Enrique deposited $4,700 into an account. He made no additional withdrawals or deposits. Enrique earned 1. 65% annual simple interest on the money in the account. What was the balance in his account at the end of 4. 5 years? Enter the amount in the account in the box.

Answers

Answer 1

Therefore, the answer is; Balance in the account = $5051.23. The answer should be supported with a 250-word explanation.

Given; Deposited amount, P = $4,700Annual interest rate, R = 1.65%Time period, t = 4.5 years

Simple interest formula: I = PRT/100Where I is the simple interest earned, P is the principal amount, R is the annual interest rate and T is the time period.  

Therefore, I = PRT/100= 4700 × 1.65 × 4.5 / 100= $351.23So, the total amount after 4.5 years is;A = P + I= $4700 + $351.23= $5051.23Therefore, the balance in the account at the end of 4.5 years is $5,051.23.Therefore, the answer is;Balance in the account = $5051.23.

The answer should be supported with a 250-word explanation.

To know more about balance visit:

https://brainly.com/question/31104614

#SPJ11


Related Questions

Find the values of x for which the function is continuous. (Enter your answer using interval notation.) f(x) = −x − 3 if x < −3 0 if −3 ≤ x ≤ 3 x + 3 if x > 3

Answers

The values of x for which the function is continuous in interval notation are:  (-∞, -3] ∪ [-3, 3] ∪ [3, ∞).

Given the function, f(x) = −x − 3 if x < −3, 0 if −3 ≤ x ≤ 3, and x + 3 if x > 3

We have to find the values of x for which the function is continuous. To find the values of x for which the function is continuous, we have to check the continuity of the function at the critical point, which is x = -3 and x = 3.

Here is the representation of the given function:

f(x) = {-x - 3 if x < -3} = {0 if -3 ≤ x ≤ 3} = {x + 3 if x > 3}

Continuity at x = -3:

For the continuity of the given function at x = -3, we have to check the right-hand limit and left-hand limit.

Let's check the left-hand limit.  LHL at x = -3 :  LHL at x = -3

=  -(-3) - 3

= 0

Therefore, Left-hand limit at x = -3 is 0.

Let's check the right-hand limit. RHL at x = -3 :  RHL at x = -3 = 0

Therefore, the right-hand limit at x = -3 is 0.

Now, we will check the continuity of the function at x = -3 by comparing the value of LHL and RHL at x = -3. Since the value of LHL and RHL is 0 at x = -3, it means the function is continuous at x = -3.

Continuity at x = 3:

For the continuity of the given function at x = 3, we have to check the right-hand limit and left-hand limit.

Let's check the left-hand limit. LHL at x = 3:  LHL at x = 3

= 3 + 3

= 6

Therefore, Left-hand limit at x = 3 is 6.

Let's check the right-hand limit. RHL at x = 3 : RHL at x = 3

= 3 + 3

= 6

Therefore, the right-hand limit at x = 3 is 6.

Now, we will check the continuity of the function at x = 3 by comparing the value of LHL and RHL at x = 3.

Since the value of LHL and RHL is 6 at x = 3, it means the function is continuous at x = 3.

Therefore, the function is continuous in the interval (-∞, -3), [-3, 3], and (3, ∞).

Hence, the values of x for which the function is continuous in interval notation are:  (-∞, -3] ∪ [-3, 3] ∪ [3, ∞).

To know more about continuous visit:

https://brainly.com/question/31523914

#SPJ11

For each equivalence relation below, find the requested equivalence class. R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} on {1, 2, 3, 4}. Find [1] and [4].

Answers

The relation R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} on {1, 2, 3, 4} is an equivalence relation because it satisfies the three properties of reflexivity, symmetry, and transitivity.

To find the equivalence class of [1], we need to identify all the elements that are related to 1 through the relation R. We can see from the definition of R that 1 is related to 1 and 2, so [1] = {1, 2}.

Similarly, to find the equivalence class of [4], we need to identify all the elements that are related to 4 through the relation R. Since 4 is related only to itself, we have [4] = {4}.

In summary, sets [1] = {1, 2} and [4] = {4}.

To know more about sets, visit:

https://brainly.com/question/8053622

#SPJ11

estimate happiness as a function of age in a simple linear regression model. what is the sample regression equation

Answers

The sample regression equation:

Y = b0 + b1X, where Y represents happiness, and X represents age.

To estimate happiness as a function of age in a simple linear regression model, we'll need to create a sample regression equation using these terms:

dependent variable (Y),

independent variable (X),

slope (b1), and intercept (b0).

In this case, happiness is the dependent variable (Y), and age is the independent variable (X).
To create the sample regression equation, follow these steps:
Collect data:

Gather a sample of data that includes happiness levels and ages for a group of individuals.
Calculate the means:

Find the mean of both happiness (Y) and age (X) for the sample.

Calculate the slope (b1):

Determine the correlation between happiness and age, then multiply it by the standard deviation of happiness (Y) divided by the standard deviation of age (X).
Calculate the intercept (b0):

Subtract the product of the slope (b1) and the mean age (X) from the mean happiness (Y).
Form the sample regression equation:

Y = b0 + b1X, where Y represents happiness, and X represents age.
By following these steps, we'll create a sample regression equation that estimates happiness as a function of age in a simple linear regression model.

For similar question on regression.

https://brainly.com/question/25987747

#SPJ11

To estimate happiness as a function of age in a simple linear regression model, we can use the following equation:
Happiness = b0 + b1*Age, here, b0 is the intercept and b1 is the slope coefficient.

The intercept represents the expected level of happiness when age is zero, and the slope coefficient represents the change in happiness associated with a one-unit increase in age.

To find the sample regression equation, we need to estimate the values of b0 and b1 using a sample of data. This can be done using a statistical software package such as R or SPSS.

Once we have estimated the values of b0 and b1, we can plug them into the equation above to obtain the sample regression equation for our data. This equation will allow us to predict happiness levels for different ages based on our sample data.
Or we'll first need to collect data on happiness and age from a representative sample of individuals. Then, you can use this data to determine the sample regression equation, which will have the form:

Happiness = a + b * Age

Here, 'a' represents the intercept, and 'b' represents the slope of the line, which estimates the relationship between age and happiness. The intercept and slope can be calculated using statistical software or by applying the least squares method. The resulting equation will help you estimate the level of happiness for a given age in the sample.

To learn more about least squares method click here, brainly.com/question/13084720

#SPJ11

The circumference of the hub cap of a tire is 82. 46 centimeters. Find the area of this hub cap

Answers

To find the area of the hub cap, we need to use the formula for the circumference of a circle and solve for the radius, then use the formula for the area of a circle.

The formula for circumference of a circle is: C = 2πr where C is the circumference and r is the radius. We know that the circumference of the hub cap is 82.46 centimeters. So we can substitute this value into the formula:82.46 = 2πr To solve for r, we need to isolate it on one side of the equation.

We can do this by dividing both sides by 2π:82.46 / 2π ≈ 13.123r ≈ 13.123Now that we have the radius, we can use the formula for the area of a circle: A = πr²Substituting in the value of the radius we just found: A ≈ π(13.123)²A ≈ π(171.85)A ≈ 539.24So the area of the hub cap is approximately 539.24 square centimeters.

Know more about find the area of the hub cap here:

https://brainly.com/question/27140965

#SPJ11

use the unit circle, along with the definitions of the circular functions, to find the exact values for the given functions when s=-2 pi.

Answers

The exact values for the given functions at s = -2π are sin(-2π) = 0, cos(-2π) = -1 and tan(-2π) = 0

At s = -2π, the point on the unit circle is located at the angle of -2π radians or 360 degrees (a full counterclockwise revolution).

The values for the circular functions at s = -2π are as follows:

The y-coordinate of the point on the unit circle is the sine value.

At -2π, the y-coordinate is 0, so sin(-2π) = 0.

The x-coordinate of the point on the unit circle is the cosine value.

At -2π, the x-coordinate is -1, so cos(-2π) = -1.

The tangent value is calculated as the ratio of sine to cosine.

Since sin(-2π) = 0 and cos(-2π) = -1,

we have tan(-2π) = sin(-2π) / cos(-2π) = 0 / (-1) = 0.

Therefore, the exact values for the given functions at s = -2π are sin(-2π) = 0, cos(-2π) = -1 and tan(-2π) = 0

To learn more on trigonometry click:

https://brainly.com/question/25122835

#SPJ1

The inverse Laplace transform of the functionF ( s ) = (7s)/[( s − 1 ) ( s + 6 ) ]is a function of the form f ( t ) = A e^t + Be^(− 6 t) .a) Find the value of the coefficient Ab) Find the value of the coefficient B

Answers

To find the coefficients A and B in the inverse Laplace transform of F(s), we need to use partial fraction decomposition and the properties of Laplace transforms. Here's how we do it:

First, we factor the denominator of F(s) as (s-1)(s+6). Then we write F(s) as a sum of two fractions with unknown coefficients A and B:

[tex]F(s) = \frac{7s}{(s-1)(s+6)} = \frac{A}{s-1} +\frac{B}{s+6}[/tex]

To find A, we multiply both sides by (s-1) and then take the inverse Laplace transform:

[tex]L^{-1} [F(s)] = L^{-1}[\frac{A}{s-1} ] +L^{-1}[\frac{B}{s+6} ][/tex]
[tex]f(t) = A e^t + B e^{-6t}[/tex]

Since we know that the inverse Laplace transform of F(s) has the form of f(t) = A e^t + B e^(-6t), we can use this expression to solve for A and B. We just need to evaluate f(t) at two different values of t and then solve the resulting system of equations.

Let's start with t=0:

[tex]f(0) = A e^0 + B e^{0}  = A + B[/tex]

Now let's take the derivative of f(t) and evaluate it at t=0:

[tex]f'(t) = A e^{t} - 6B e^{-6t}[/tex]
f'(0) = A - 6B

We can now solve the system of equations:

A + B = f(0) = 0   (since F(s) is proper, i.e., has no DC component)
A - 6B = f'(0) = 7

Solving for A and B, we get:

A = 21/7 = 3
B = -21/7 = -3

Therefore, the coefficients in the inverse Laplace transform of F(s) are:

A = 3
B = -3

Learn more about Laplace here:

https://brainly.com/question/31481915

#SPJ11

Approximate the given quantity using Taylor polynomials with n=3. b. Compute the absolute error in the approximation assuming the exact value is given by a calculator. cos (0.14) a. P3 (0.14) = 9902 (Do not round until the final answer. Then round to six decimal places as needed.) b. absolute error = 1.99.10-4 (Use scientific notation. Round to two decimal places as needed.)

Answers

The absolute error is 1.99 x 10^-4. To approximate cos(0.14) using a Taylor polynomial with n=3.

We first find the polynomial:

f(x) = cos(x)

f(0) = 1

f'(x) = -sin(x)

f'(0) = 0

f''(x) = -cos(x)

f''(0) = -1

f'''(x) = sin(x)

f'''(0) = 0

So the third degree Taylor polynomial is:

P3(x) = f(0) + f'(0)x + (f''(0)/2!)x^2 + (f'''(0)/3!)x^3

P3(x) = 1 + 0x + (-1/2!)x^2 + 0x^3

P3(x) = 1 - 0.07 + 0.0029 - 0.00007

P3(0.14) = 0.9902

To compute the absolute error, we subtract the approximation from the exact value and take the absolute value:

Absolute error = |cos(0.14) - P3(0.14)|

Absolute error = |0.990059 - 0.9902|

Absolute error = 1.99 x 10^-4

So the absolute error is 1.99 x 10^-4.

Learn more about absolute error here:

https://brainly.com/question/14669199

#SPJ11

Consider the following series and level of accuracy. [infinity]sum.gifn = 0 (−1)^n (1/ (6^n + 3)) (10^−4)
Determine the least number N such that |Rn| is less than the given level of accuracy.
N =
Approximate the sum S, accurate to p decimal places, which corresponds to the desired accuracy. (Recall this means that the answer should agree with the correct answer, rounded to p decimal places.)

Answers

The sum S, accurate to 5 decimal places, is approximately 0.07827.

We can use the Alternating Series Estimation Theorem to estimate the error of the given series. According to the theorem, the error |Rn| is bounded by the absolute value of the next term in the series, which is:

|(-1)^(n+1) (1/(6^(n+1) + 3)) (10^(-4))| = (1/(6^(n+1) + 3)) (10^(-4))

We want to find the least number N such that |Rn| is less than the given level of accuracy of 10^(-5):

(1/(6^(N+1) + 3)) (10^(-4)) < 10^(-5)

Solving for N, we have:

1/(6^(N+1) + 3) < 10

6^(N+1) + 3 > 10^(-1)

6^(N+1) > 10^(-1) - 3

N+1 > log(10^(-1) - 3)/log(6)

N > log(10^(-1) - 3)/log(6) - 1

N > 4.797

Therefore, the least number N such that |Rn| is less than 10^(-5) is N = 5.

To approximate the sum S, accurate to p decimal places, we can compute the partial sum S5:

S5 = (-1)^0 (1/(6^0 + 3)) + (-1)^1 (1/(6^1 + 3)) + (-1)^2 (1/(6^2 + 3)) + (-1)^3 (1/(6^3 + 3)) + (-1)^4 (1/(6^4 + 3))

Simplifying each term, we get:

S5 = 0.090000 - 0.014850 + 0.002457 - 0.000407 + 0.000068

S5 ≈ 0.078268

To ensure that the approximation is accurate to p decimal places, we need to check the error term |R5|:

|R5| = (1/(6^6 + 3)) (10^(-4)) ≈ 0.000001

Since |R5| is less than 10^(-p), the approximation is accurate to p decimal places. Therefore, the sum S, accurate to 5 decimal places, is approximately 0.07827.

Learn more about decimal places here

https://brainly.com/question/28393353

#SPJ11

Chocolate bars are on sale for the prices shown in this stem-and-leaf plot.

Cost of a Chocolate Bar (in cents) at Several Different Stores

Stem Leaf

7 7

8 5 5 7 8 9

9 3 3 3

10 0 5

Answers

The second stem-and-leaf combination of 8-5 indicates that the cost of chocolate bars is 85 cents. Similarly, the third stem-and-leaf combination of 8-5 indicates that the cost of chocolate bars is 85 cents. The fourth stem-and-leaf combination of 8-7 indicates that the cost of chocolate bars is 87 cents. The last stem-and-leaf combination of 8-9 indicates that the cost of chocolate bars is 89 cents.

Chocolate bars are on sale for the prices shown in the given stem-and-leaf plot. Cost of a Chocolate Bar (in cents) at Several Different Stores.

Stem Leaf

7 7

8 5 5 7 8 9

9 3 3 3

10 0 5

There are four stores at which the cost of chocolate bars is displayed. Their costs are indicated in cents, and they are categorized in the given stem-and-leaf plot. In a stem-and-leaf plot, the digits in the stem section correspond to the tens place of the data.

The digits in the leaf section correspond to the units place of the data.

To interpret the data, look for patterns in the leaves associated with each stem.

For example, the first stem-and-leaf combination of 7-7 indicates that the cost of chocolate bars is 77 cents.

The second stem-and-leaf combination of 8-5 indicates that the cost of chocolate bars is 85 cents.

Similarly, the third stem-and-leaf combination of 8-5 indicates that the cost of chocolate bars is 85 cents.

The fourth stem-and-leaf combination of 8-7 indicates that the cost of chocolate bars is 87 cents.

The last stem-and-leaf combination of 8-9 indicates that the cost of chocolate bars is 89 cents.

To know more about combination visit:

https://brainly.com/question/31586670

#SPJ11

Sanjay’s closet is shaped like a rectangular prism. It measures feet high and has a base that measures feet long and feet wide. What is the volume of Sanjay’s closet?

Answers

The volume of Sanjay’s closet would be  82.875 ft³

It is known that a rectangular prism is a three-dimensional shape that has two at the top and bottom and four are lateral faces.

The volume of a rectangular prism=Length X Width X Height

Given parameters are;

4 1/4 ft long, 3 1/4 ft wide, and 6 ft tall.

V = Length X Width X Height

V = 3 1/4 x 4 1/4 x 6

V = 82. 7/8 ft³ or 82.875 ft³

The complete question is

Sanjay’s closet is shaped like a rectangular prism. It measures 4 1/4 ft long, 3 1/4 ft wide, and 6 ft tall. What is the volume of Sanjay’s closet?

Learn more about a rectangular prism;

https://brainly.com/question/21308574

#SPJ1

1. evaluate the line integralſ, yềz ds , where c is the line segment from (3, 3, 2) to (1, 2, 5).

Answers

The value of the line integral is 2sqrt(14) - 5.

To evaluate the line integral, we need a vector function r(t) that traces out the curve C as t goes from a to b.

We can find a vector function r(t) for the line segment from (3, 3, 2) to (1, 2, 5) as follows:

r(t) = <3, 3, 2> + t<-2, -1, 3> for 0 ≤ t ≤ 1

We can then compute the differential ds as:

ds = |r'(t)| dt = sqrt(14) dt

Substituting y = 3-t, z = 2+3t, and ds = sqrt(14) dt in the given line integral:

∫C (-y)dx + xdy + zds

= ∫[0,1] [(3-t)(-2dt) + (3+3t)(-dt) + (2+3t)(sqrt(14) dt)]

= ∫[0,1] [-2t - 3 + 3t - sqrt(14)t + 2sqrt(14) + 3sqrt(14)t] dt

= ∫[0,1] [(6sqrt(14) - 2 - sqrt(14))t - 3] dt

= [(6sqrt(14) - 2 - sqrt(14))(1/2) - 3(1-0)]

= 2sqrt(14) - 5

Therefore, the value of the line integral is 2sqrt(14) - 5.

Learn more about integral here:

https://brainly.com/question/18125359

#SPJ11:

Analyze the polynomial function f(x) = (x+4)-(3 - x) using parts (a) through (e). (a) Determine the end behavior of the graph of the function. The graph off behaves like y= for large values of Ixl. (b) Find the x- and y-intercepts of the graph of the function. The x-intercept(s) is/are . (Simplify your answer. Type an integer or a fraction. Use a comma to separate answers as needed. Type each answer only once.) The y-intercept is :

Answers

The y-intercept is (0, 1). a. the end behavior of the graph is that it behaves like y = 2x + 1 for large values of |x|. b. the y-intercept of the graph of the function is y = 1.

(a) The end behavior of the graph of the function is that it behaves like y = 2x + 1 for large values of |x|.

To determine the end behavior, we look at the highest degree term in the polynomial function, which is x. The coefficient of this term is 2, which is positive. This tells us that as x becomes very large in either the positive or negative direction, the function will also become very large in the positive direction. Therefore, the end behavior of the graph is that it behaves like y = 2x + 1 for large values of |x|.

(b) To find the x-intercepts of the graph of the function, we set f(x) = 0 and solve for x:

(x+4)-(3-x) = 0

2x + 1 = 0

x = -1/2

Therefore, the x-intercept of the graph of the function is x = -1/2.

To find the y-intercept of the graph of the function, we set x = 0 and evaluate f(x):

f(0) = (0+4)-(3-0) = 1

Therefore, the y-intercept of the graph of the function is y = 1.

Learn more about y-intercept here

https://brainly.com/question/10700419

#SPJ11

What did the Europeans bring to the new world that demolished the native populations?

Answers

When the Europeans arrived in the New World, they brought with them a host of new diseases that the native populations had never encountered before.

These diseases were unintentionally spread through contact with Europeans, and they decimated the native populations.The correct answer is: New diseases brought by Europeans to the New World demolished native populations.What happened when the Europeans arrived in the New World?When Europeans arrived in the New World, they brought a wide range of goods, animals, and plants that were unfamiliar to the native people. This introduced new food sources, tools, and other useful items to the indigenous population.However, the Europeans also brought with them diseases that the natives had never been exposed to before. Smallpox, measles, and influenza were among the diseases that proved particularly devastating to the native population. These diseases spread quickly through the native communities, killing people in huge numbers.Because the natives had no immunity to these diseases, they were unable to fight off the illnesses. This made it easy for Europeans to gain control over the land and people of the New World, as the native populations were weakened and vulnerable to invasion and conquest. As a result, the arrival of Europeans in the New World had a profound impact on the indigenous people, with many communities being wiped out entirely by disease.

To know more about demolished, visit:

https://brainly.com/question/30588694

#SPJ11

A polygon is shown below . Write down the sum of its exterior angles. Work out the size of angle x

Answers

Answer:

use 360°/ n

Step-by-step explanation:

where n is the number of sides

did you understand like that

Find the Inverse Laplace transform/(t) = L-1 {F(s)) of the function F(s) = 1e2 しー·Use h(t-a) for the Use ht - a) for the Heaviside function shifted a units horizontally. (1 + e-2s)2 S +2 f(t) = C-1 help (formulas)

Answers

Thus, the inverse Laplace transform is found as: f(t) = 1/4h(t-2) + (1/4 - 1/2e2ln(2))h(t) - 1/4h(t+ln(2)) + C, in which C is a constant.

To find the inverse Laplace transform of F(s) = 1e2/(s+2)(1+e-2s)2, we need to use partial fraction decomposition and the Laplace transform table.

First, let's rewrite F(s) using partial fraction decomposition:
F(s) = 1e2/[(s+2)(1+e-2s)2]
= A/(s+2) + (B + Cs)/(1+e-2s) + (D + Es)/(1+e2s)

where A, B, C, D, and E are constants to be determined.

To find A, we multiply both sides by (s+2) and then let s=-2:
A = lim(s→-2) [s+2]F(s)
= lim(s→-2) [s+2][1e2/[(s+2)(1+e-2s)2]]
= 1/4

To find B and C, we multiply both sides by (1+e-2s)2 and then let s=ln(1/2):
B + C = lim(s→ln(1/2)) [(1+e-2s)2]F(s)
= lim(s→ln(1/2)) [(1+e-2s)2][1e2/[(s+2)(1+e-2s)2]]
= 3/4

B - C = lim(s→ln(1/2)) [(d/ds)(1+e-2s)(1+e-2s)F(s)]
= lim(s→ln(1/2)) [(d/ds)(1+e-2s)(1+e-2s)][1e2/[(s+2)(1+e-2s)2]]
= -1/2

Solving for B and C, we get:
B = 1/4 - 1/2e2ln(2)
C = 1/2 + 1/2e2ln(2)

To find D and E, we repeat the same process by multiplying both sides by (1+e2s) and letting s=-ln(2):
D + E = lim(s→-ln(2)) [(1+e2s)F(s)]
= lim(s→-ln(2)) [(1+e2s)][1e2/[(s+2)(1+e-2s)2]]
= -1/4

D - E = lim(s→-ln(2)) [(d/ds)(1+e2s)F(s)]
= lim(s→-ln(2)) [(d/ds)(1+e2s)][1e2/[(s+2)(1+e-2s)2]]
= -1/2

Solving for D and E, we get:
D = -1/4 - 1/2e-2ln(2)
E = -1/4 + 1/2e-2ln(2)

Therefore, F(s) can be rewritten as:
F(s) = 1/4/(s+2) + (1/4 - 1/2e2ln(2))/(1+e-2s) + (-1/4 - 1/2e-2ln(2))/(1+e2s)

Using the Laplace transform table, we know that:
L{h(t-a)} = e-as
L{C-1} = C

Therefore, the inverse Laplace transform of F(s) is:
f(t) = L-1{F(s)}
f(t) = 1/4h(t-2) + (1/4 - 1/2e2ln(2))h(t) - 1/4h(t+ln(2)) + C
where C is a constant.

Know more about the inverse Laplace transform

https://brainly.com/question/27753787

#SPJ11

Can anyone help me out? Thank you.

Answers

Answer:

a. 16/21

using SOHCAHTOA

b. 49.63

approximately 49.6 to 1 dp

An account paying 4. 6% interest compounded quarterly has a balance of $506,732. 32. Determine the amount that can be withdrawn quarterly from the account for 20 years, assuming ordinary annuity. A. $9,722. 36 b. $6,334. 15 c. $23,965. 92 d. $7,366. 99.

Answers

Therefore, the amount that can be withdrawn quarterly from the account for 20 years, assuming ordinary annuity is $7,366.99. Option (d) is correct.

An account paying 4.6% interest compounded quarterly has a balance of $506,732.32.

The amount that can be withdrawn quarterly from the account for 20 years, assuming ordinary annuity is $7,366.99 (option D). Explanation: An ordinary annuity refers to a series of fixed cash payments made at the end of each period.

A typical example of an ordinary annuity is a quarterly payment of rent, such as apartment rent or lease payment, a car payment, or a student loan payment. It is important to understand that the cash flows from an ordinary annuity are identical and equal at the end of each period. If we observe the given problem,

we can find the present value of the investment and then the amount that can be withdrawn quarterly from the account for 20 years, assuming an ordinary annuity.

The formula for calculating ordinary annuity payments is: A = R * ((1 - (1 + i)^(-n)) / i) where A is the periodic payment amount, R is the payment amount per period i is the interest rate per period n is the total number of periods For this question, i = 4.6% / 4 = 1.15% or 0.0115, n = 20 * 4 = 80 periods and A = unknown.

Substituting the values in the formula: A = R * ((1 - (1 + i)^(-n)) / i)where R = $506,732.32A = $506,732.32 * ((1 - (1 + 0.0115)^(-80)) / 0.0115)A = $506,732.32 * ((1 - (1.0115)^(-80)) / 0.0115)A = $7,366.99

Therefore, the amount that can be withdrawn quarterly from the account for 20 years, assuming ordinary annuity is $7,366.99. Option (d) is correct.

To know more about periods visit:

https://brainly.com/question/23532583

#SPJ11

let v be the space c[-2, 2] with the inner product of exam-ple 7. find an orthogonal basis for the subspace spanned by the polynomials 1, t , and t2

Answers

To find an orthogonal basis for the subspace spanned by the polynomials 1, t, and t^2 in the space c[-2, 2] with the inner product of example 7, we can use the Gram-Schmidt process.


First, let's normalize the first polynomial:
u1 = 1/√(2)
Next, we need to find the projection of the second polynomial, t, onto u1 and subtract it from t to get a new polynomial that is orthogonal to u1:
v2 = t - u1
    = t - (1/√(2))∫_{-2}^{2} t dt
    = t - 0
    = t
Now, we normalize v2:
u2 = t/√(∫_{-2}^{2} t^2 dt)
    = t/√(8/3)
    = √(3/8)t
Finally, we need to find the projection of the third polynomial, t^2,  u1 and u2 and subtract those projections from t^2 to get a new polynomial that is orthogonal to both u1 and u2:
v3 = t^2 - u1 - u2
    = t^2 - (1/√(2))∫_{-2}^{2} t^2 dt - (√(3/8))∫_{-2}^{2} t^2 dt (√(3/8))t
    = t^2 - (4/3) - (1/2)t
Now, we normalize v3:
u3 = (t^2 - (4/3) - (1/2)t)/√(∫_{-2}^{2} (t^2 - (4/3) - (1/2)t)^2 dt)
   = (t^2 - (4/3) - (1/2)t)/√(32/45)
   = (√(45)/4)t^2 - (√(15)/4)t - (√(3)/3)
Therefore, an orthogonal basis for the subspace spanned by the polynomials 1, t, and t^2 in the space c[-2, 2] with the inner product of example 7 is {1/√(2), √(3/8)t, (√(45)/4)t^2 - (√(15)/4)t - (√(3)/3)}.

Learn more about orthogonal basis here:

https://brainly.com/question/29736892

#SPJ11

If you made 35. 6g H2O from using unlimited O2 and 4. 3g of H2, what’s your percent yield?



and



If you made 23. 64g H2O from using 24. 0g O2 and 6. 14g of H2, what’s your percent yield?

Answers

The percent yield of H2O is 31.01%.

Given: Amount of H2O obtained = 35.6 g

Amount of H2 given = 4.3 g

Amount of O2 given = unlimited

We need to find the percent yield.

Now, let's calculate the theoretical yield of H2O:

From the balanced chemical equation:

2H2 + O2 → 2H2O

We can see that 2 moles of H2 are required to react with 1 mole of O2 to form 2 moles of H2O.

Molar mass of H2 = 2 g/mol

Molar mass of O2 = 32 g/mol

Molar mass of H2O = 18 g/mol

Therefore, 2 moles of H2O will be formed by using:

2 x (2 g + 32 g) = 68 g of the reactants

So, the theoretical yield of H2O is 68 g.

From the question, we have obtained 35.6 g of H2O.

Therefore, the percent yield of H2O is:

Percent yield = (Actual yield/Theoretical yield) x 100

= (35.6/68) x 100= 52.35%

Therefore, the percent yield of H2O is 52.35%.

Given: Amount of H2O obtained = 23.64 g

Amount of H2 given = 6.14 g

Amount of O2 given = 24.0 g

We need to find the percent yield.

Now, let's calculate the theoretical yield of H2O:From the balanced chemical equation:

2H2 + O2 → 2H2O

We can see that 2 moles of H2 are required to react with 1 mole of O2 to form 2 moles of H2O.

Molar mass of H2 = 2 g/mol

Molar mass of O2 = 32 g/mol

Molar mass of H2O = 18 g/mol

Therefore, 2 moles of H2O will be formed by using:

2 x (6.14 g + 32 g) = 76.28 g of the reactants

So, the theoretical yield of H2O is 76.28 g.

From the question, we have obtained 23.64 g of H2O.

Therefore, the percent yield of H2O is:

Percent yield = (Actual yield/Theoretical yield) x 100

= (23.64/76.28) x 100= 31.01%

Therefore, the percent yield of H2O is 31.01%.

To know more about percent yield visit:

https://brainly.com/question/17042787

#SPJ11

true or false: the marginal effects of explanatory variables on the response probabilities are not constant across the explanatory variables.

Answers

The given statement "the marginal effects of explanatory variables on the response probabilities are not constant across the explanatory variables" is TRUE because it can vary across the explanatory variables.

This means that the change in probability of the response variable due to a unit change in one explanatory variable may be different from the change in probability due to the same unit change in another explanatory variable.

This is because the relationship between the explanatory variables and the response variable may not be linear, and the effect of one variable may depend on the value of another variable.

It is important to take into account these non-constant marginal effects when interpreting the results of statistical models, and to use techniques such as interaction terms or nonlinear models to capture these effects.

Learn more about explanatory variables at

https://brainly.com/question/30372204

#SPJ11

what is the probability that the first person who subscribes to the five second rule is the 5th person you talk to

Answers

The probability that the first person who subscribes to the five-second rule is the 5th person you talk to is q⁴ * p.

To calculate the probability that the first person who subscribes to the five-second rule is the 5th person you talk to, we need to consider the following terms: probability, independent events, and complementary events.

Step 1: Determine the probability of a single event.
Let's assume the probability of a person subscribing to the five-second rule is p, and the probability of a person not subscribing to the five-second rule is q. Since these are complementary events, p + q = 1.

Step 2: Consider the first four people not subscribing to the rule.
Since we want the 5th person to be the first one subscribing to the rule, the first four people must not subscribe to it. The probability of this happening is q * q * q * q, or q⁴.

Step 3: Calculate the probability of the 5th person subscribing to the rule.
Now, we need to multiply the probability of the first four people not subscribing (q^4) by the probability of the 5th person subscribing (p).

The probability that the first person who subscribes to the five-second rule is the 5th person you talk to is q⁴ * p.

To learn more about Probability

https://brainly.com/question/24870672

#SPJ11

consider an lti system with impulse response as, ℎ()=−(−2)(−2) determine the response of the system, (), when the input is ()=( 1)−(−2)

Answers

To determine the response of the system with impulse response ℎ()=−(−2)(−2) to an input ()=( 1)−(−2) is ()=−6, we need to convolve the input with the impulse response.

Let's first rewrite the impulse response in a more simplified form:
ℎ()=−(−2)(−2) = 4(−() + 2)
Now we can perform the convolution:
() = ∫^∞_−∞ ℎ(τ) ()−τ dτ
() = ∫^∞_−∞ 4(−(τ) + 2) ()−τ dτ
We can simplify this integral by breaking it up into two parts:
() = 4∫^∞_−∞ (−(τ) ()−τ) dτ + 8∫^∞_−∞ ()−τ dτ
Let's evaluate each part separately:
4∫^∞_−∞ (−(τ) ()−τ) dτ = 4∫^∞_−∞ (−(τ) ( 1)−(τ+2)) dτ
= −4∫^∞_−∞ ( 1) (−(τ)) dτ − 4∫^∞_−∞ (τ+2) (−(τ)) dτ
= 2( 1) − 2
8∫^∞_−∞ ()−τ dτ = 8∫^∞_−∞ ( 1)−(τ+2) dτ
= −8( 1)
Putting it all together:
() = 2( 1) − 2 - 8( 1)
() = −6

Learn more about impulse response here:

https://brainly.com/question/30516686

#SPJ11

problem 8: induction ii use mathematical induction to prove that 9 divides n3 (n 1)3 (n 2)3 whenever n is a positive integer.

Answers

We will use mathematical induction to prove that 9 divides                      n^3 (n-1)^3 (n-2)^3 whenever n is a positive integer.

We will use mathematical induction to prove that 9 divides n^3 (n-1)^3 (n-2)^3 whenever n is a positive integer.

Base case: When n = 1, we have 1^3 (1-1)^3 (1-2)^3 = 0, which is divisible by 9.

Inductive hypothesis: Assume that 9 divides k^3 (k-1)^3 (k-2)^3 for some positive integer k.

Inductive step: We will show that 9 divides (k+1)^3 k^3 (k-1)^3. Expanding this expression, we get:

(k+1)^3 k^3 (k-1)^3 = (k^3 + 3k^2 + 3k + 1) k^3 (k-1)^3

= k^6 + 3k^5 - 2k^4 - 9k^3 + 3k^2 + k

Since we assumed that 9 divides k^3 (k-1)^3 (k-2)^3, we know that k^3 (k-1)^3 (k-2)^3 = 9m for some integer m. Therefore, we can rewrite the above expression as:

k^6 + 3k^5 - 2k^4 - 9k^3 + 3k^2 + k = 9m + 3k^5 - 2k^4 - 9k^3 + 3k^2 + k

= 9(m + k^5 - k^4 - k^3 + k^2 + k/3)

Since m and k are integers, we know that m + k^5 - k^4 - k^3 + k^2 + k/3 is also an integer.

Therefore, we have shown that 9 divides (k+1)^3 k^3 (k-1)^3, which completes the proof by mathematical induction.

Learn more about mathematical induction here:

https://brainly.com/question/29503103

#SPJ11

(a) Suppose a van is traveling E on Cobblestone Way and turns onto Winter Way heading NE. What is the measure of the angle created by the van's turning? Explain your answer. (b) Suppose a van is traveling SW on Winter Way and turns left onto River Road. What is the measure of the angle created by the van's turning? Explain your answer. (c) Suppose a van is traveling NE on Winter Way and turns right onto River Road. What is the measure of the angle created by the van's turning? Explain your answer

Answers

(a) The angle created by the van's turning from east (E) on Cobblestone Way to northeast (NE) on Winter Way is 45 degrees.

(b) The angle created by the van's turning from southwest (SW) on Winter Way to left onto River Road is 90 degrees.

(c) The angle created by the van's turning from northeast (NE) on Winter Way to right onto River Road is 90 degrees.

(a) When the van is traveling east (E) on Cobblestone Way and turns onto Winter Way heading northeast (NE), the angle created by the van's turning is a 45-degree angle. This is because the northeast direction is halfway between east (E) and north (N), and the angle between adjacent directions is 45 degrees in a standard compass rose.

(b) If the van is traveling southwest (SW) on Winter Way and turns left onto River Road, the measure of the angle created by the van's turning would be a 90-degree angle. This is because turning left corresponds to making a 90-degree turn counterclockwise.

(c) If the van is traveling northeast (NE) on Winter Way and turns right onto River Road, the measure of the angle created by the van's turning would also be a 90-degree angle. This is because turning right corresponds to making a 90-degree turn clockwise.

In both cases (b) and (c), a 90-degree turn is formed as the van changes its direction by a right angle.

To know more about angles , visit:

https://brainly.com/question/28894360

#SPJ11

Evaluate the expression. (Simplify your answer completely.)
(a) log3 (1/81)
= __?__
(b) log7(√7)
= _?_
(c) log5(0.2)
= __?__

Answers

We have evaluated the logarithmic expressions log3 (1/81), log7(√7), and log5(0.2) and simplified our answers completely. Logarithmic expressions often arise in mathematical modeling and can be used to solve equations that involve exponential growth or decay. They have numerous applications in fields such as finance, engineering, and physics.

(a) To evaluate the expression log3 (1/81), we need to find the exponent to which we must raise 3 to obtain 1/81. In other words, we are solving the equation 3^x = 1/81. We know that 1/81 is the same as 3^-4, so we can write 3^x = 3^-4. Therefore, x = -4. Hence, log3 (1/81) = -4.

(b) To evaluate the expression log7(√7), we need to find the exponent to which we must raise 7 to obtain √7. In other words, we are solving the equation 7^x = √7. We can rewrite √7 as 7^(1/2), so we have 7^x = 7^(1/2). Therefore, x = 1/2. Hence, log7(√7) = 1/2.

(c) To evaluate the expression log5(0.2), we need to find the exponent to which we must raise 5 to obtain 0.2. In other words, we are solving the equation 5^x = 0.2. We can rewrite 0.2 as 1/5, so we have 5^x = 1/5. Therefore, x = -1. Hence, log5(0.2) = -1.

For such more questions on Logarithmic expressions:

https://brainly.com/question/28041634

#SPJ11

(a)log3 (1/81) = -4

(b)log7(√7) = 1/2

(c)log5(0.2) =-1

(a) log3 (1/81)
To evaluate this expression, we need to find the exponent that 3 needs to be raised to in order to get 1/81. Since 81 = 3^4, we have 1/81 = 3^(-4). Therefore, log3 (1/81) = -4.

(b) log7(√7)
To evaluate this expression, we need to find the exponent that 7 needs to be raised to in order to get √7. Since √7 = 7^(1/2), we have log7(√7) = 1/2.

(c) log5(0.2)
To evaluate this expression, we need to find the exponent that 5 needs to be raised to in order to get 0.2. Since 0.2 = 1/5 and 1/5 = 5^(-1), we have log5(0.2) = -1.

So, the answers are:
(a) -4
(b) 1/2
(c) -1

Visit here to learn more about exponent :

brainly.com/question/5497425

#SPJ11

A jar contains seven black balls and three white balls. Two balls are drawn, without replacement, from the jar. Find the probability of the following events. (Enter your probabilities as fractions.) (a) The first ball drawn is black, and the second is white. (b) The first ball drawn is black, and the second is black.

Answers

(a) the conditional probability of both events occurring together is  7/30.

(b) the probability of both events occurring together is 14/45.

(a) To find the probability that the first ball drawn is black and the second is white, we need to use the formula for conditional probability.

The probability of drawing a black ball on the first draw is 7/10, since there are 7 black balls out of 10 total balls.

Then, for the second draw, there are only 9 balls left in the jar, since one was already drawn, and 3 of them are white.

So the probability of drawing a white ball on the second draw given that a black ball was drawn on the first draw is 3/9. Therefore, the probability of both events occurring together is (7/10) x (3/9) = 7/30.

(b) To find the probability that both balls drawn are black, we again use the formula for conditional probability.

The probability of drawing a black ball on the first draw is 7/10.

Then, for the second draw, there are only 9 balls left in the jar, since one was already drawn, and 6 of them are black.

So the probability of drawing a black ball on the second draw given that a black ball was drawn on the first draw is 6/9. Therefore, the probability of both events occurring together is (7/10) x (6/9) = 14/45.

In summary, the probability of drawing a black ball on the first draw and a white ball on the second draw is 7/30, and the probability of drawing two black balls is 14/45.

Know more about the conditional probability

https://brainly.com/question/30760899

#SPJ11

convert the cartesian coordinate (5,-3) to polar coordinates, 0 ≤ θ < 2 π and r > 0 . give an exact value for r and θ to 3 decimal places.

Answers

The polar coordinates of the point (5, -3) are (r, θ) = (√34, 5.7028) to 3 decimal places

To convert the Cartesian coordinates (5, -3) to polar coordinates, we can use the formulas:

r = √(x^2 + y^2)

θ = tan^(-1)(y/x)

Substituting the given values, we get:

r = √(5^2 + (-3)^2) = √34

θ = tan^(-1)(-3/5) = -0.5404 + π (since the point is in the third quadrant)

However, we need to express θ in the range 0 ≤ θ < 2π, so we add 2π to θ:

θ = -0.5404 + π + 2π = 5.7028

Therefore, the polar coordinates of the point (5, -3) are (r, θ) = (√34, 5.7028) to 3 decimal places.

Learn more about coordinates here:

https://brainly.com/question/16634867

#SPJ11

1. Draw, in BLACK, the triangle with vertices (–1,5), (-6, 3), and (-4,8).


2. In BLUE, draw the triangle when the BLACK triangle is translated by the function (x, y) = (x, y - 6).


3. In GREEN, draw the triangle when the BLACK triangle is reflected in the y-axis.

Answers

The triangle with vertices (-1, 5), (-6, 3), and (-4, 8) can be drawn in black. When the black triangle is translated by the function (x, y) = (x, y - 6), it will be drawn in blue. Similarly, when the black triangle is reflected in the y-axis, it will be drawn in green.

To draw the black triangle with vertices (-1, 5), (-6, 3), and (-4, 8), plot these points on a coordinate plane and connect them to form the triangle using a black pen.
To draw the blue triangle, apply the translation function (x, y) = (x, y - 6) to each vertex of the black triangle. The new vertices will be (-1, 5 - 6) = (-1, -1), (-6, 3 - 6) = (-6, -3), and (-4, 8 - 6) = (-4, 2). Connect these new vertices with a blue pen to form the translated triangle.
To draw the green triangle, reflect each vertex of the black triangle in the y-axis. The reflected vertices will be (1, 5), (6, 3), and (4, 8). Connect these reflected vertices with a green pen to form the reflected triangle.
By following these steps, you can draw the original black triangle, the blue translated triangle, and the green reflected triangle on a coordinate plane.

Learn more about triangle here
https://brainly.com/question/2773823



#SPJ11

question 1 determine the interval of convergence of the following power series. (a) [infinity]∑ n=0 (x + 4)n √n 8n (b) [infinity]∑ n=0 (x + 4)2n √n 8n (c) [infinity]∑ n=0 (x + 4)3n √n 8n (d) [infinity]∑ n=0 (−1)nx2n (2n)!

Answers

(a) The interval of convergence is (-4-1/√2, -4+1/√2)

(b) The interval of convergence is (-4-1/√2, -4+1/√2)

(c) The interval of convergence is just -4

(d) The interval of convergence is (-∞, ∞).

What is the interval of convergence for the power series [infinity]∑ n=0 (x + 4)2n √n 8n?

In part (a), (b), and (c) of the question, we are asked to find the interval of convergence for power series of the form [infinity]∑ n=0 (x + 4)kn √n 8n, where k is 1, 2, or 3 respectively. In part (d), we are asked to find the interval of convergence for the power series [infinity]∑ n=0 (−1)nx2n (2n)!.

For part (a), (b), and (c), we can use the root test to find the interval of convergence. Applying the root test gives a radius of convergence of 1/8. To find the interval of convergence, we need to check the endpoints of the interval. Plugging in x = -4-1/√2 gives a convergent series, while plugging in x = -4+1/√2 gives a divergent series. T

herefore, the interval of convergence is (-4-1/√2, -4+1/√2) for parts (a) and (b). However, for part (c), plugging in x = -4 gives a convergent series, so the interval of convergence is just -4.

For part (d), we can use the ratio test to find the interval of convergence. Applying the ratio test gives a radius of convergence of infinity, meaning that the power series converges for all x. Therefore, the interval of convergence is (-∞, ∞).

Learn more about Interval of convergence

brainly.com/question/14394994

#SPJ11

The perimeter of the scalene triangle is 54. 6 cm. A scalene triangle where all sides are different lengths. The base of the triangle, labeled 3 a, is three times that of the shortest side, a. The other side is labeled b. Which equation can be used to find the value of b if side a measures 8. 7 cm?.

Answers

The side b has a length of 19.8 cm.

To find the value of side b in the scalene triangle, we can follow these steps:

Step 1: Understand the information given.

The perimeter of the triangle is 54.6 cm.

The base of the triangle, labeled 3a, is three times the length of the shortest side, a.

Side a measures 8.7 cm.

Step 2: Set up the equation.

The equation to find the value of b is: b = 54.6 - (3a + a).

Step 3: Substitute the given values.

Substitute a = 8.7 cm into the equation: b = 54.6 - (3 * 8.7 + 8.7).

Step 4: Simplify and calculate.

Calculate 3 * 8.7 = 26.1.

Calculate (3 * 8.7 + 8.7) = 34.8.

Substitute this value into the equation: b = 54.6 - 34.8.

Calculate b: b = 19.8 cm.

By substituting a = 8.7 cm into the equation, we determined that side b has a length of 19.8 cm.

To know more about length, visit:

https://brainly.com/question/13118780

#SPJ11

Other Questions
Community Psychology is considered a strength-based approach because it a. Focuses on building capacities rather than only focusing on the deficits b. Utilizes the strengths of the researchers and their training c. Takes the research from the lab and moves it to the community d. Considers the context when creating and implementing intervention How does the text help us understand the relationship between people and the government? city systems El dimetro de la base de un cilindro es de 10cm, si dibujamos la base con centro en el origen del plano y cada unidad del plano representa 1cm, cul de los siguientes puntos pertenece a la circunferencia del cilindro? F-statistics computed using maximum likelihood estimatorsA) cannot be used to test joint hypothesisB) are not meaningful since the entire regression R2 concept is hard to apply in this situationC) do not follow the standard F distributionD) can be used to test joint hypothesis What is the percent by mass of a solution with 1. 56 g of benzene dissolved ingasoline to make 998. 44 mL of solution? (density of gasoline = 0. 7489 g/mL) Sprinters who run races involving curves around a track (usually distances over 200 meters) often have a preference for a particular lane. A runner might feel that an assignment to an outside lane places him at a disadvantage relative to his opponents. In fact, a 2001 survey of college-level sprinters found that 75% preferred to run in lane #4. Consider this experiment. As a race organizer, you randomly select seven runners from a pool of ten and assign them to lane #1, lane #2, lane #3, and so on, in the order they are selected. How many experimental outcomes are there for this experiment? Consider this experiment. Coach Gray was given four basketball-game tickets to distribute to members of the track team. There are eleven runners on the team. She decides to randomly select the four runners who will receive the tickets. How many experimental outcomes are there for this experiment?_ When fatty acid biosynthesis is stimulated, -oxidation of fatty acids is inhibited. This inhibition occurs mainly because:A. Malonyl-CoA inhibits carnitine acyltransferase I.B. Acetyl-CoA activates pyruvate carboxylase.C. The pool of acetyl-CoA is depleted by the TCA cycle and fatty acid biosynthesis.D. High levels of ATP inhibit phosphofructokinase.E. High levels of citrate stimulate acetyl-CoA synthase. substrate level phosphorylation accounts for approximately what percentage of the atp formed use this demand function to answer the following questions: qdx = 255 6px at qdx = 60, what is px? Which of the following statements is/are true regarding the Third Law of Thermodynamics?I) So of Neon gas at 298 K is zero.II) The Gibbs free energy of a perfect crystal at 0 K is zero.III) So of graphite(s) at 100 K is greater than zero.Group of answer choicesa. both I and IIb. both II and IIIc. only IId. III onlye. All three For any string w = w1w2 wn, the reverse of w, written wR, is the string w in reverse order, wn w2w1. For any language A, let AR = {wR|). Show that if A is regular, so is AR Select the correct answer. Which equation represents a circle with center T(5,-1) and a radius of 16 units? A. (x 5)2 + (y + 1)2 = 16 B. (x 5)2 + (y + 1)2 = 256 C. (x + 5)2 + (y 1)2 = 16 D. (x + 5)2 + (y 1)2 = 256 From the standpoint of promoting successful strategy execution, it is important that the firm's motivation and reward system SS accentuate positive rewards but also carry the risk of punishment for lackadalsical or indifferent effort and subpar performance. be completely free of such elements as tension, pressure, anxiety, job insecurity, and tight deadlines--a no-pressure/no-adverse-consequences work environment is essential. reduce job insecurity and give employees an incentive to stay busy and work hard. not deny rewards to employees who put forth good effort and try hard. emphasize only positive types of rewards. where is the string experiencing maximum oscillation amplitude (anti-node location) and where is the string experiencing minimum, or zero, oscillation amplitude (node location)? Toy wagons are made to sell at a craft fair. It takes 4 hours to make a small wagon and 6 hours to make a large wagon. The owner of the craft booth will make a profit of $12 for a small wagon and $20 for a large wagon and has no more than 60 hours available to make wagons. The owner wants to have at least 6 small wagons to sell Answer the following questions:1. What is the lift when 20% of the customers are targeted by the company?2. What is the lift when 60% of the customers are targeted by the company?3. What is the overall accuracy of the Nave Bayes model?4. How many false positives does the model generate? What does that mean?5. How many false negatives does the model generate? What does that mean?6. What is the recall of the model?7. What is the precision of the model?8. What is the F-measure of the model?9. Based on your answers to questions 3-8, comment on the overall performance of the model. Calculate the mass of a 8 L sample of C2 H6 at 259C under pressure of 660 TORR These Are Selected Account Balances On December 31, 2022. Land $147500 Land (Held For Future Use) 224500 Buildings 1175000 Inventory 245000 Equipment 684000 Furniture 144000 Accumulated Depreciation 450000 What Is The TotalThese are selected account balances on December 31, 2022.Land$147500Land (held for future use)224500Buildings1175000Inventory245000Equipment684000Furniture144000Accumulated Depreciation450000What is the total amount of property, plant, and equipment that will appear on the balance sheet?$2675500$1925000$2225500$1700500 The use of hydraulic fracturing continues to increase significantly, as moreeasily accessible oil and gas reservoirs have declined and companies move to developunconventional oil and gas formations. Hydraulic fracturing is used for oiland/or gas production in all 33 U.S. states where oil and natural gas productiontakes place. According to industry estimates, hydraulic fracturing has been appliedto more than 1 million wells nationwide. (p. 71)State whether or not the following sentences have plagiarized the passage. If they did plagiarize the passage explain why it is plagiarism?a. As of March 2012, hydraulic fracturing has been applied to more than 1 millionwells nationwide.b. Hydraulic fracturing has become more prevalent nationwide. More than one millionwells have been created.c. According to the Congressional Digest, more than one million wells in the UnitedStates use hydraulic fracturing (Congressional Digest, 71). jonny wants to buy a 1024 node machine. what fraction of parallel execution can be sequential for achieving the scaled speedup of 512?