

The acceleration of a particle traveling along a straight line is a = 8 − 2x. If velocity = 0 at position x = 0, determine the velocity of the particle as a function of x, and the position of the particle as a function of time..

Answers

The velocity equation for a particle traveling along a straight line, given the acceleration equation a = 8 - 2x and the initial velocity of 0 at x = 0, is v = 8x - x^2 + C, where C is the constant of integration.

What is the velocity equation for a particle traveling along a straight line given the acceleration equation a = 8 - 2x and the initial velocity of 0 at x = 0?

The given problem describes the motion of a particle along a straight line. The acceleration of the particle is represented by the equation a = 8 - 2x, where x represents the position of the particle.

To find the velocity of the particle as a function of x, we can integrate the given acceleration equation with respect to x. Integrating a = 8 - 2x gives us the velocity equation v = 8x - x^2 + C, where C is the constant of integration.

Since the velocity is given as 0 at x = 0, we can substitute these values into the equation to solve for C. Thus, C = 0, and the velocity equation becomes v = 8x - x^2.

To find the position of the particle as a function of time, we need to integrate the velocity equation with respect to x. Integrating v = 8x - x^2 gives us the position equation s = 4x^2 - (1/3)x^3 + D, where D is the constant of integration.

However, since the problem does not provide information about time, we cannot determine the position as a function of time without additional information.

In summary, the velocity of the particle as a function of x is v = 8x - x^2, and the position of the particle as a function of time cannot be determined without additional information.

Learn more about particle traveling

brainly.com/question/13683384

#SPJ11

The correct statement about the efficiency of transformer is ( ). A. With constant power factor the efficiency reaches the maximum when the copper loss equals the iron loss. B. With constant power factor the efficiency increases with the increasing load factor. C. With constant power factor the efficiency decreases with the increasing load factor. D. With constant load factor the efficiency decreases with the increasing secondary power factor.

Answers

The correct statement about the efficiency of a transformer is that with a constant power factor, the efficiency reaches the maximum when the copper loss equals the iron loss (Option A).

A transformer is a device that transfers electrical energy from one circuit to another. The transfer is done by electromagnetic induction, and it is accomplished with a varying current in one coil generating a varying magnetic field, which is then used to induce a varying electromotive force (EMF) across a second coil.

The efficiency of the transformer is calculated by dividing the power output by the power input, i.e.,

Efficiency = Output Power/Input Power x 100

The efficiency of the transformer is maximum when the copper loss equals the iron loss, which occurs when the efficiency of the transformer is at its peak value. In general, the efficiency of the transformer decreases as the load factor increases, but it may increase if the power factor is kept constant.

Hence, the correct statement about the efficiency of the transformer is that with a constant power factor, the efficiency reaches the maximum when the copper loss equals the iron loss. Hence, A is the correct option.

You can learn more about transformers at: brainly.com/question/15200241

#SPJ11

random 7. What is the difference between strict stationary random process and generalized random process? How to decide whether it is the ergodic stationary random process or not. (8 points)

Answers

The main difference between a strict stationary random process and a generalized random process lies in the extent of their statistical properties.

1. Strict Stationary Random Process: A strict stationary random process has statistical properties that are completely invariant to shifts in time. This means that all moments and joint distributions of the process remain constant over time. In other words, the statistical characteristics of the process do not change regardless of when they are measured.

2. Generalized Random Process: A generalized random process allows for some variation in its statistical properties over time. While certain statistical properties may be constant, such as the mean or autocorrelation, others may vary with time. This type of process does not require strict stationarity but still exhibits certain statistical regularities.

To determine whether a random process is ergodic and stationary, we need to consider the following criteria:

1. Strict Stationarity: Check if the process satisfies strict stationarity, meaning that all moments and joint distributions are invariant to shifts in time. This can be done by analyzing the mean, variance, and autocorrelation function over different time intervals.

2. Time-average and Ensemble-average Equivalence: Confirm whether the time-average statistical properties, computed from a single realization of the process over a long time interval, are equivalent to the ensemble-average statistical properties, computed by averaging over different realizations of the process.

3. Ergodicity: Determine if the process exhibits ergodicity, which means that the statistical properties estimated from a single realization of the process are representative of the ensemble-average properties. This can be assessed through statistical tests and analysis.

By examining these criteria, one can determine if a random process is ergodic and stationary.

Learn more about strict stationary random processes here:

https://brainly.com/question/32664919

#SPJ11

can you suggest an application or an electronic device made using intrinsic si where the strong temperature dependent electronic property can be utilized

Answers

An application or electronic device made using intrinsic Si where the strong temperature dependent electronic property can be utilized is a temperature sensor.Intrinsic silicon (i-Si) refers to pure silicon without doping.

This is silicon in its purest form, with no extrinsic atoms added. There is no dopant to provide excess electrons or holes in this instance. Pure Si or intrinsic Si has no net charge carriers. As a result, it has a low conductivity and is a poor electrical conductor.

A temperature sensor is a gadget that measures temperature. It is commonly utilized in a wide range of industrial and scientific applications to detect or measure temperature changes. It's a crucial component in thermostats, HVAC systems, and laboratory equipment, among other things.Intrinsic Si is often used to make temperature sensors.

To know more about electronic visit:

https://brainly.com/question/12001116

#SPJ11

QUESTION 1 Which of the followings is true? Narrowband FM is considered to be identical to AM except O A. their bandwidth. O B. a finite and likely large phase deviation. O C. an infinite phase deviation. O D. a finite and likely small phase deviation.

Answers

Narrowband FM is considered to be identical to AM except in their bandwidth. In narrowband FM, a finite and likely small phase deviation is present. It is the modulation method in which the frequency of the carrier wave is varied slightly to transmit the information signal.

Narrowband FM is an FM transmission method with a smaller bandwidth than wideband FM, which is a more common approach. Narrowband FM is quite similar to AM, but the key difference lies in the modulation of the carrier wave's amplitude in AM and the modulation of the carrier wave's frequency in Narrowband FM.

The carrier signal in Narrowband FM is modulated by a small frequency deviation, which is inversely proportional to the carrier frequency and directly proportional to the modulation frequency. Therefore, Narrowband FM is identical to AM in every respect except the bandwidth of the modulating signal.

When the modulating signal is a simple sine wave, the carrier wave frequency deviates up and down about its unmodulated frequency. The deviation of the frequency is proportional to the amplitude of the modulating signal, which produces sidebands whose frequency is equal to the carrier frequency plus or minus the modulating signal frequency. 

To know more about modulation visit:

https://brainly.com/question/28520208

#SPJ11

A discrete-time system has a pair of complex conjugate zeroes at j and on the 2.plane, and a pair of poles at the origin (z=0). If the sampling frequency used is 800 Hz, at what frequency (in Hz) is the gain equal to zero?

Answers

The exact frequency at which the gain is zero cannot be determined without specific values of the complex zeroes.

What is the frequency (in Hz) at which the gain is zero in the given system?

In a discrete-time system, the presence of complex conjugate zeroes and poles affects the system's frequency response. In this case, the system has a pair of complex conjugate zeroes located on the jω axis and a pair of poles at the origin (z = 0).

To determine the frequency at which the gain is equal to zero, we need to consider the relationship between the frequency and the complex zeroes. Since the complex conjugate zeroes are located on the jω axis, their frequency components are purely imaginary.

The frequency ω can be calculated using the sampling frequency (Fs) and the angle of the complex zeroes. The angle of the complex zeroes represents the phase shift introduced by the system. Since the poles are at the origin, they do not contribute to the frequency calculation.

By using the relationship ω = 2πf, where f is the frequency in Hz, we can determine the frequency at which the gain is equal to zero.

Since the sampling frequency is given as 800 Hz, we can calculate the frequency using the relationship f = ω/(2π).

A detailed calculation involving the specific values of the complex zeroes is required to determine the exact frequency at which the gain is zero in this system.

Learn more about frequency

brainly.com/question/29739263

#SPJ11

(5 pts) When a clock frequency of 16MHz is chosen as the clock timer. To obtain a 1 ms SysTick timer interval, what will be the Reload value? Show your work.

Answers

When the clock frequency is 16 MHz, the reload value that will give a SysTick timer interval of 1 ms is 15,999.

When a clock frequency of 16 MHz is selected as the clock timer, what is the Reload value required to obtain a 1 ms SysTick timer interval?

The SysTick timer is commonly used to maintain real-time systems. The SysTick timer is a 24-bit down-counter that, when it reaches zero, produces an interrupt.

The timebase for the SysTick is typically the CPU clock, and the SysTick interval is determined by a reload value stored in a system register.

The SysTick interval is calculated using the formula:

SysTick interval = (Reload value + 1) / System clock frequency

The formula to compute the reload value is:

Reload value = SysTick interval × System clock frequency - 1 = (1 × 16 × 10^6) - 1 = 15999

Since the clock frequency is 16 MHz, the reload value that will give a SysTick timer interval of 1 ms is 15,999.

Learn more about frequency at: https://brainly.com/question/254161

#SPJ11

developed by american iron and steel institute and society of automitvie engineers specific plain carbon steel is designated as AISI 1020. What are the last two numbers referring to? Carbon % in tenths of percentage points Carbon % in hundredths of percentage points Type of plain carbon

Answers

AISI 1020 is a specific plain carbon steel developed by American Iron and Steel Institute and Society of Automotive Engineers. The last two numbers 20 in AISI 1020 refer to Carbon % in hundredths of percentage points.

AISI 1020 is one of the popular mild steel grades. It has low carbon content and is commonly used due to its ease of machining and weldability. AISI 1020 is known for its good strength and toughness, but it may not be suitable for welding. The last two digits in its name represent the carbon percentage in hundredths of a percentage point. The AISI designation for plain carbon steel, 1020, indicates a composition of 0.18–0.23% carbon in tenths of percentage points by weight. In comparison, carbon steel has a higher carbon content and is used for making tools and other durable products, whereas mild steel is often used for automotive and construction applications.

To learn more about "AISI 1020" visit: https://brainly.com/question/29485936

#SPJ11

A lake with no outlet is fed by a river with a constant flow of 1700ft³/s. Water evaporates from the surface at a constant rate of 11ft³/s per square mile surface area. The area varies with depth h (feet) as A (square miles) =4.5+5.5h. What is the equilibrium depth of the lake? Below what river discharge will the lake dry up?

Answers

The equilibrium depth of the lake is approximately 27.27 feet. The lake will dry up if the depth is below 27.27 feet.

To determine the equilibrium depth of the lake, we need to find the point at which the inflow from the river matches the outflow due to evaporation. Let's break down the problem into steps:

Express the surface area of the lake in terms of its depth h:

A (square miles) = 4.5 + 5.5h

Calculate the rate of evaporation from the lake's surface:

Evaporation rate = 11 ft³/s per square mile surface area

The total evaporation rate E (ft³/s) is given by:

E = (4.5 + 5.5h) * 11

Calculate the rate of inflow from the river:

Inflow rate = 1700 ft³/s

At equilibrium, the inflow rate equals the outflow rate:

Inflow rate = Outflow rate

1700 = (4.5 + 5.5h) * 11

Solve the equation for h to find the equilibrium depth of the lake:

1700 = 49.5 + 60.5h

60.5h = 1700 - 49.5

60.5h = 1650.5

h ≈ 27.27 feet

Therefore, the equilibrium depth of the lake is approximately 27.27 feet.

To determine the river discharge below which the lake will dry up, we need to find the point at which the evaporation rate exceeds the inflow rate. Since the evaporation rate is dependent on the lake's surface area, we can express it as:

E = (4.5 + 5.5h) * 11

We want to find the point at which E exceeds the inflow rate of 1700 ft³/s:

(4.5 + 5.5h) * 11 > 1700

Simplifying the equation:

49.5 + 60.5h > 1700

60.5h > 1700 - 49.5

60.5h > 1650.5

h > 27.27

Therefore, if the depth of the lake is below 27.27 feet, the inflow rate will be less than the evaporation rate, causing the lake to dry up.

Learn more about Equilibrium depth, drying.

brainly.com/question/32241822

#SPJ11

A transformer is operated with the rated supply voltage and no load. The excitation current (). A. is sinusoidal as long as the supply voltage is sinusoidal B. is not sinusoidal C. produces the main flux rather than the leakage flux D. is in phase with the main flux if the reference current and reference flux are defined following the right-hand rule.

Answers

A transformer is operated with the rated supply voltage and no load. The excitation current () is sinusoidal as long as the supply voltage is sinusoidal. So, the correct option is A.

Similarly, when a transformer is operated with the rated supply voltage and no load, the core flux is primarily determined by the excitation current that is drawn by the transformer from the supply. This excitation current is known as the no-load current. The core flux of a transformer lags the magnetizing force by an angle that is a function of the type of steel used for the core.

Because the magnetizing force is a sinusoidal function of time, the core flux is a sinusoidal function of time. This means that the no-load current is also a sinusoidal function of time. Hence, A is the correct option.

You can learn more about voltage at: brainly.com/question/32002804

#SPJ11

Make an instrument to measure light intensity. It must be purely electronic. Using sensors, leds and Idrs etc. Must be able to detect darkness or light 7:47 PM DE Must be for electrical and electronics engineering project

Answers

Create a light intensity measurement instrument using sensors, LEDs, and electronic components. The device should be able to detect and differentiate between darkness and light.

To create an electronic instrument for measuring light intensity, you can utilize sensors, LEDs, and other electronic components. The main objective of the device is to detect and differentiate between darkness and light. Here is a high-level explanation of the components and working principle: Light Sensor: Use a photodiode or phototransistor as a light sensor. These devices generate a current or voltage proportional to the incident light intensity. Amplification Circuit: Amplify the output signal from the light sensor using operational amplifiers or transistor circuits. This amplification ensures that small changes in light intensity are detectable. Microcontroller: Utilize a microcontroller to process the amplified signal and convert it into a meaningful measurement of light intensity. The microcontroller can include an analog-to-digital converter (ADC) to digitize the analog signal from the sensor. Display: Connect an LED display or an LCD screen to the microcontroller to visualize the measured light intensity. Threshold Detection: Implement threshold detection logic in the microcontroller to differentiate between darkness and light. You can set a specific threshold value, below which the device considers the environment as dark, and above which it identifies light. By combining these components and designing the appropriate circuitry and programming, you can create an electronic instrument that accurately measures light intensity and distinguishes between darkness and light.

learn more about measurement here :

https://brainly.com/question/28913275

#SPJ11

If a beam has an overall length of 15ft, draw the distributed load diagram given that the internal shear force is captured by V(x)=(5kips/ft)(−x+⟨x−5ft⟩−⟨x−10ft⟩+5ft). Where x=0 is at the left end of the beam and x=15ft is the right end of the beam. Show all intermediate steps in addition to the final result.

Answers

The beam has an overall length of 15ft. The internal shear force is captured by V(x) = (5kips/ft)(−x + ⟨x − 5ft⟩ − ⟨x − 10ft⟩ + 5ft) where x=0 is at the left end of the beam and x=15ft is the right end of the beam.

To draw the distributed load diagram, we need to determine the function of the internal shear force and the equation for the distributed load.

First, let's determine the function of the shear force:V(x) = (5kips/ft)(−x + ⟨x − 5ft⟩ − ⟨x − 10ft⟩ + 5ft)V(x) = (5kips/ft)(−x + x − 5ft − x + 10ft + 5ft)V(x) = (5kips/ft)(−x + x − x + 10ft)V(x) = (5kips/ft)(10ft − x)

The function of the shear force is V(x) = (5kips/ft)(10ft − x)

Next, let's determine the equation for the distributed load. We can do this by taking the derivative of the shear force equation: dV(x)/dx = (5kips/ft)(-1)The distributed load equation is w(x) = dV(x)/dx = -5kips/ftNow we can draw the distributed load diagram:At x = 0, the distributed load is w(0) = -5kips/ft.At x = 15ft, the distributed load is w(15) = -5kips/ft.

The diagram should show a constant distributed load of -5kips/ft over the entire length of the beam.

To learn more about "Internal shear force" visit: https://brainly.com/question/30465072

#SPJ11

A typed discussion
on FREQUENCY MODULATION (FM) AND
DEMODULATION

Answers

Person A: Hey, have you ever studied frequency modulation (FM) and demodulation? It's a fascinating topic in communication systems.

Person B: Yes, I have some knowledge about FM and demodulation. FM is a modulation technique where the frequency of the carrier signal is varied in proportion to the instantaneous amplitude of the modulating signal. It is widely used in radio broadcasting and telecommunications.

Person A: Yes, the phase-locked loop is widely used in FM stereo broadcasting to demodulate the audio signals. It helps in separating the left and right audio channels. Quadrature demodulation, also known as synchronous detection, utilizes a combination of phase shifters and mixers to extract the baseband signal from the FM carrier.

Person B: That's correct. Demodulation techniques play a crucial role in recovering the original information from the FM signal accurately. It's interesting to see how different methods are employed based on specific requirements and applications.

Person A: Absolutely! FM modulation and demodulation have revolutionized the field of communication, especially in radio broadcasting. The ability to transmit high-quality audio with better noise immunity has made FM a popular choice for many applications.

Learn more about demodulation here:

https://brainly.com/question/29909958

#SPJ11

Atmospheric pressure, also known as barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa. Explain why some people experience nose bleeding and some others experience shortness of breath at high elevations.

Answers

Nose bleeding and shortness of breath at high elevations can be attributed to the changes in atmospheric pressure. At higher altitudes, the atmospheric pressure decreases, leading to lower oxygen levels in the air. This decrease in pressure can cause the blood vessels in the nose to expand and rupture, resulting in nosebleeds.

 the reduced oxygen availability can lead to shortness of breath as the body struggles to take in an adequate amount of oxygen. The body needs time to acclimate to the lower pressure and adapt to the changes in oxygen levels, which is why these symptoms are more common at higher elevations. At higher altitudes, the atmospheric pressure decreases because there is less air pressing down on the body.

This decrease in pressure can cause the blood vessels in the nose to become more fragile and prone to rupturing, leading to nosebleeds. The dry air at higher elevations can also contribute to the occurrence of nosebleeds. On the other hand, the reduced atmospheric pressure means that there is less oxygen available in the air. This can result in shortness of breath as the body struggles to obtain an adequate oxygen supply. It takes time for the body to adjust to the lower pressure and increase its oxygen-carrying capacity, which is why some individuals may experience these symptoms when exposed to high elevations.

Learn more about atmospheric pressure here

brainly.com/question/28310375

#SPJ11

2 Decane (C10H22) is burnt in a steady flow combustion chamber with 140% theoretical dry air. The flow rate of the fuel is 0.05 kg/min. (a) Derive the stoichiometric and actual combustion equations. (8 marks) (b) Determine the air-to-fuel ratio and required air flow rate. (4 marks) (c) Derive the wet volumetric analysis of the products of combustion. (8 marks) (d) In the case of the actual combustion process, calculate the average molecular weight in kg/kmol) of the exhaust mixture of gases. (5 marks)

Answers

The stoichiometric combustion equation for 2 Decane (C10H22) is given below.C10H22 + 15 (O2 + 3.76 N2) → 10 CO2 + 11 H2O + 56.4 N2The air required for the combustion of one kilogram of fuel is called the theoretical air required. F

or 2 Decane (C10H22), the theoretical air required can be calculated as below. Theoretical air = mass of air required for combustion of 2 Decane / mass of 2 Decane The mass of air required for combustion of 1 kg of 2 Decane can be calculated as below.

Molecular weight of C10H22 = 142 g/molMolecular weight of O2 = 32 g/molMolecular weight of N2 = 28 g/molMass of air required for combustion of 1 kg of 2 Decane = (15 × (32/142) + (3.76 × 15 × (28/142))) = 51.67 kg∴ The theoretical air required for 2 Decane (C10H22) combustion is 51.67 kg. The stoichiometric combustion equation is already derived above. Actual combustion equation:

To know more about combustion visit:-

https://brainly.com/question/32250637

#SPJ11

QUESTION 9 Which of the followings is true? O A. A steady-state response can be computed by taking the ratio of the input over the output. B. A transient response can be computed by taking the ratio of the input over double the output. O C. All given options. O D. The impulse response can be computed by taking the ratio of the output over the input.

Answers

The true statement  A steady-state response can be computed by taking the ratio of the input over the output.

A steady-state response of a system is the response of a system after all the transient components have vanished. In other words, it's the output that remains after a certain amount of time once the system has reached its steady-state.The steady-state response is a fundamental concept in signal processing and control theory.

The steady-state response of a system is significant since it characterizes the way the system reacts to different signals over time.

To know more about steady-state  visit :-

https://brainly.com/question/30760169

#SPJ11

Compute the humidity ratio of air at 75 percent relative humidity and 34 deg C (Psat=5318 kPa), when the barometric pressure is 110 kPa. Select one O a 0.0423 kg/kg Ob00241 kg/kg O c 0.0234 kg/kg O d. 0.0243 kg/kg

Answers

We are to calculate the humidity ratio of air at 75% relative humidity and 34℃(Psat=5318 kPa), when the barometric pressure is 110 kPa.

To solve this problem, we can use the following formula:

Relative humidity = actual vapor pressure/saturation vapor pressure x 100% (where the actual vapor pressure is the partial pressure of the water vapor in the air)

The humidity ratio is given by (mass of water vapor/mass of dry air)We have:

Barometric pressure = 110 kPa

Relative Humidity = 75%Psat

= 5318 kPa

Dry bulb temperature = 34℃

The first step is to calculate the saturation vapor pressure Ps:

Using the formula:

Ps=6.112 x exp((17.67 x TD)/(TD+243.5))

Putting in the value of dry bulb temperature,

TD=34℃

So,

Ps=6.112 x exp((17.67 x 34)/(34+243.5))

=6.112 x exp(22.2323/277.5)

=6.112 x 0.0328

= 0.2005 kPa

Now, we can calculate the actual vapor pressure Pa using relative humidity:

Relative humidity = actual vapor pressure/saturation vapor pressure x 100%

Rearranging the formula, we get

Actual vapor pressure = Relative humidity / 100% x saturation vapor pressure

Putting in the values, we get

Actual vapor pressure

Pa= 75 /100 x 0.2005

=0.1503 kPa

Humidity ratio (W) is given by (mass of water vapor/mass of dry air)

So,

W= (0.62198 x Pa)/(p - Pa)

where p is the atmospheric pressure = 110 kPa

Putting in the values, we get

W= (0.62198 x 0.1503)/(110-0.1503)

=0.0009231/109.8497

W= 0.00000839 kg/kg (approx)

Thus, the option Ob00241 kg/kg is closest to the correct answer.

To know more about atmospheric  visit:

https://brainly.com/question/32358340

#SPJ11

Other Questions
A four-pole wave-connected DC machine has 48 conductors with anarmature resistance of 0.13 , determine its equivalent armatureresistance if the machine is rewound for lap winding. what is the final volume in liters for a solution of 0.20 m hcl prepared by diluting 20.0 ml of a 6.0 m hcl solution? ________ describes the development of hybrid devices that can combine the functionality of two or more existing media platforms into a single device. A PM DC electric motor will be selected for an arm mechanism which has a length of 0.3 meters. This arm is aimed to lift 2 kg of load attached to its free end while rotating with 60 rpm at maximum power. There will be a gearbox with 3:1 ratio (speed reducer) and 80% efficiency attached between the motor and the arm. a) State the stall torque, maximum speed and power requirements for the desired motor at maximum loading, b) If input voltage is required to be 24 V and armature resistance of all possible motors is 1.5 ohm, state electrical constant and torque constant of the desired motor. In response to changes in osmolarity, what does the hypothalamusdo, and what effects does it have on the body? Exercise 1 Choose the word or abbreviation in the parentheses that correctly completes each sentence and write it on the blank.Three _____ of the fabric cost $5.40. (yd., yards) Which of the following can result in chain termination in cationic polymerization? O a chain transfer reaction with the solvent O addition of a nucleophile that reacts with the propagating site O loss of H+ a 1,2-hydride shift loss of H+, addition of a nucleophile that reacts with the propagating site, and a chain transfer reaction with the solvent O What is stable versus unstable angina and how are theytreated? How do you tell when stable angina becomesunstable angina or an MI?What causes more oxygen demand in themyocardium? What causes les A company wishes to measure its customers' loyalty. what attribute of its brand could be used to assess this measurement? One reason that ROE calculations are broken down into three components in the DuPont equation is that it hides problem areas from analysts the numbers are more difficult to falsify O it highlights exceptional financial planning it shows management where ROE improvements can be made Why do action potentials usually travel unidirectionally down an axon?a.Delayed activation of K+ channels b.Inactivation of Na+ channels c.Myelin prevents travel in the opposite direction. d.Action potentials are all-or-none. at bahama foods, the break-even point is 1,600 units. if fixed costs total $44,000 and variable costs are $12 per unit, what is the selling price per unit? Given: Angle1 and Angle2 are supplements, and Angle3 and Angle2 are supplements.Prove: Angle1 Is-congruent-to Angle3Three separate angles are shown. They are labeled 1, 2, 3 from left to right.Complete the missing parts of the paragraph proof.By the definition of angles, the sum of the measures of angles 1 and 2 is 180 degrees. Likewise, the sum of the measures of angles is 180 degrees. By the property, mAngle1 + mAngle2 = mAngle3 + mAngle2. Subtract the measure of angle from each side. You get mAngle1 = mAngle3, or Angle1 Is-congruent-to Angle3, by the definition of congruence. Calculate the density of cyclohexane if a 50.0 g sample has a volume of 64.3 ml. acid reflux disease is caused by a compromised _____. stomach lining esophageal muscle lower esophageal sphincter small intestine A chi-square test for independence has df = 2. what is the total number of categories (cells in the matrix) that were used to classify individuals in the sample? Although a forest has a larger biomass than a grassland ecosystem of equal size, the net productivity of a grassland may be higher than that of a forest during growing season. This is because a. the biomass of grasses eaten by grazing animals is rapidly replaced b. the availability of water is higher in grasslands c. the productivity of forest ecosystems is limited by low temperatures d. there are more consumers in a forest ecosystem A pump is delivering water into a tank at a rate of r (t) 3t2+5 liters/minute where t is the time in minutes since the pump was turned on. Use a left Riemann sum with n 5 subdivisions to estimate the volume of water (in liters) pumped in during the first minute. Do not round off your value the change in altitude (a) of a car as it drives up a hill is described by the following piecewise equation, where d is the distance in meters from the starting point. a { 0 . 5 x if d < 100 50 if d 100 for sulfurous acid (h2so3, a diprotic acid), write the equilibrium dissociation reactions and the corresponding expressions for the equilibrium constants, ka1and ka2.