Answer:
electron shell is the answer
What do you need to measure the amount of energy in food
Answer:
u measure how much power it has
Explanation:
for example u can power a light bulb woth it if u can it was 100eg energy
What element in the second period has the largest atomic radius?
a
neon
b
lithium
c
carbon
d
potassium
Answer:
b) Lithium
Explanation:
what is the density of a block of wood measuring 9cmx2cmx6cm with the mass of 5.4g
Answer:
0.05 g/cm^3.
Explanation:
The volume of the block = 9*2*6 = 108 cm^3.
Density = mass/volume
= 5.4 / 108
= 0.05 g/cm^3.
What occurs after cytokinesis is completed at the end of meiosis I?
O Four haploid cells are formed.
O Two diploid cells are formed.
OTwo haploid cells are formed.
O Four diploid cells are formed.
Answer. After cytokinesis is completed at end of meiosis - I two haploid cells are formed.on:
Answer:
C. TWO HAPLOID CELLS ARE FORMED
Explanation:
I TOOK THE EDGUNITY TEST AND I GOT IT CORRECT
Determine the value of the equilibrium constant (report your answer to three significant figures) for the following reaction if an equilibrium mixture contains 0.010 mol of solid PbBr2, and is 0.0100 M in Pb2+ ions and 0.0250 M in Br1- ions. Use the notation 4.31e-5 to indicate a number such as 4.31 x 10-5.
Answer:
6.25e-6 is the value of the equilibrium constant
Explanation:
we have this equation
[tex]PbBr(s) ----- Pb^{2+}(aq) + 2Br(aq)[/tex]
When at a state of equilibrium,
we have the concentration of Pb^2+ to be 0.01
we have the concentration of Br^- to be 0.025
the equilibrium constant concentration of both pure solids and liquid s are said to be equal to 1
[PbBR2] = 1
such tht
Keq = [Pb^2+] x [Br-]^2
we already know the values of these from the above.
0.01x0.025^2
= 0.01 x 0.000625
= 0.00000625
= 6.25 x 10^-6
= 6.25e^-6
What is the volume of a substance that has a mass of 59 g and a density of 1.98 g/mL?
(show all work)
Answer:
29.8
Explanation:
The formula for volume is mass/ density, so 59/1.98. 29.8 is the answer.
Use the periodic table to identify the chemical symbol or name for each element below.
zirconium:
zr
rhenium:
re
: As
: K
tin:
yttrium:
: Yb
Answer:
zirconium is Zr
rhenium is Re
As is arsenic
K is potassium
tin is Sn
yttrium is Y
ytterbium is Yb
Explanation:
With the help of the periodic table, the identification of the chemical symbol or name for each element is represented as follows:
Zirconium: Zr. Rhenium: Re. Arsenic: As.Potassium: K.Tin: Sn. Yttrium: Y. Ytterbium: Yb. What are the chemical elements?Chemical elements may be defined as any type of substance that cannot be further decomposed into simpler substances through the utilization of other ordinary chemical processes or external factors. These elements possess specific physical as well as chemical properties distinctly.
In the modern periodic table, each element is arranged on the basis of its increasing atomic number. Each element possesses its unique symbol, atomic mass, and physical properties like boiling points, melting points, density, etc.
Therefore, with the help of the periodic table, the identification of the chemical symbol or name for each element is well represented above.
To learn more about the Periodic table, refer to the link:
https://brainly.com/question/15987580
#SPJ2
A 57.07 g sample of a substance is initially at 24.3°C. After absorbing of 2911 J of heat, the temperature of the substance is 116.9 CWhat is the specific heat (SH) of the substance?
Answer:
Approximately [tex]0.551\; \rm J\cdot kg^{-1} \cdot \left(^\circ\! C \right)^{-1}[/tex].
Explanation:
The specific heat of a material is the amount of energy required to increase unit mass (one gram) of this material by unit temperature (one degree Celsius.)
Calculate the increase in the temperature of this sample:
[tex]\Delta T = (116.9 - 24.3)\; \rm ^\circ\! C= 92.6\; \rm ^\circ\! C[/tex].
The energy that this sample absorbed should be proportional the increase in its temperature (assuming that no phase change is involved.)
It took [tex]2911\; \rm J[/tex] of energy to raise the temperature of this sample by [tex]\Delta T = 92.6\; \rm ^\circ\! C[/tex]. Therefore, raising the temperature of this sample by [tex]1\; \rm ^\circ\! C[/tex] (unit temperature) would take only [tex]\displaystyle \frac{1}{92.6}[/tex] as much energy. That corresponds to approximately [tex]31.436\; \rm J[/tex] of energy.
On the other hand, the energy required to raise the temperature of this material by [tex]1\; \rm ^\circ\! C[/tex] is proportional to the mass of the sample (also assuming no phase change.)
It took approximately [tex]31.436\; \rm J[/tex] of energy to raise the temperature of [tex]57.07\; \rm g[/tex] of this material by [tex]1\; \rm ^\circ C[/tex]. Therefore, it would take only [tex]\displaystyle \frac{1}{57.07}[/tex] as much energy to raise the temperature of [tex]1\; \rm g[/tex] (unit mass) of this material by [tex]1\; \rm ^\circ \! C\![/tex]. That corresponds to approximately [tex]0.551\; \rm J[/tex] of energy.
In other words, it takes approximately [tex]0.551\; \rm J[/tex] to raise [tex]1\; \rm g[/tex] (unit mass) of this material by [tex]1\; \rm ^\circ \! C[/tex]. Therefore, by definition, the specific heat of this material would be approximately [tex]0.551\; \rm J\cdot kg^{-1} \cdot \left(^\circ\! C \right)^{-1}[/tex].
What is the pressure if the height of a column of mercury is 0.20 m and the density of mercury is 13,600 kg/m3? (remember, gravity is 9.81 m/s2)
Answer:
[tex]p=26683.2Pa[/tex]
Explanation:
Hello,
In this case, since the pressure is computed via:
[tex]p=h*\rho*g[/tex]
Whereas h is the 0.520-m height, [tex]\rho[/tex] is the 13600-kg/m³ density and the g the 9.81-m/s² gravity. Thus, the pressure in Pa is:
[tex]p=0.20m*13,600 \frac{kg}{m^3} *9.81\frac{m}{s^2} \\\\p=26683.2\frac{kg*\frac{m}{s^2} }{m^2} =26683.2\frac{N}{m^2}\\ \\p=26683.2Pa[/tex]
Best regards.
why are copper pipes used in place of old lead pipes for plumbing systems?
What does chemical equations and chemical formulas have in common?
Answer:
Chemical symbols refer to chemical elements only. They do not necessarily refer to atoms of that element, but also to ions.
Explanation:
Which of the following is a good definition of matter?
O A. Anything that is made up of light and gravity
O B. Anything that has mass and takes up space
O C. Anything that produces heat and mass
O D. Anything that has energy and creates heat
Answer:
B
Explanation:
I did the question before and got it right.
Based on the visible cell structure, which of the following statements is true?
Answer:I think it would be the third one.
Explanation:
Calcium reacts with sulfur forming calcium sulfide. What is the theoretical yield (g) of CaS(s) that could be prepared from 7.19 g of Ca(s) and 2.67 g of sulfur(s)? Enter your answer with two decimal places. Do not type units with your answer.
Answer:
The theoretical yield of CaS is 6.01 g.
Explanation:
The balanced reaction is given as:
[tex]Ca+S\rightarrow CaS[/tex]
The molar mass of Ca and S is 40.08 and 32.065 g/mol respectively.
Number of moles = [tex]\frac{Mass}{Molar Mass}[/tex]
So, 7.19 g of Ca contains [tex](\frac{7.19}{40.08})[/tex] mol of Ca or 0.179 mol of Ca
Also, 2.67 g of S contains [tex](\frac{2.67}{32.065})[/tex] mol of S or 0.0833 mol of S
According to the balanced equation:
1 mol of Ca produces 1 mol of CaS
So, 0.179 mol of Ca produces 0.179 mol of CaS
According to the balanced equation:
1 mol of S produces 1 mol of CaS
So, 0.0833 mol of S produces 0.0833 mol of CaS
As the least number of mol of CaS (product) is produced from S , therefore, S is the limiting reactant.
So, thoretically, 0.0833 mol of CaS is produced.
The molar mass of CaS is 72.143 g/mol.
So, the mass of 0.0833 mol of CaS is [tex](0.0833\times 72.143)[/tex] g or 6.01 g
Hence, the theoretical yield of CaS is 6.01 g.
A teaspoon of salt, NaCl has a mass of about
5.0 g. How many formula units are in a
teaspoon of salt?
Answer: The answer is 5.15x10^22
Explanation:
The formula unit present in a teaspoon of salt [tex]NaCl[/tex] having a mass of about 5.0 g is [tex]5.15 \times10^{22}[/tex] formula units.
Molar mass, also known as molecular weight, is the mass of one mole of a substance. It is calculated by summing up the atomic masses of all the atoms in a molecule. The unit of molar mass is grams per mole (g/mol).
Now, to determine the number of formula units in a teaspoon of salt (NaCl), we need to use Avogadro's number and the molar mass of NaCl.
Avogadro's number [tex](N_a)[/tex] is approximately. [tex]6.022 \times10^{23}[/tex] formula units per mole.
The molar mass of [tex]NaCl[/tex] is the sum of the atomic masses of sodium (Na) and chlorine ([tex]Cl[/tex]), which are approximately 22.99 g/mol and 35.45 g/mol, respectively.
To calculate the number of formula units in 5.0 g of [tex]NaCl[/tex], we can follow these steps:
Now, calculate the number of moles of [tex]NaCl[/tex] using its molar mass:
Moles = Mass / Molar mass
Moles = [tex]5.0 g[/tex] / [tex](22.99 g/mol + 35.45 g/mol)[/tex]
Calculate the number of formula units using Avogadro's number:
Formula units = [tex]Moles \times Avogadro's number[/tex]
Let's perform the calculation:
Molar mass of [tex]NaCl[/tex]= [tex]22.99 g/mol + 35.45 g/mol = 58.44 g/mol[/tex]
Moles of [tex]NaCl[/tex] = [tex]5.0 g[/tex] / [tex]58.44 g/mol[/tex] ≈ [tex]0.0856 mol[/tex]
Formula units = [tex]0.0856 mol \times (6.022 \times 10^{23})[/tex] formula units/mol ≈ [tex]5.15 \times10^{22}[/tex]formula units.
Therefore, there are approximately [tex]5.15 \times10^{22}[/tex] formula units in a teaspoon of salt ([tex]NaCl[/tex]) having mass [tex]5.0 g[/tex].
Learn more molar mass about here:
https://brainly.com/question/31545539
#SPJ2
How many grams of Cl are in 31.2g CF2Cl2
Answer:
Mass = 42.6 g
Explanation:
Given data:
Mass of CF₂Cl₂ = 31.2 g
Mass of Cl₂ = ?
Solution:
Number of moles of CF₂Cl₂ = mass/molar mass
Number of moles = 31.2 g/121 gmol
Number of moles = 0.3 mol
1 mole of CF₂Cl₂ contain 2 moles of Cl atom.
0.3 mol × 2 = 0.6 mol
Mass of Cl₂:
Mass = number of moles × molar mass
Mass = 0.6 mol × 71 g/mol
Mass = 42.6 g
what are the benefits of using supercritical fluids in EGS
Answer:
See detailed explanation.
Explanation:
Hello.
In this case, it is firstly necessary to cite that EGS accounts enhanced geothermal systems which are man-made reservoirs, placed where lots of hot rock is present but there is lack natural permeability, which requires a fluid to be injected into the subsurface to re-open it and therefore creating permeability.
Typically, water has been used for this purpose, but due to the current issue on saving water alternative methods such as supercritical fluids has been being implemented because they have better dynamic properties such as lower viscosities and therefore larger flow velocities, supercritical CO2 is easy and cheap to get as low temperatures are required to turn it in supercritical condition.
Best regards.!
A sample of an unknown gas weighs 0.419 grams and produced 5.00L of gas at 1.00atm (unknown gas only) and 298.15K, what is the molar mass (g/mole) of this unknown gas
Answer:
molar mass of unknown gas = 1.987 g/mol
Explanation:
First, the number of moles of the unknown gas is found
Using the ideal gas equation: PV = nRT
P = 1.00 atm, V = 5.00 L, T = 298.15 K, R = 0.082 L.atm.mol⁻¹K⁻¹
n = PV/RT
n = (1.00 atm * 5.00 L)/(298.15 K *0.082 L.atm.mol⁻¹K⁻¹)
n = 0.2109 moles
Molar mass = mass/ number of moles
molar mass = 0.419 g/ 0.2109 mols
molar mass of unknown gas = 1.987 g/mol
The molar mass of unknown gas by using ideal gas equation = 1.987 g/mol.
Ideal gas equationThis equation gives the relation between pressure, volume, temperature as given below:
[tex]PV = nRT[/tex]
P = 1.00 atm, V = 5.00 L, T = 298.15 K, R = 0.082 L.atm.mol⁻¹K⁻¹
Substitute the above values in the above equation as follows:
n = (1.00 atm * 5.00 L)/(298.15 K *0.082 L.atm.mol⁻¹K⁻¹)
n = 0.2109 moles
Formula for molar mass[tex]Molar mass = mass/ number of moles[/tex]
Calculate molar mass by using the above equation,
molar mass = 0.419 g/ 0.2109 moles
The molar mass of unknown gas = 1.987 g/mol
Find more information about ideal gas equation here,
brainly.com/question/4147359
True or False: The exact location of an electron can be measured thanks to
modern science.
Answer:
false you can not get a exact location of electrons from just modern science
Answer each of the following questions with increases, decreases, or does not change.
a) If the intermolecular forces in a liquid increase, the normal boiling point of the liquid increases .
b) If the intermolecular forces in a liquid increase, the vapor pressure of the liquid does not change .
c) If the surface area of a liquid increases, the vapor pressure increases .
d) If the temperature of a liquid decreases, the equilibrium vapor pressure increases .
Drag and drop your selection from the following list to complete the answer:
does not change decreases increases
Answer:
1) Increases
2) decreases
3) increases
4) decreases
Explanation:
When the intermolecular forces in a liquid increases, the greater vapour pressure of the liquid decreases accordingly.
Since the vapour pressure is proportional to temperature, as temperature increases, the vapour pressure increases alongside.
As intermolecular forces increases, the boiling point increases accordingly since more energy is required to break intermolecular bonds.
Lastly, the greater the surface area, tell greater the vapour pressure since more liquid surface area is now available.
convert 575.1 mmHg to atm
Answer:
= .7567105263
Explanation:
1 atm = 760 mmHg
575.1 mmHg (1 atm/760mmHg) = .7567105263 atm
True or False: Particles that are moving faster have a higher temperature
Answer:
true
Explanation:
I'm not sure why cause I dont know how to explain but it's TRUE
Answer:
True
Explanation:
The particles moving faster in a substance the hotter it gets.
What is the approximate vapor pressure when the liquid water boils at about 50°C?
380 mmHg
760 mmHg
100 mmHg
5 mmHg
Answer:
380
Explanation:
The normal boiling point of benzene is 80.1°C. What is its enthalpy of vaporization if the vapor pressure at 26.1°C is 100 torr?
The heat of vaporization of benzene is required.
The heat of vaporization of benzene is 33009 J/kg.
[tex]T_0[/tex] = Normal boiling point = 80.1+273.15 K
[tex]T_B[/tex] = Boiling point at given pressure = 26.1+273.15 K
[tex]R[/tex] = Gas constant = 8.314 J/mol K
[tex]P[/tex] = Pressure at given [tex]T_B[/tex] = 100 torr
[tex]\Delta H[/tex] = Heat of vaporization
From the Clausius–Clapeyron equation
[tex]\dfrac{1}{T_B}=\dfrac{1}{T_0}-\dfrac{R\ln(\dfrac{P}{P_0})}{\Delta H}\\\Rightarrow \Delta H=\dfrac{R\ln\dfrac{P}{P_0}}{\dfrac{1}{T_0}-\dfrac{1}{T_B}}\\\Rightarrow \Delta H=\dfrac{8.314\times \ln\left(\frac{100}{760}\right)}{\frac{1}{80.1+273.15}-\frac{1}{26.1+273.15}}\\\Rightarrow \Delta H=33008.99\ \text{J/kg}[/tex]
The heat of vaporization of benzene is 33009 J/kg.
Learn more:
https://brainly.com/question/13878485
https://brainly.com/question/1077674
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 35.0 atm and releases 74.6 kJ of heat. Before the reaction, the volume of the system was 8.20 L . After the reaction, the volume of the system was 2.80 L . Calculate the total internal energy change, ΔE, in kilojoules.
Answer:
ΔU = −55.45 kJ
Explanation:
From first law of thermodynamics in chemistry, we have;
ΔU = Q + W
where;
ΔU is change in internal energy
Q is the net heat transfer
W is the net work done
We are given;
Q = 74.6 kJ
But Q will be negative since heat is released
Thus;
ΔU = -74.6 kJ + W
We are given;
Constant pressure; P = 35 atm = 35 × 101325 = 3546375 N/m²
Volume before reaction; Vi = 8.2 L = 0.0082 m³
Volume after reaction; V_f = 2.8 L = 0.0028 m³
Now,
W = -P(V_f - V_i)
W = - 3546375(0.0028 - 0.0082)
W = 19.15 KJ
Thus;
ΔU = Q + W
ΔU = -74.6 kJ + 19.15 KJ =
ΔU = −55.45 kJ
What can the chemical formula tell us about a compound?
Answer:
A chemical formula tells us the number of atoms of each element that is in a compound. It contains the symbols of the atoms for the elements present in the compound as well as how many there are for each element in the form of subscripts.
Hope this helps! please mark me brainliest!
God bless :)
Scientists are experimenting with pure samples of isotope X which is radioactive. The sample has a mass of 20. Grams. The half-life was measured to be 232 seconds. There is a second sample that weighs 80 grams. What is the half-life of the second sample
Answer:
Explanation:
Half life of radioactive materials do not depend upon the mass of the material . It only depends upon the nature of radioactive materials . The half life of 20 g is 232 seconds . That means 20 gram will be reduced to 10 gram in 232 seconds .
Half life of 80 gram is also 232 seconds . So , 80 gram will be reduced to 40 gram in 232 second .
Label the parts of the electric circuit that best correspond to the heart, arteries, veins, and cells.
Answer:
1 ➡️ Cells
2 ➡️ Arteries
3 ➡️ Veins
4 ➡️ Heart
Explanation:
The parts of the electric circuit that best correspond to the heart, arteries, veins, and cells have been properly labeled.
The circulatory system involves the transportation of nutrients, oxygen and water by blood to other the parts of the body.
From the electric circuit, we see that arteries transport blood away from the heart to the other cells in the body. The veins actually return the blood back to the heart from the cells. The heart pumps the blood
The electric circuity diagram has the label 1 bulb analogous to cell, label 2 analogous to arteries, label 3 analogous to veins, and label 4 cell analogous to heart.
What is an electric circuit?The electric circuit has been given as the power source and the conducting wires that allows the flow of the current in the circuit.
In the human body, the heart has been transported the oxygenated blood through the arteries to the cell and carried the deoxygenated blood from the cells back to the heart via veins.
In the circuit, the battery has been the source of the power/blood. The current has been carried from the heart to the cell/bulb through the arteries labeled, 2, and transported back to the battery via veins labeled 3.
Learn more about the electric circuits, here:
https://brainly.com/question/21075693
What happens when the elements in group 2 react with water?
Answer:
The Group 2 metals become more reactive towards the water as you go down the Group.
Explanation:
These all react with cold water with increasing vigour to give the metal hydroxide and hydrogen. ... You get less precipitate as you go down the Group because more of the hydroxide dissolves in the water. Summary of the trend in reactivity.
Please mark me brainliest! hope this helped!
God bless!
which one of these best defines climate
please help i will mark brainlest answer if correct asap
Answer:
Long term condition of the atmosphere
Explanation:
I think this is right.
I hope this helps! (✿◕‿◕✿)