Solution :
A) Electric current is the flow of electrons .
B) We know, by ohm's law :
V = I × R
Putting given values in above equation, we get :
V = 0.56 × 72 V
V = 40.32 V
Hence, this is the required solution.
A spring with a spring constant of 2.5 N/m is stretched by 0.2 m. What is the potential energy in the spring
Answer:
Explanation:
PE = [tex]\frac{1}{2}k[/tex](Δ[tex]x^2[/tex])
where k is the spring constant and Δx is the displacement of the spring when an object is hung from it. Plugging in:
[tex]PE=\frac{1}{2}(2.5)(.2^2)[/tex] which gives us
PE = .05 J
Give your answer to 2 dp
When taking off a plane accelerates at 2.7m/s2 down the runway. It accelerates from a stationary position for 25 seconds before leaving the ground. What
is the planes speed when it leaves the ground?
Answer:
67.5
Explanation:
The plane accelerates at 2.7m/s,^2
Time is 25 seconds
The velocity can be calculated as follows
= 25×2.7
= 67.5
Hence the speed f the plane is 67.5
A solid cylinder has a mass of 5 kg and radius of 2 m and is fixed so that it is able to rotate freely around its center without friction. A 0.02 kg bullet is moving from right to left with an angular momentum of 9 kgm2s just before it strikes the cylinder near its bottom and gets stuck at the outer radius. What is the angular velocity (magnitude and direction) of the cylinder bullet system after the impact
Answer:
0.893 rad/s in the clockwise direction
Explanation:
From the law of conservation of angular momentum,
angular momentum before impact = angular momentum after impact
L₁ = L₂
L₁ = angular momentum of bullet = + 9 kgm²/s (it is positive since the bullet tends to rotate in a clockwise direction from left to right)
L₂ = angular momentum of cylinder and angular momentum of bullet after collision.
L₂ = (I₁ + I₂)ω where I₁ = rotational inertia of cylinder = 1/2MR² where M = mass of cylinder = 5 kg and R = radius of cylinder = 2 m, I₂ = rotational inertia of bullet about axis of cylinder after collision = mR² where m = mass of bullet = 0.02 kg and R = radius of cylinder = 2m and ω = angular velocity of system after collision
So,
L₁ = L₂
L₁ = (I₁ + I₂)ω
ω = L₁/(I₁ + I₂)
ω = L₁/(1/2MR² + mR²)
ω = L₁/(1/2M + m)R²
substituting the values of the variables into the equation, we have
ω = L₁/(1/2M + m)R²
ω = + 9 kgm²/s/(1/2 × 5 kg + 0.02 kg)(2 m)²
ω = + 9 kgm²/s/(2.5 kg + 0.02 kg)(4 m²)
ω = + 9 kgm²/s/(2.52 kg)(4 m²)
ω = +9 kgm²/s/10.08 kgm²
ω = + 0.893 rad/s
The angular velocity of the cylinder bullet system is 0.893 rad/s in the clockwise direction-since it is positive.
Pop up spring Lab
Describe the energy conversion that took place. What energy was present just before the jump? What energy is present at its maximum height? What happens in between?
Draw bar charts of energy before the jump, while the spring toy is compressed and after the jump at the maximum height of its jump. Be sure to label each type of energy.
Answer:
I honestly don't know but that thing looks cool lol
Which statement best describes the Sun Earth-Moon system?
Answer:
A
Explanation:
A. The Moon orbits the Earth, and the Earth-Moon system orbits the Sun
B. The Earth and Moon both orbit the Sun separately
C. The Sun orbits the Earth-Moon system
D. The Moon revolves around Earth but not the Sun
A ball is dropped from rest out of a high window in a tall building for 5 seconds. Assuming the we ignore air resistance and assume upwards to be positive. A) What will be the final velocity of the ball B) What is the height of the building if it hits the ground after those 5 seconds. *
Answer:
I am not sure if this is the answer
(B) what is the height of the building if it hits the ground after those 5 seconds.
A 56.6-kg crate rests on a level floor at a shipping dock. The coefficients of static and kinetic friction are 0.517 and 0.260, respectively. What horizontal pushing force is required to (a) just start the crate moving and (b) slide the crate across the dock at a constant speed
Answer:
Explanation:
Magnitude of frictional force = μ mg
μ is either static or kinetic friction.
To start the crate moving , static friction is calculated .
a ) To start crate moving , force required = μ mg where μ is coefficient of static friction .
force required =.517 x 56.6 x 9.8 = 286.76 N .
b ) to slide the crate across the dock at a constant speed , force required
= μ mg where μ is coefficient of kinetic friction , where μ is kinetic friction
= .26 x 56.6 x 9.8 = 144.21 N .
A rookie quarter back throws a football with an initial upward velocity component of 12.0 m/s and a horizontal velocity component of 20.0 m/s. Ignore resistance. How much time is required for the football to reach the highest point of the trajectory
Answer:
t = 1.22 s
Explanation:
Given that,
The initial upward velocity component of a football = 12 m/s
The horizontal velocity component is 20 m/s
We need to find the time required for the football to reach the highest point of the trajectory. Let the time is t.
Using first equation of motion to solve it such that,
[tex]v=u+at[/tex]
u is initial velocity
v is final velocity
a = -g
so,
[tex]t=\dfrac{u}{g}\\\\t=\dfrac{12}{9.8}\\\\t=1.22\ s[/tex]
So, the required time taken by the football to reach the highest point is 1.22 seconds.
The energy principle states that:
Energy can be destroyed.
Energy can be created.
Energy cannot be created or destroyed.
Energy cannot be created, but it can be destroyed.
brainleist to correct answer
The energy principle states that:
[tex]\sf\purple{Energy \:cannot \:be \:created \:or\: destroyed.✅}[/tex]
Law of conservation of energy or the first law of thermodynamics states that energy can neither be created nor destroyed; it can only be transferred or changed from one form to another.[tex]\large\mathfrak{{\pmb{\underline{\orange{Happy\:learning }}{\orange{.}}}}}[/tex]
Which is a valid ionic compound?
sodide chlorine
sodium chlorine
sodium chloride
sodide chloride
Answer:
sodium chloride
Explanation:
Sodium chloride is an ionic compound. The ions of the sodium chloride compound is sodium ion and chloride ion. The sodium ion is cation while the chloride ion is an anion. Sodium chloride is a very stable compound because of the mutual attraction of oppositely charged ions.
A tank has the shape of an inverted circular cone with height 16m and base radius 3m. The tank is filled with water to a height of 9m. Find the work required to empty the tank by pumping all of the water over the top of the tank. Use the fact that acceleration due to gravity is 9.8 m/sec2 and the density of water is 1000kg/m3. Round your answer to the nearest kilojoule.
Answer:
[tex]W=17085KJ[/tex]
Explanation:
From the question we are told that:
Height [tex]H=16m[/tex]
Radius [tex]R=3[/tex]
Height of water [tex]H_w=9m[/tex]
Gravity [tex]g=9.8m/s[/tex]
Density of water [tex]\rho=1000kg/m^3[/tex]
Generally the equation for Volume of water is mathematically given by
[tex]dv=\pi*r^2dy[/tex]
[tex]dv=\frac{\piR^2}{H^2}(H-y)^2dy[/tex]
Where
y is a random height taken to define dv
Generally the equation for Work done to pump water is mathematically given by
[tex]dw=(pdv)g (H-y)[/tex]
Substituting dv
[tex]dw=(p(=\frac{\piR^2}{H^2}(H-y)^2dy))g (H-y)[/tex]
[tex]dw=\frac{\rho*g*R^2}{H^2}(H-y)^3dy[/tex]
Therefore
[tex]W=\int dw[/tex]
[tex]W=\int(\frac{\rho*g*R^2}{H^2}(H-y)^3)dy[/tex]
[tex]W=\rho*g*R^2}{H^2}\int((H-y)^3)dy)[/tex]
[tex]W=\frac{1000*9.8*3.142*3^2}{9^2}[((9-y)^3)}^9_0[/tex]
[tex]W=3420.84*0.25[2401-65536][/tex]
[tex]W=17084965.5J[/tex]
[tex]W=17085KJ[/tex]
'
'
A circuit has a current of 3 amps and is using a 9 volt battery. The circuit has a resistance of ____
ohms.
Answer:
so 9/3=3 current is 3 amperes
Explanation:
The fomula to calculate resistance is:
voltage/cutrent
9 V/3 A= 3 ohms
If a red star and a blue star both have the same radius and both are the same distance from Earth, which one looks brighter in the night sky? Explain why.
Answer:
The blue one.
Explanation:
Im pretty sure its because the blue is hotter.
What would make oppositely charged objects attract each other more?
increasing the positive charge of the positively charged object and increasing the negative charge of the
negatively charged object
decreasing the positive charge of the positively charged object and decreasing the negative charge of the
negatively charged object
increasing the distance between the positively charged object and the negatively charged object
maintaining the distance
tance between the positively charged object and the negatively charged object
Hurry I need answers quick I’m timed
Answer:
A). Increasing the positive charge of the positively charged object and increasing the negative charge of the negatively charged object.
Explanation:
The two objects possessing opposite or unlike charges attract one another due to the electromagnetic force between the electrons, as well as, protons in order to develop ionic lattices.
As per the question, the objects having unlike charges would attract one another more when we 'escalate the positive charge of the object having a positive charge and enhance the negative charge of the object possessing negative charge.' This will lead the atoms that are losing electrons to be positively(+ve) charged and the atoms gaining electrons to be negatively
(-ve) charged. Thus, the electromagnetic force among them increases and a stronger ionic network develops leading them to attract each other more. Hence, option A is the correct answer.
Answer:
The person above me is wrong the answer is actually B
Explanation:
I put his/her answer and got it wrong and it showed me theat the answer is b not a
Define emf of a battery?
Answer:
Electromotive force or EMF is equal to the terminal potential difference when no current flows. EMF (ϵ) is the amount of energy (E) provided by the battery to each coulomb of charge (Q) passing through.
Describe how to determine the thickness of a sheet of a paper without a caliper.
Answer:
Divide the total measurement of the stack/ream of paper by the number of sheets. For example: 2 inches/100 pages = 0.01-inches sheets.
In case you measured the stack, and it gave you less than an inch, then you need to do the same. For example: 0.5-inches/100 sheets = 0.005-inches per sheet.
Answer:
Divide the total measurement of the stack/ream of paper by the number of sheets. For example: 2 inches/100 pages = 0.01-inches sheets.
In case you measured the stack, and it gave you less than an inch, then you need to do the same. For example: 0.5-inches/100 sheets = 0.005-inches per sheet.
Explanation:
In a warehouse, the workers sometimes slide boxes along the floor to move them. Two boxes were sliding toward each other and crashed. The crash caused both boxes to change speed. Based on the information in the diagram, which statement is correct? In your answer, explain what the forces were like and why the boxes changed speed.
Box 1 has more mass than Box 2.
Box 1 and Box 2 are the same mass.
Box 1 has less mass than Box 2
Answer:
The second one.
Explanation:
It caused both to change speed because they have both the same mass.
A 0.2 kg hockey park is sliding along the eyes with an initial velocity of -10 m/s when a player strikes it with his stick, causing it to reverse its direction and giving it a velocity of +25 m/s the impulse the stick applies to the park is most nearly
Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
[tex]I = m\cdot (\vec{v}_{2} - \vec{v_{1}})[/tex] (1)
Where:
[tex]I[/tex] - Impulse, in kilogram-meters per second.
[tex]m[/tex] - Mass, in kilograms.
[tex]\vec{v_{1}}[/tex] - Initial velocity of the hockey park, in meters per second.
[tex]\vec{v_{2}}[/tex] - Final velocity of the hockey park, in meters per second.
If we know that [tex]m = 0.2\,kg[/tex], [tex]\vec{v}_{1} = -10\,\hat{i}\,\left[\frac{m}{s}\right][/tex] and [tex]\vec {v_{2}} = 25\,\hat{i}\,\left[\frac{m}{s} \right][/tex], then the impulse applied by the stick to the park is approximately:
[tex]I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right][/tex]
[tex]I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right][/tex]
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
The Keck Observatory is home to the largest Earth-based twin telescopes. The telescopes are located away from city lights, above the clouds where the atmosphere is clear, calm, and dry. In 1999, additional steps were taken to help the telescopes overcome any distortions caused by changes in the atmosphere by adding a laser sighting system. Now, the Keck telescopes can probe distant galaxies and capture images with more detail than even the Hubble Space Telescope. Scientists can now use the Keck telescopes to investigate many questions. What is one question the Keck telescopes would NOT help scientists answer
Answer:
Option D
Explanation:
The options for the question are
a) How do galaxies rotate?
b) What is the weather on Neptune?
c) What is the core of Saturn made of?
d) What other solar systems have planets?
Solution
The Hubble space telescope was designed and integrated into the extraterrestrial system in order to capture information about the surrounding universe. If the Keck Observatory has a better observation capacity than the Hubble space telescope then the scientist would be interested to know the surrounding planets in the solar system.
Hence, option D is correct
plsss plsss plsss helppppp ASAP thank u ❤️
Answer:
7. (D) uniformly accelerated vertical motion
8. (A) zero
9. (A) zero
10. (C) parabolic
Answer:
7.Uniformly accelerated vertical motion
8.0m/s²
9.9.8m/s
10.parabolic
11.vertical component.
A student said,Today, giraffes have long necks that allow them to eat leaves high in trees. They got longer necks by stretching up for even higher leaves. After many generations, the giraffe’s neck was really long.Do you think the student’s explanation for how the giraffe’s neck became long is correct? Explain.
Answer:
yes because there is also a theory about this I studied in biology
theory name -Lamarck's theory
G.P.E = weight (n) x height (m). 2 identical twins are skiing down 2 different slopes. one is 1000m high, the other is 1500 m high. the twin at 1000m weighs 150 N. the other twin weighs 100 N. which twin has the most P.E before they begin skiing?
Answer:
I don't know i really I'm sorry I wish I could help
Suppose that Joe and Jim are twins and :
________________________________
Joe :
Height = 1000 m
==》 PE = 150 × 1000
Weight = 150 N
==》 PE = 150,000 j
_________________________________
Jim :
Height = 1500 m
==》PE = 100 × 1500
Weight = 100 N
==》PE = 150,000 j
______________________________
As u can see Joe and Jim has equal PE before they begin skiing .
The equation provided (from the textbook) first defines the elastic potential energy of a spring as ΔUsp = −(WB + WW), where WB is work the spring does on an attached block and WW is work the spring does on the wall to which it is attached. But WW is ignored in the next step. Why?
Answer:
The given potential energy of the spring is expressed as follows;
ΔUsp = -(WB + WW)
Where;
WB = Th work done by the spring on the block to which it is attached
WW = The work done by the spring on the wall
We recall that work done, W = Force applied × Distance moved in the direction of the force
The work done by the spring on the block, WB = The spring force × The distance the block moves
The work done by the spring on the wall, WW = The spring force × The distance the wall moves
However, given that the wall does not move, we have;
The distance the wall moves = 0
∴ The work done by the spring on the wall, WW = The spring force × 0 = 0 J
Therefore, WW = 0 J, and the spring does not do work on the wall, and WW can be ignored in the next subsequent) steps
Explanation:
Transformar las siguientes unidades al Sistema Internacional: 30 km/h ; 37 Dm ; 750 g ; 4x10-6 km2 ; 7500 cm ; 600000 cm2 ; 520700000 mm3 ; 3,4 años.
Answer:
a) 3.0 10⁴ m / s, b) 3.7 10¹ m, c) 0.750 kg, d) 4 10¹² m², e) 75 m, f) 60 m²
g) 5.207 10³ m², e) 4.847 10⁷ s
Explanation:
The international system (SI) of measurements has as fundamental units the meter for length, the second for time and kilogram for mass.
Let's reduce the different magnitudes to the SI system
a) 30 km / h (1000m / 1 km) (1 h / 3600 s) = 3.0 10⁴ m / s
b) 37 Dm (10 m / 1 Dm) = 3.7 10¹ m
c) 750 g (1 kg / 10,000 g) = 0.750 kg
d) 4 10⁶ km² (1000 m / 1km) ² = 4 10¹² m²
e) 7500 cm (1 m / 100 cm) = 75 m
f) 600000 cm² (1m / 10² cm) ² = 60 m²
g) 520700000 mm³ (1 m / 10³ mm) ³ = 5.20700000 109/10 ^ 6
= 5.207 10³ m²
e) 3.4 years (l65 days / 1 yr) (24 h / 1 day) (3600 s / 1h) = 4.847 10⁷ s
A 15-watt bulb is connected to a circuit that has a total of 60. Ω of resistance. How many electrons are passing through that bulb every second?
Answer:
3.2075*10^16
Explanation:
Q=P/V just search up a converter and youll get 30V and so you do 15/30 which is a half and a single coulomb is 6.415*10^16 so you half it. I belive this is correct if you dont belive me wait for someone else smarter to answer and compare.
The force of ____________ exists between any two objects that have mass.
free fall
acceleration
weight
gravity
Answer:
gravity
Explanation:
difference between acceleration due to gravity and gravity
Answer:
The gravitational force between earth and any object is known as gravity.
...
3 - An object is being pushed with a net force of 15 N. If the net force is cut in third to 5 N, how will the acceleration be changed?
Answer:
Explanation:
F = ma is a linear equation. This means that the Force change as the accleration changes. And vice versa. If the Force is cut in thirds, then the acceleration is also cut in thirds. Let's do some math on this just to prove it, shall we?
We know that at first, the F = 15. Let's give this object a mass of 5kg. That means that
15 = 5a so
a = 3
Then the F is cut into thirds, so
5 = 5a so
a = 1
The second acceleration is one-third of the first one, where the Force is 3 times greater.
particles that are found in the sun's plasma
Answer:
This plasma mostly consists of electrons
Two charges, each q, are separated by a distance r, and exert mutual attractive forces of F on each other. If both charges become 2q and the distance becomes 3r, what are the new mutual forces
Answer:
F = ⅔ F₀
Explanation:
For this exercise we use Coulomb's law
F = k q₁q₂ / r²
let's use the subscript "o" for the initial conditions
F₀ = k q² / r²
now the charge changes q₁ = q₂ = 2q and the new distance is r = 3 r
we substitute
F = k 4q² / 9 r²
F = k q² r² 4/9
F = ⅔ F₀