Electric vehicle based on electrical machines and power systems
for human applications, concept design (block diagram).

Answers

Answer 1

Electric vehicles are an alternative to traditional fuel-based vehicles. These electric vehicles have some advantages over fuel-based vehicles, such as being more environmentally friendly and having lower operating costs. This essay discusses electric vehicles based on electrical machines and power systems for human applications, including the concept design .

The block diagram of an electric vehicle-based on electrical machines and power systems consists of several blocks. The battery management system, motor controller, and inverter are the primary blocks. The battery management system is responsible for monitoring and managing the battery system's performance and health. The motor controller regulates the motor's speed and torque, while the inverter converts DC power from the battery to AC power that is used by the motor.

Electric vehicles based on electrical machines and power systems are an efficient and eco-friendly option for human applications. The block diagram of the electric vehicle concept design includes several key components, such as the battery management system, motor controller, and inverter, which work together to power and control the electric vehicle's motor.

To know more about motor controller visit:

https://brainly.com/question/31214955

#SPJ11


Related Questions

Find the z-transform of x(n) = (1/2)ⁿ u(n) - 2ⁿ (-n -1)
a. X(z) = 2 - 2.5z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻²)
b. X(z) = 2 + 2.5z⁻¹ / (1 + 0.5z⁻¹)(1 + 2z⁻²)
c. X(z) = 2 - 2.5z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻¹)
d. X(z) = 2.5 - 2z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻¹)
e. X(z) = 2.5 - 2z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻²)

Answers

To find the z-transform of x(n) = (1/2)ⁿ u(n) - 2ⁿ (-n -1), we will use the definition of z-transform which is Z{x(n)} = X(z) = ∑_(n=0)^∞▒x(n)z⁻ⁿ.

Z{x(n)} = Z{(1/2)ⁿ u(n)} - Z{2ⁿ (-n -1)}

Z{(1/2)ⁿ u(n)} = ∑_(n=0)^∞▒(1/2)ⁿ u(n) z⁻ⁿ = ∑_(n=0)^∞▒(1/2)^n z⁻ⁿ = 1/(1 - (1/2)z⁻¹)

Z{2ⁿ (-n -1)} = ∑_(n=-∞)^0▒〖2ⁿ (-n-1) z⁻ⁿ 〗 = -∑_(n=0)^∞▒2ⁿ (n+1) z⁻ⁿ

By using the identity ∑_(k=0)^∞▒a^k k = a/(1-a)^2

-∑_(n=0)^∞▒2ⁿ (n+1) z⁻ⁿ = -2/(1-2z⁻¹)²

Z{a x(n) + b y(n)} = a X(z) + b Y(z)

Z{x(n)} = X(z) = Z{(1/2)ⁿ u(n)} - Z{2ⁿ (-n -1)}X(z) = 1/(1 - (1/2)z⁻¹) + 2/(1-2z⁻¹)²

X(z) = 2 - 2.5z⁻¹ / (1 - 0.5z⁻¹)(1 - 2z⁻²)

Option (a) is the correct answer.

To know more about  z-transform visit:

https://brainly.com/question/32622869

#SPJ11

Using the example of a sine wave, explain the challenges in implementing a practical spectral estimation system. In particular, provide diagrams that identify characteristics of the spectral estimate that deviate from the theoretical answer for a sine wave.

Answers

A spectral estimation system is used to estimate the frequency content of a signal. thus implementing a practical spectral estimation system comes with several challenges.

1. Windowing Effects: In practical systems, the length of the signal is limited. Therefore, we can only obtain a finite number of samples of the signal. This finite duration of the signal leads to spectral leakage. Spectral leakage results in energy spreading over a range of frequencies, which can distort the true spectral content of the signal.

2. Discrete Sampling: The accuracy of a spectral estimate is dependent on the number of samples used to compute it. However, when the sampling rate is too low, the spectral estimate will be unable to capture high-frequency components. Similarly, if the sampling rate is too high, the spectral estimate will capture noise components and lead to aliasing.

3. Window Selection: The choice of a window function used to capture the signal can affect the spectral estimate. Choosing the wrong window can lead to spectral leakage and a poor spectral estimate. Also, the window's width should be adjusted to ensure that the frequency resolution is high enough to capture the signal's spectral content.

4. Harmonic Distortion: A spectral estimate can be distorted if the input signal has a non-linear distortion. Harmonic distortion can introduce spectral components that are not present in the original signal. This effect can distort the spectral estimate and lead to inaccurate results.

The rectangular window's spectral estimate has energy leakage into the adjacent frequency bins. This leakage distorts the spectral estimate and leads to inaccuracies in the spectral content of the signal. To mitigate this effect, other window functions can be used to obtain a better spectral estimate.

Learn more about the spectral estimation system here;

https://brainly.com/question/28197504

#SPJ4

With the aid of an illustration, explain the how does these
vertical transport works:
a. An electric Lift
b. Paternoster lift
c. Oil hydraulic lift
d. Escalator
e. Travelator
f. Stair lift

Answers

Answer:

Explanation:

a. Electric Lift:

An electric lift, also known as an elevator, is a vertical transport system that uses an electric motor to move a platform or cabin up and down within a shaft. The illustration would show a vertical shaft with a cabin or platform suspended by cables. The electric motor, located at the top of the shaft, drives a pulley system connected to the cables. When the motor rotates, it either winds or unwinds the cables, causing the cabin to move accordingly. The lift is controlled by buttons or a control panel, allowing passengers to select their desired floor. Safety mechanisms such as brakes and sensors are also present to ensure smooth and secure operation.

b. Paternoster Lift:

A paternoster lift is a unique type of vertical transport consisting of a chain of open cabins that continuously move in a loop. The illustration would show multiple cabins attached to a continuous chain, resembling a string of open compartments. As the chain moves, the cabins go up and down, allowing passengers to step on or off at each floor. Paternoster lifts operate at a constant speed and do not have doors. Passengers must carefully time their entry and exit, as the cabins are in motion.

c. Oil Hydraulic Lift:

An oil hydraulic lift, also known as a hydraulic elevator, uses fluid pressure to lift and lower a platform or cabin. The illustration would depict a vertical shaft with a hydraulic cylinder located at the base. The platform is attached to a piston within the cylinder. When hydraulic fluid is pumped into the cylinder, it exerts pressure on the piston, lifting the platform. Conversely, releasing the fluid from the cylinder allows the platform to descend. The lift is controlled by valves and a hydraulic pump, and it offers smooth and precise vertical movement.

d. Escalator:

An escalator is a moving staircase designed for vertical transportation between different levels of a building. The illustration would show a set of steps arranged in a loop, with a continuous handrail moving alongside the steps. The steps are mounted on a pair of chains or belts that loop around two sets of gears, one at the top and one at the bottom. As the gears rotate, the steps move in a coordinated manner, allowing passengers to step on and off while the escalator continues to operate. Sensors and safety features are incorporated to detect obstructions and ensure passenger safety.

e. Travelator:

A travelator, also known as a moving walkway, is a flat conveyor belt-like system that transports people horizontally or inclined over short distances. The illustration would depict a flat surface with a moving belt, similar to a treadmill. The travelator is designed to assist pedestrians in walking or standing while it moves. It is commonly used in airports, train stations, and large public spaces to facilitate movement between terminals or platforms.

f. Stair Lift:

A stair lift, also known as a stair chair or stairway elevator, is a mechanical device installed along a staircase to transport individuals up and down. The illustration would show a chair or platform attached to a rail system that runs along the staircase. The chair or platform moves along the rail, allowing individuals with mobility difficulties to sit or stand on it while being safely transported along the stairs. The stair lift is controlled by buttons or a remote control, enabling the user to operate it easily and safely.

know more about vertical shaft: brainly.com/question/32298672

#SPJ11

Answer:

a. Electric Lift:

An electric lift, also known as an elevator, is a vertical transport system that uses an electric motor to move a platform or cabin up and down within a shaft. The illustration would show a vertical shaft with a cabin or platform suspended by cables. The electric motor, located at the top of the shaft, drives a pulley system connected to the cables. When the motor rotates, it either winds or unwinds the cables, causing the cabin to move accordingly. The lift is controlled by buttons or a control panel, allowing passengers to select their desired floor. Safety mechanisms such as brakes and sensors are also present to ensure smooth and secure operation.

b. Paternoster Lift:

A paternoster lift is a unique type of vertical transport consisting of a chain of open cabins that continuously move in a loop. The illustration would show multiple cabins attached to a continuous chain, resembling a string of open compartments. As the chain moves, the cabins go up and down, allowing passengers to step on or off at each floor. Paternoster lifts operate at a constant speed and do not have doors. Passengers must carefully time their entry and exit, as the cabins are in motion.

c. Oil Hydraulic Lift:

An oil hydraulic lift, also known as a hydraulic elevator, uses fluid pressure to lift and lower a platform or cabin. The illustration would depict a vertical shaft with a hydraulic cylinder located at the base. The platform is attached to a piston within the cylinder. When hydraulic fluid is pumped into the cylinder, it exerts pressure on the piston, lifting the platform. Conversely, releasing the fluid from the cylinder allows the platform to descend. The lift is controlled by valves and a hydraulic pump, and it offers smooth and precise vertical movement.

d. Escalator:

An escalator is a moving staircase designed for vertical transportation between different levels of a building. The illustration would show a set of steps arranged in a loop, with a continuous handrail moving alongside the steps. The steps are mounted on a pair of chains or belts that loop around two sets of gears, one at the top and one at the bottom. As the gears rotate, the steps move in a coordinated manner, allowing passengers to step on and off while the escalator continues to operate. Sensors and safety features are incorporated to detect obstructions and ensure passenger safety.

e. Travelator:

A travelator, also known as a moving walkway, is a flat conveyor belt-like system that transports people horizontally or inclined over short distances. The illustration would depict a flat surface with a moving belt, similar to a treadmill. The travelator is designed to assist pedestrians in walking or standing while it moves. It is commonly used in airports, train stations, and large public spaces to facilitate movement between terminals or platforms.

f. Stair Lift:

A stair lift, also known as a stair chair or stairway elevator, is a mechanical device installed along a staircase to transport individuals up and down. The illustration would show a chair or platform attached to a rail system that runs along the staircase. The chair or platform moves along the rail, allowing individuals with mobility difficulties to sit or stand on it while being safely transported along the stairs. The stair lift is controlled by buttons or a remote control, enabling the user to operate it easily and safely.

know more about vertical shaft: brainly.com/question/32298672

#SPJ11

With a suitable example, explain how supply chain strategy evolves throughout the product life cycle (PLC).

Answers

Supply chain strategy refers to the efficient and effective planning, implementation, and management of all the activities involved in the production, transportation, storage, and delivery of goods and services.

The product life cycle (PLC) is a network used to describe the different stages a product goes through from introduction to decline. As a product progresses through these stages, the supply chain strategy needs to be adjusted to meet the changing needs of customers, stakeholders, and the market environment.

In the introduction phase, supply chain strategy is focused on establishing reliable suppliers, setting up production processes, and building distribution networks. At this stage, the product is new to the market and demand is still uncertain.

In the growth phase, supply chain strategy is focused on increasing production capacity, reducing costs, and expanding distribution channels to reach more customers. The goal is to maintain or increase market share, maximize profits, and gain a competitive advantage.

To know more about transportation  visit:

brainly.com/question/11161029

#SPJ11

What is another name for the numerical integration used in formulating the [k) matrix for higher order finite 2D and 3D elements? How does this relate to the points where stress and strain is computed exactly in an isoparametric element? (Ok to sketch example )

Answers

Gauss-Legendre numerical integration is another name for the numerical integration used in formulating the [k) matrix for higher order finite 2D and 3D elements. The implementation of the Gauss-Legendre numerical integration method is done by partitioning the element into smaller pieces called Gaussian integration points.

Gauss points are integration points that are precisely situated on an element surface in isoparametric elements.An isoparametric element is a term used to refer to a group of geometric elements that share a similar basic form. The use of isoparametric elements in finite element analysis is based on the idea that the element has the same geometric structure as the natural coordinate space used to define the element. The physical quantity, on the other hand, is described in terms of the isoparametric coordinates. As a result, the problem of finding physical quantities in the finite element method is reduced to a problem of finding isoparametric coordinates, which is simpler.

The Gauss-Legendre numerical integration method and the isoparametric element concept are related in that the Gauss points are situated exactly on the element surface in isoparametric elements. As a result, stress and strain can be computed more accurately in isoparametric elements using Gauss points.

To know more about integration visit:
https://brainly.com/question/31744185
#SPJ11

Draw a hydraulic circuit, that may provide linear displacement heavy-duty machine tool table by the use of hydraulic single rod cylinder. The diameter of cylinder piston D is 100 mm, the diameter rod d is 63 mm.
It is necessary use next hydraulic apparatus:
-4/3 solenoid-operated valve; to ensure pump unloading in normal valve position;
-meter out flow control valve; -pilot operated relief valve;
- fixed displacement pump.
The machining feed with velocity VFOR-7 m/min by rod extension, retraction - with highest possible velocity VRET from pump output flow.
The design load F on the machining feed is 12000 H.
It is necessary to determine:
1. The permissible minimum working pressure P;
2. The permissible minimum pump output QP by rod extension;
3. The highest possible retraction velocity VRET with pump output QP.

Answers

Therefore, the highest possible retraction velocity VRET with pump output QP is 0.104 m/s.

1. To determine the minimum permissible working pressure P:

Given, Design load = F = 12000 H

Area of the cylinder piston = A = π(D² - d²)/4 = π(100² - 63²)/4 = 2053.98 mm²Working pressure = P

Load supported by the cylinder = F = P × A

Therefore, P = F/A = 12000/2053.98 = 5.84 N/mm²2. To determine the minimum permissible pump output QP by rod extension:

Given, Velocity of rod extension = VFOR = 7 m/min

Area of the cylinder piston = A = π(D² - d²)/4 = π(100² - 63²)/4 = 2053.98 mm²

Flow rate of oil required for extension = Q = A × V = 2053.98 × (7/60) = 239.04 mm³/s

Volume of oil discharged by the pump in one revolution = Vp = πD²/4 × L = π × 100²/4 × 60 = 785398 mm³/s

Discharge per minute = QP = Vp × n = 785398 × 60 = 47123.88 mm³/min

Where n = speed of rotation of the pump

The permissible minimum pump output QP by rod extension is 47123.88 mm³/min.3. To determine the highest possible retraction velocity VRET with pump output QP:

Given, The highest possible retraction velocity = VRET

Discharge per minute = QP = 47123.88 mm³/min

Volume of oil required for retraction = Q = A × VRET

Volume of oil discharged by the pump in one revolution = Vp = πD²/4 × L = π × 100²/4 × 60 = 785398 mm³/s

Flow control valve:

It will maintain the desired speed of cylinder actuation by controlling the flow of oil passing to the cylinder. It is placed in the port of the cylinder outlet.

The flow rate is adjusted by changing the opening size of the valve. Therefore, Velocity of the cylinder = VRET = Q/ABut, Q = QP - Qm

Where Qm is the oil flow rate from the meter-out flow control valve. When the cylinder retracts at the highest possible velocity VRET, then Qm = 0 Therefore, VRET = Q/A = (QP)/A = (47123.88 × 10⁻⁶)/(π/4 (100² - 63²) × 10⁻⁶) = 0.104 m/s Therefore, the highest possible retraction velocity VRET with pump output QP is 0.104 m/s.

To know more about Velocity visit:

https://brainly.com/question/30559316

#SPJ11

A shell-and-tube steam condenser is to be constructed of 2.5cm-OD 12),2.2cm-ID( 1), single-pass horizontal tubes with steam condensing at 326 K (hfg = 2.375x10^6 J/kg) outside the tubes. The cooling water 0.7 kg/s per tube enters each tube at 290 K and leaves at 308 K. The heat transfer coefficient for the condensation of steam is 1500 W/m^2K.
(a) Calculate the overall heat transfer coefficient when the tube wall resistance is neglected.
(b) Calculate the tube length.
(c) Calculate the condensation rate per tube

Answers

(a) The overall heat transfer coefficient is 4.17 kW/m²K.

(b) The tube length is 1.89 m.

(c) The   condensation rate per tubeis 0.036 kg/s.

How is this so?

(a) Calculate the overall heat transfer coefficient when the tube wall resistance is neglected. The overall heat transfer coefficient is calculated as follows  -  

U = h_c * h_w

Where  -  

U is   the overall heat transfer coefficient (W/m²K) h_c is the heat   transfer coefficientfor the condensation of steam (1500 W/m²K)h_w is the heat transfer coefficient for the cooling water (to be determined)

The heat transfer coefficient for the cooling water can be calculated using the following equation  -  

h_w = k_w / (L/D)

Where  -  

k_w is the thermal conductivity of water (0.6 W/mK)L is the length of the tube (to be determined) D is the inside diameter of the tube (2.2 cm)

Plugging in the values

h_w = 0.6 W/mK / (L/2.2 cm) = 2.78 W/m²K

So, the overall heat transfer coefficient is  

U = 1500 W/m²K * 2.78 W/m²K

= 4.17 kW/m²K

(b) Calculate the tube length.

The tube length can be calculated using the following equation  -  

L = (U * A * deltaT) / Q

Where  -  

L is the length   of the tube(m) U is the overall heat transfer coefficient (W/m²K) A is the heat   transfer area(m²)deltaT is the temperature difference (K)Q is the   heat flow rate(W)

The heat flow rate is the amount of heatthat is transferred from the steam to the cooling water   per unit time. It can be calculated   as follows-

Q = m * h_fg

Where  -  

Q is the heat flow rate (W) m is the mass flow rate of the cooling water (0.7 kg/s)h_fg is the latent heat of vaporization of steam (2.375x10^6 J/kg)

Plugging in the values, we get  -  

L = (4.17 kW/m²K * (2.2 cm)² * (326 K - 308 K)) / (0.7 kg/s * 2.375x10⁶ J/kg) = 1.89 m

(c) Calculate the condensation rate per tube

The condensation rate per tube is the amount of steam that is condensed per unit time. It can be calculated as follows  -  

R = Q / A

Where  -  

R is the condensation rate (kg/s) Q is the heat flow rate (W)A is the heat transfer area (m²)

Plugging in the values, we get  -  

R = (0.7 kg/s * 2.375x10⁶ J/kg) / (2.2 cm)² * (4.17 kW/m²K)

= 0.036 kg/s

Learn mor about heat transfer:
https://brainly.com/question/16055406
#SPJ1

Determine the minimum of f(x)= (10x³ + 3x² + x + 5)²
starting at x = 3 and using a step size ∆= 5.0. Using region elimination: expanding pattern bounding plus six steps of golden section.

Answers

To determine the minimum of the function f(x) = (10x³ + 3x² + x + 5)² using region elimination and the golden section method, we start at x = 3 with a step size ∆ = 5.0.

We will expand the pattern bounding and perform six steps of golden section search.

Step 1: Initialize the region elimination bounds

We start with x1 = 3 and ∆ = 5.0.

Step 2: Evaluate function values

Evaluate the function f(x) at x1 = 3 and x2 = x1 + ∆ = 8.

f(x1) = (10(3)³ + 3(3)² + 3 + 5)² = (270 + 27 + 3 + 5)² = 305²

f(x2) = (10(8)³ + 3(8)² + 8 + 5)² = (5120 + 192 + 8 + 5)² = 5317²

Step 3: Determine the minimum value in the current region

Compare the function values and update the bounds.

If f(x1) < f(x2):

   Update x2: x2 = x1 + ∆

Else:

   Update x1: x1 = x2

   Update x2: x2 = x1 + ∆

In this case, f(x1) = 305² and f(x2) = 5317². Since f(x2) > f(x1), we update x1 = 8 and x2 = 13.

Step 4: Adjust the step size

Halve the step size: ∆ = ∆ / 2 = 5.0 / 2 = 2.5

Step 5: Repeat steps 2 to 4 six times

Perform six steps of golden section search, evaluating the function at each new x1 and x2 and updating the bounds and step size.

After six steps, we would have narrowed down the region to a smaller interval and obtained a more accurate estimate of the minimum.

Note: The exact values for x1 and x2, as well as the corresponding function evaluations, would depend on the specific iterations of the golden section search.

To know more about golden section search., click here:

https://brainly.com/question/29561437

#SPJ11

Question 1. Write the full set of Maxwell's equations in differential form with a brief explanation for the case of: (v) a time-constant magnetic field in a linear medium of permeability, produced by a steady current flow;

Answers

The full set of Maxwell's equations in differential form with a brief explanation for the case of a time-constant magnetic field in a linear medium of permeability, produced by a steady current flow are given below:

The four equations of Maxwell's equations are:Gauss's law for electricity:It describes the electric field flux through any closed surface and how that flux is related to the total electric charge contained inside the surface.φE=∫E.dS/ε0=Q/ε0Where, φE is the electric flux, E is the electric field, S is the surface through which the electric field is passing, ε0 is the electric constant (permittivity of free space), and Q is the total charge enclosed in the surface.

Gauss's law for magnetism:This law states that there are no magnetic monopoles, and the total magnetic flux through a closed surface is zero.φB=∫B.dS=0Faraday's law of induction:It tells us how changing magnetic fields can generate an electric field.

TO know more about  Maxwell's visit:

https://brainly.com/question/32131532

#SPJ11

The volume of wet water vapor (per kg) with 50% quality is given by: (demonstrates its
deduction)
(a) 0.5vf (b) 0.5(vf-vg) (c) vf + 0.5vg (d) 0.5vg (e) vf-0.5vfg

Answers

The volume of wet water vapor (per kg) with 50% quality is 0.5 times the sum of the specific volume of the vapor (vg) and the specific volume of the liquid (vf).

To deduce the volume of wet water vapor with 50% quality, we need to consider the specific volume of the saturated vapor (vg), the specific volume of the saturated liquid (vf), and the specific volume of the mixture (v).

The quality (x) of the wet vapor is defined as the ratio of the mass of vapor (mv) to the total mass of the mixture (m). It can be expressed as:

x = mv / m

For 50% quality, x = 0.5.

The specific volume of the mixture (v) can be calculated using the formula:

v = (mv * vg + ml * vl) / m

where mv is the mass of vapor, vg is the specific volume of the vapor, ml is the mass of liquid, and vl is the specific volume of the liquid.

Since we have 50% quality, mv = 0.5 * m and ml = 0.5 * m.

Substituting these values into the equation for v, we get:

v = (0.5 * m * vg + 0.5 * m * vf) / m

Simplifying, we find:

v = 0.5 * (vg + vf)

In equation form, it can be expressed as v = 0.5 * (vg + vf). Therefore, the correct answer is (c) vf + 0.5vg.

To know more about water vapour;

https://brainly.com/question/33448180

#SPJ11

How do you execute these terms to Contral Corrosion Heat treatment of steel.
stress-stoom diagram for hot rolled and Cold-draw
Annealing Quenching tempany Casehordaing Alloy steel Corrosion-Resistant steel

Answers

Corrosion is the gradual degradation of materials, primarily metals, by the chemical reaction with its environment. Corrosion is a ubiquitous process that can be found in virtually every setting, from seawater to acidic rain, and can cause severe damage to the structure of a metal.

Heat treatment is a process that can control the corrosion of steel. This process can include various techniques such as annealing, quenching, case hardening, and alloying. This treatment alters the microstructure of the steel to create a material that is more resistant to corrosion.

Annealing is a heat treatment process that involves heating a steel to a specific temperature, holding it at that temperature for a specific time, and then slowly cooling the steel to room temperature. The purpose of annealing is to reduce the hardness of the steel, making it more malleable and easier to work with. This process can also improve the corrosion resistance of the steel by reducing internal stresses and eliminating defects in the crystal structure of the metal.

Quenching is a heat treatment process that involves heating a steel to a specific temperature, holding it at that temperature for a specific time, and then rapidly cooling the steel by immersing it in a liquid. The purpose of quenching is to create a hard, brittle metal that is less susceptible to corrosion. The rapid cooling rate causes the crystal structure of the metal to become disordered, which makes it more difficult for corrosive agents to penetrate the surface of the metal.

Case hardening is a heat treatment process that involves heating a steel to a specific temperature, introducing a specific gas or liquid into the environment, and then rapidly cooling the steel. The purpose of case hardening is to create a hard, wear-resistant surface layer on the steel while maintaining a more ductile core. This process can also improve the corrosion resistance of the steel by creating a surface layer that is more resistant to corrosion.
To know more about Corrosion visit:

https://brainly.com/question/31313074
#SPJ11

A fire sprinkler pump is installed on the basement floor of a building, which can be modeled as a rigid rectangular plate resting on four elastic columns as shown in Figure Q3. The equivalent mass of the sprinkler pump is m1 of 150×Pkg and it is observed to vibrate badly at a frequency of 10 Hz. The vibration is caused by the application of a harmonic force, F of 100×QN to the pump. A hypothesis was made by a mechanical engineer that the excessive vibration is due to the frequency of the harmonic force which coincides with the natural frequency of the sprinkler pump.
P= 10 and Q= 10
Question:
(i) Based on the hypothesis made by the engineer, suggest the possible solution to overcome the vibration problem. Please give a reason to support your answer.
(ii) If the sprinkler pump can be modeled as a single degree of freedom spring-mass system, calculate the stiffness, for each elastic column possessed. Give the final answer in the unit of kN/m.

Answers

(i)Based on the hypothesis made by the engineer, the possible solution to overcome the vibration problem is to change the natural frequency of the sprinkler pump. Therefore, the stiffness of each elastic column possessed is 58,905 kN/m. Answer: 58,905 kN/m.

This can be achieved by changing the stiffness of the elastic columns. If the natural frequency of the system is different from the frequency of the harmonic force applied, the vibration will be significantly reduced.Reason: The natural frequency is the frequency at which the system vibrates when disturbed.

The stiffness, k of each elastic column possessed can be calculated as follows:Given:Equivalent mass of the sprinkler pump, m1 = 150×PkgFrequency of vibration,

f = 10 HzHarmonic force applied,

F = 100×QN,

where Q = 10 kN

Stiffness of each elastic column = kWe know that the natural frequency of the system is given by the following formula:f = (1/2π) * √(k/m1) Squaring both sides of the equation,

we get:k[tex]= m1 * (2πf)²= 150×10 * (2π×10)²= 150000 * 392.7= 58,905 kN/m[/tex]

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

A two-branch duct system of circular duct from P6-8 is shown in Fig. 6-20 (refer to Week 7 ppt material). The fittings have the following dynamic loss coefficient: upstream to branch, KU-B = 0.13; elbow, KEL = 0.1. Vmain = 12 m/s, Vbranch = 3 m/s. There is a negligible pressure loss in the straight-through section of the branch. Using the static regain method, calculate the diameter in 5-m section, in m.
0.47
0.37
0.41
0.33

Answers

Using the static regain method, the diameter of the 5-m section in a two-branch duct system can be calculated. The formula involves volumetric flow rate, dynamic loss coefficient, air velocity, and pressure. Given values of dynamic loss coefficients and air velocities, the diameter is 0.41 m.

Using the static regain method, the diameter in the 5-m section of the two-branch duct system can be calculated using the formula:

D = [(4 * Q^2 * K) / (pi^2 * V^2 * P)]^(1/5)

Assuming the same volumetric flow rate for both branches, the pressure in the 5-m section can be calculated using the static regain method:

P = (Vmain^2 - Vbranch^2) / 2g

P = (12^2 - 3^2) / (2 * 9.81)

P = 6.527 Pa

Using the given dynamic loss coefficients and air velocities, the value of K can be calculated as:

K = KU-B + KEL

K = 0.13 + 0.1

K = 0.23

Substituting the values into the formula, the diameter can be calculated as:

D = [(4 * Q^2 * K) / (pi^2 * V^2 * P)]^(1/5)

D = [(4 * Q^2 * 0.23) / (pi^2 * (3^2) * 6.527)]^(1/5)

Assuming a volumetric flow rate of 1 m^3/s, the diameter is:

D = 0.41 m

To know more about volumetric flow rate, visit:
brainly.com/question/18724089
#SPJ11

Show that the sequence (1/2ⁿ) is Cauchy in R Show a case where a series is said to be absolutely convergent

Answers

To show that the sequence (1/2ⁿ) is Cauchy in R, we need to prove that for any ε > 0, there exists N such that |1/2ⁿ - 1/2ᵐ| < ε for all n, m > N.

To prove that the sequence (1/2ⁿ) is Cauchy in R, we need to show that for any ε > 0, there exists an N such that |1/2ⁿ - 1/2ᵐ| < ε for all n, m > N. We can choose N = log₂(1/ε), and for any n, m > N, we have:

|1/2ⁿ - 1/2ᵐ| = |1/2ⁿ - 1/2ⁿ⁺ᵏ| ≤ |1/2ⁿ| + |1/2ⁿ⁺ᵏ| = 1/2ⁿ + 1/2ⁿ * (1/2ᵏ)

Since ε > 0, we can choose k such that 1/2ᵏ < ε/2. Then, for n, m > N, we have:

|1/2ⁿ - 1/2ᵐ| ≤ 1/2ⁿ + 1/2ⁿ * (ε/2) = 1/2ⁿ * (1 + ε/2) < 1/2ⁿ * (1 + ε) = ε

Therefore, the sequence (1/2ⁿ) is Cauchy in R.

As for an example of an absolutely convergent series, we can consider the series Σ(1/n²) where the terms converge absolutely. The absolute convergence of a series means that the series of the absolute values of its terms converges.

In the case of Σ(1/n²), the terms are always positive, and the series converges to a finite value (in this case, π²/6) even though the individual terms may decrease in magnitude.

Learn more about  sequence (1/2ⁿ): brainly.com/question/26263191

#SPJ11

n-Octane gas (CgH18) is burned with 95 % excess air in a constant pressure burner. The air and fuel enter this burner steadily at standard conditions and the products of combustion leave at 235 °C. Calculate the heat transfer during this combustion kJ/ kg fuel 37256.549

Answers

The n-Octane gas (CgH18) is burned with 95 % excess air in a constant pressure burner, the heat transfer during the combustion of n-octane with 95% excess air in a constant pressure burner is approximately 37228.793 kJ/kg fuel.

We must take into account the heat emitted from the combustion reaction when calculating the heat transfer during the combustion of n-octane ([tex]C_8H_{18[/tex]) with 95% surplus air in a constant pressure burner.

[tex]C_8H_{18[/tex] + 12.5([tex]O_2[/tex] + 3.76N2) -> 8[tex]CO_2[/tex] + 9[tex]H_2O[/tex] + 47[tex]N_2[/tex]

One mole of n-octane (114.23 g) combines with 12.5 moles of oxygen (400 g) to produce 8 moles of carbon dioxide, 9 moles of water, and 47 moles of nitrogen, according to the equation's balanced form.

The enthalpy change of the combustion reaction must be established in order to compute the heat transfer.

The numbers for the reactants' and products' respective enthalpies of formation can be used to compute the enthalpy change.

ΔHf([tex]C_8H_{18[/tex]) = -249.7 kJ/mol

ΔHf([tex]CO_2[/tex]) = -393.5 kJ/mol

ΔHf([tex]H_2O[/tex]) = -241.8 kJ/mol

ΔHf([tex]N_2[/tex]) = 0 kJ/mol

ΔH = (8 * (-393.5) + 9 * (-241.8) + 47 * 0) - (-249.7 + 12.5 * 0)

ΔH = -4984.6 kJ/mol

Heat Transfer = ΔH / molar mass of n-octane

Heat Transfer = (-4984.6 kJ/mol) / (114.23 g/mol)

Heat Transfer = -43.63 kJ/g

Heat Transfer = Specific Energy of n-octane - (excess air * Specific Energy of air)

Heat Transfer = 37256.549 kJ/kg fuel - (0.95 * 29.22 kJ/kg air)

Heat Transfer = 37256.549 kJ/kg fuel - 27.756 kJ/kg fuel

Heat Transfer = 37228.793 kJ/kg fuel

Thus, the heat transfer during the combustion of n-octane with 95% excess air in a constant pressure burner is approximately 37228.793 kJ/kg fuel.

For more details regarding heat transfer, visit:

https://brainly.com/question/13433948

#SPJ4

At inlet, in a steady flow process, 1.2 kg/s of nitrogen is initially at reduced pressure of 2 and reduced temperature of 1.3. At the exit, the reduced pressure is 3 and the reduced temperature is 1.7. Using compressibility charts, what is the rate of change of total enthalpy for this process? Use cp = 1.039 kJ/kg K. Express your answer in kW.

Answers

The answer is , the rate of change of total enthalpy for this process is -0.4776 kW.

How to find?

Pressure at the inlet, P1 = 2

Reduced temperature at the inlet, Tr1 = 1.3

Pressure at the exit,

P2 = 3

Reduced temperature at the exit,

Tr2 = 1.7

The specific heat capacity at constant pressure of nitrogen, cp = 1.039 kJ/kg K.

We have to determine the rate of change of total enthalpy for this process.

To determine the rate of change of total enthalpy for this process, we need to use the following formula:

Change in total enthalpy per unit time = cp × (T2 - T1) × mass flow rate of the gas.

Hence, we can write as; Rate of change of total enthalpy (q) = cp × m  × (Tr2 - Tr1).

From the compressibility charts for nitrogen, we can find that the values of z1 and z2 as;

z1 = 0.954 and

z2 = 0.797.

Using the relation for reduced temperature and pressure, we have:

PV = zRT.

Where, V is the molar volume of the gas at the respective temperature and pressure.

So, V1 = z1 R Tr1/P1 and

V2 = z2 R Tr2/P2

Here, R = Gas constant/molecular weight of nitrogen = 0.2968 kJ/kg K

The mass of the gas can be obtained as:

Mass,

m = V × P/R × Tr

= P (z R Tr/P) / R Tr

= z P / R

Rate of change of total enthalpy, q = cp × m × (Tr2 - Tr1)

= 1.039 × (1.2 × 0.797 × 1.7 - 1.2 × 0.954 × 1.3)

= -0.4776 kW (Ans).

Hence, the rate of change of total enthalpy for this process is -0.4776 kW.

To know more on Enthalpy visit:

https://brainly.com/question/32882904

#SPJ11

Suppose an infinitely large plane which is flat. It is positively charged with a uniform surface density ps C/m²
1. Find the electric field produced by the planar charge on both sides of the plane. If you use symmetry argument you may picture the field lines. The picture of field lines would then help you devise a "Gaussian surface" for finding the electric field by Gauss's law. 2. Compare this electric field with the electric field due to a very long line of uniform charge (Example 4-6 in the Text). 3. Now imagine there are two planar sheets with charges. One is charged with a uniform surface density p. and the other -P. The two planes are placed in parallel with a distance d apart. Find the electric field E in all three regions of the space: one side of the two planes, the space in between, and the other side. Superposition principle would be useful for finding the field.

Answers

Suppose an infinitely large plane which is flat. It is positively charged with a uniform surface density ps C/m²

As the plane is infinitely large and flat, the electric field produced by it on both sides of the plane will be uniform.

1. Electric field due to the planar charge on both sides of the plane:

The electric field due to an infinite plane of charge is given by the following equation:

E = σ/2ε₀, where E is the electric field, σ is the surface charge density, and ε₀ is the permittivity of free space.

Thus, the electric field produced by the planar charge on both sides of the plane is E = ps/2ε₀.

We can use the symmetry argument to picture the field lines. The electric field lines due to an infinite plane of charge are parallel to each other and perpendicular to the plane.

The picture of field lines helps us devise a "Gaussian surface" for finding the electric field by Gauss's law. We can take a cylindrical Gaussian surface with the plane of charge passing through its center. The electric field through the curved surface of the cylinder is zero, and the electric field through the top and bottom surfaces of the cylinder is the same. Thus, by Gauss's law, the electric field due to the infinite plane of charge is given by the equation E = σ/2ε₀.

2. Comparison between electric fields due to the plane and the long line of uniform charge:

The electric field due to a long line of uniform charge with linear charge density λ is given by the following equation:

E = λ/2πε₀r, where r is the distance from the line of charge.

The electric field due to an infinite plane of charge is uniform and independent of the distance from the plane. The electric field due to a long line of uniform charge decreases inversely with the distance from the line.

Thus, the electric field due to the plane is greater than the electric field due to the long line of uniform charge.

3. Electric field due to two planar sheets with charges:

Let's assume that the positive charge is spread on the plane with a surface density p, and the negative charge is spread on the other plane with a surface density -P.

a. One side of the two planes:

The electric field due to the positive plane is E1 = p/2ε₀, and the electric field due to the negative plane is E2 = -P/2ε₀. Thus, the net electric field on one side of the two planes is E = E1 + E2 = (p - P)/2ε₀.

b. The space in between:

Inside the space in between the two planes, the electric field is zero because there is no charge.

c. The other side of the two planes:

The electric field due to the positive plane is E1 = -p/2ε₀, and the electric field due to the negative plane is E2 = P/2ε₀. Thus, the net electric field on the other side of the two planes is E = E1 + E2 = (-p + P)/2ε₀.

By the superposition principle, we can add the electric fields due to the two planes to find the net electric field in all three regions of space.

Learn more about electric fields: https://brainly.com/question/19878202

#SPJ11

A rigid 0.1 m3 tank contains 4 kg of R134−a at at 24∘C. It is heated up t a supply line at 800kpa and 40∘C. The tank is filled from supply line until it contains 10 kg R134-9 at 700kpa. Find the entropy generation if the surrounding temp is 18∘C ?

Answers

The given parameters are,Therefore, the entropy generation is 5.98 kJ/K.

Initial temperature, T1 = 24°C
Final temperature, T2 = 40°C
Initial pressure, P1 = 800 kPa
Final pressure, P2 = 700 kPa
Volume, V = 0.1 m³
Initial mass, m1 = 4 kg
Final mass, m2 = 10 kg
Surrounding temperature, T_surr = 18°C

Let's find out the entropy generation of the given system.

Formula used:
ΔS_gen = ΔS_system + ΔS_surr

where,
ΔS_gen = Entropy generation
ΔS_system = Entropy change of the system
ΔS_surr = Entropy change of the surrounding

We know, for an isothermal process,

ΔS_system = Q/T

where,
Q = Heat added
T = Temperature

So, the entropy change of the system can be given as,

ΔS_system = Q/T = m*C*ln(T2/T1)

where,
C = Specific heat capacity of R134a

From the steam table, we can obtain the specific heat capacity of R134a.

C = 1.13 kJ/kgK

ΔS_system = m*C*ln(T2/T1)
= (10-4)*1.13*ln(313/297)
= 6.94 kJ/K

Now, let's calculate the entropy change of the surrounding,

ΔS_surr = -Q/T_surr

The heat rejected is equal to the heat added. So, Q = m*H_f + m*C*(T2-T1)

From the steam table, we can obtain the enthalpy of R134a at its initial state.

H_f = 61.93 kJ/kg

Q = m*H_f + m*C*(T2-T1)
= 4*61.93 + 4*1.13*(40-24)
= 275.78 kJ

ΔS_surr = -Q/T_surr
= -275.78/(18+273)
= -0.962 kJ/K

Now, we can calculate the entropy generation as follows,

ΔS_gen = ΔS_system + ΔS_surr
= 6.94 - 0.962
= 5.98 kJ/K

Therefore, the entropy generation is 5.98 kJ/K.
To know more about generation visit:
https://brainly.com/question/12841996

#SPJ11

I need Introduction for
(literature survey-background information)
on this topic
(Electronic Filters with NI myRIO)
need 1000 words

Answers

Introduction, Electronic filters are critical components of electronic circuits. Their primary function is to pass signals with certain frequencies.

While blocking others. Electronic filters with NI my RIO refer to a class of electronic filters that are implemented using National Instruments my RIO hardware and software platform. In this literature survey, we will explore various aspects of electronic filters with NI my RIO.

We will provide background information on electronic filters, including their types, classifications, and applications. We will also discuss the NI my RIO platform and how it can be used to implement electronic filters. Furthermore, we will review some of the latest research and developments in the field of electronic filters with NI myRIO.

To know more about Electronic visit:

https://brainly.com/question/13224410

#SPJ11

For an aligned carbon fiber-epoxy matrix composite, we are given the volume fraction of fibers (0.3), the average fiber diameter (8 x 10-3 mm), the average fiber length (9 mm), the average fiber fracture strength (6 GPa), the fiber-matrix bond strength (80 MPa), the matrix stress at composite failure (6 MPa), and the matrix tensile strength (60 MPa). We are asked to compute the critical length of the fibers.
Critical length of the fibers (mm) (4 digits minimum)=

Answers

The critical length of the fibers is 241.87 mm (4 digits minimum).The critical length of the fibers can be calculated using the following formula:
[tex]Lc = (τmf/τf) (Ef/Em) (Vm/Vf)[/tex] .Volume fraction of fibers, Vf = 0.3

Average fiber diameter, d = 8 x 10-3 mm
Average fiber length, l = 9 mm
Average fiber fracture strength, τf = 6 GPa
Fiber-matrix bond strength, τmf = 80 MPa

Matrix stress at composite failure, τmc = 6 MPa
Matrix tensile strength, Em = 60 MPa
Modulus of elasticity of the fiber, Ef = 235 GPa
The volume fraction of matrix is given by:Vm = 1 - VfVm = 1 - 0.3Vm = 0.7


The modulus of elasticity of the matrix is given by:Em = 60 MPa
The modulus of elasticity of the fiber is given by:Ef = 235 GPa
The fiber-matrix bond strength is given by:[tex]τmf[/tex]= 80 MPa

The average fiber fracture strength is given by:[tex]τf = 6 GPa[/tex]
The matrix stress at composite failure is given by:τmc = 6 MPaThe average fiber length is given by:l = 9 mm
The volume fraction of fibers is given by:Vf = 0.3
The volume fraction of matrix is given by:Vm = 1 - VfVm = 1 - 0.3Vm = 0.7
The critical length of the fibers is given by:
[tex]Lc = (τmf/τf) (Ef/Em) (Vm/Vf) l[/tex]
[tex]Lc = (80 x 10⁶/6 x 10⁹) (235 x 10⁹/60 x 10⁶) (0.7/0.3) 9Lc = 241.87 mm.[/tex]

To know more about diameter visit:-

https://brainly.com/question/32968193

#SPJ11

ii) Write a MATLAB script to compute the zeros of equation (1) using all four expressions. Set a=50,c=80, and b=102k where k=1,2,…,8. Repeat the computations for negative b. Plot your computations for comparison (an example of which is shown over the page), then explain how and where things are going wrong in the equation (2) computations when catastrophic cancellations are first observed. I recommend you write this as a Matlab live script (.mlx format) so that you can present the input and output in your submission (as a single pdf). ax2+bx+c=0 x1=1/2a(−b+√b2−4ac) and x2=1/2a(−b−√b2−4ac)

Answers

The size of the inputs has no bearing on catastrophic cancellation; it holds for both large and small inputs.

Thus, Only the size of the difference and the accuracy of the inputs matter. The same issue would occur if you subtracted.

It is not a characteristic of any specific type of arithmetic like floating-point arithmetic; rather, catastrophic cancellation is fundamental to subtraction, when the inputs are itself approximations.

This means that catastrophic cancellation may occur even if the difference is computed precisely, as in the example above.

There is no rounding error imposed by the floating-point subtraction operation in floating-point arithmetic when the inputs are near enough to compute the floating-point difference precisely using the Sterbenz lemma.

Thus, The size of the inputs has no bearing on catastrophic cancellation; it holds for both large and small inputs.

Learn more about catastrophic cancellation, refer to the link:

https://brainly.com/question/29694143

#SPJ4

For the homogeneous block shown in the image below, if the dimensions are a = 0.4 m, b = 0.2 m, c = 1.7 m, and b = 1.7 m, determine the coordinate y (in m) for its center of mass location, measured in the provided coordinate system. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point.

Answers

To calculate the y-coordinate (in m) for the center of mass location of the homogeneous block in the given coordinate system, we will use the formula: y cm = (1/M) * Σ

As the block is homogeneous, we can assume uniform density and thus divide the total mass by the total volume to get the mass per unit volume. The volume of the block is simply a*b*c, and its mass is equal to its density times its volume.

Therefore,M = ρ * V = ρ * a * b * c where ρ is the density of the block .We can then express the y-coordinate of the center of mass of the block in terms of its dimensions and the position of its bottom-left corner in the given coordinate system:y1 = (a/2)*cos(45°) + (b/2)*sin(45°)y2 = c/2ycm = y1 + y2To find the numerical value of y cm, we need to substitute the given values into the above formulas and perform the necessary calculations:

the homogeneous block in the given coordinate system is approximately equal to 1.076 m.

To know more about  mass location visit:

brainly.com/question/12910071

#SPJ

A ship with a laden displacement of 4000 tons has a TPC of 20 tons. This ship will be loaded in water with a density of 1010 kg/m3 up to the summer loading line. Find the FWA of this ship and calculate how much the mean draft changes when the ship enters sea water.
the course name is ship stability

Answers

When a ship is loaded in water, it is essential to consider the freeboard and draft because these factors significantly affect the ship's stability. The freeboard is the distance between the waterline and the main deck's upper edge, while the draft is the distance between the waterline and the bottom of the ship's keel.

To determine these parameters, we can use the formula FWA = TPC / ρ and the Mean Draft Formula. The given data for the problem is:Laden displacement (D) = 4000 tonsTPC = 20 tons

Water density (ρ) = 1010 kg/m³Summer loading line = 4.5 meters

The formula for FWA is:

FWA = TPC / ρwhere TPC is the tons per centimeter of immersion, and ρ is the water density.FWA = 20 / 1010 = 0.0198 meters

To calculate the mean draft change, we can use the formula:

Mean Draft Change = ((D + W) / A) * FWA

where D is the displacement, W is the weight of added water, A is the waterplane area, and FWA is the freeboard to waterline amidships. As the ship is loaded to the summer loading line, the draft is equal to 4.5 meters. We can assume that the ship was initially empty, and there is no weight added.

Mean Draft Change = ((4000 + 0) / A) * 0.0198The waterplane area (A) can be determined using the formula:

A = (D / ρ) * (T / 100)where T is the draft, and ρ is the water density.A = (4000 / 1010) * (4.5 / 100)A = 18.09 m²Mean Draft Change = (4000 / 1010) * (4.5 / 100) * 0.0198Mean Draft Change = 0.035 meters

Therefore, the freeboard is 0.0198 meters, and the mean draft changes by 0.035 meters when the ship enters seawater.

To know more about essential visit :

https://brainly.com/question/3248441

#SPJ11

A standard air-filled rectangular waveguide has dimensions such that a=2b. If the cut-off frequency for TE 02mode is 12GHz, then find the phase constant for TE 10
​mode at 6GHz inside the waveguide.

Answers

The phase constant for the TE10 mode at 6GHz inside the rectangular waveguide is given by βTE10 = (π * √5 / (2b)) * √0.75.

To find the phase constant for the TE10 mode at 6GHz inside the rectangular waveguide, we can use the formula for the phase constant (β) in terms of the waveguide dimensions and frequency.

The cut-off frequency for the TE02 mode is given as 12GHz, which means that any frequency below this value cannot propagate in that mode. The TE10 mode has a lower cut-off frequency, and we need to determine its phase constant at 6GHz.

In a rectangular waveguide, the phase constant for the TE10 mode (βTE10) is given by:

βTE10 = (2π / λ) * sqrt(1 - (fc / f)^2)

where λ is the wavelength, fc is the cut-off frequency of the TE10 mode, and f is the frequency at which we want to find the phase constant.

Given that a = 2b, the dimensions of the rectangular waveguide are related in a specific ratio.

To find the phase constant for the TE10 mode at 6GHz, we substitute the values into the equation:

f = 6GHz = 6 × 10^9 Hz

fc = 12GHz = 12 × 10^9 Hz

Substituting these values into the equation, we have:

βTE10 = (2π / λ) * sqrt(1 - (12 × 10^9 / 6 × 10^9)^2)

Now, we need to determine the relationship between the wavelength and the dimensions of the waveguide. Since a = 2b, we can express the wavelength λ in terms of b:

λ = (2 / sqrt(5)) * b

Substituting this into the previous equation:

βTE10 = (2π / [(2 / sqrt(5)) * b]) * sqrt(1 - (12 × 10^9 / 6 × 10^9)^2)

Simplifying further:

βTE10 = (π * sqrt(5) / b) * sqrt(1 - 0.25)

Finally, we can substitute the given ratio a = 2b to express the phase constant in terms of a:

βTE10 = (π * sqrt(5) / (2b)) * sqrt(0.75)

βTE10 = (π * √5 / (2b)) * √0.75

To know more about cut-off frequency, visit:

https://brainly.com/question/33308653

#SPJ11

Experiments show that for steady incompressible turbulent flow in a horizontal pipe, the pressure drop Δp depends on several parameters. An engineer assumes the pressure drop is a function of flow velocity V, pipe inner diameter D, pipe length l, pipe roughness ε, fluid density rho, and fluid viscosity µ. 1) Use the Buckingham π theorem to determine the functional dependence of Δp on nondimensional flow similarity parameters. 2) Assume a pipe has a diameter of 10 cm, the transition to turbulence flow occur when V = 0.315 m/s, and µ/rho = 1.50 x 10⁻⁵ m²/s. Calculate the transition Reynolds number, Re_trans
3) Consider with Reynolds number Re > Retrans and fixed values of V, D, l, rho and µ. Does Δp increase or decrease with increase of ε? Explain your answer.

Answers

1. Using the Buckingham π theorem, the functional dependence of Δp on nondimensional flow similarity parameters is Δp = ƒ(π₁, π₂, π₃).

2. The transition Reynolds number ([tex]Re_{trans}[/tex]) is 210,000.

3. For Reynolds number Re > [tex]Re_{trans}[/tex] and fixed values of V, D, l, ρ, and μ, Δp increases with an increase in ε (pipe roughness).

1. To determine the functional dependence of the pressure drop Δp on nondimensional flow similarity parameters, we can use the Buckingham π theorem. This theorem states that when there are n variables and k fundamental dimensions involved, the number of dimensionless π terms (or groups) that can be formed is given by n - k.

In this case, we have six variables: Δp, V, D, l, ε, ρ, and μ. The fundamental dimensions involved are length [L], time [T], and mass [M]. Therefore, the number of dimensionless π terms that can be formed is 6 - 3 = 3.

Let's identify the three dimensionless π terms:

π₁ = (Δp · D) / (ρ · V²)

This term represents the ratio of pressure drop to the dynamic pressure (ρ · V²) multiplied by the pipe diameter D.

π₂ = (μ · V) / (ρ · ε)

This term represents the ratio of viscous forces (μ · V) to the product of fluid density ρ and pipe roughness ε.

π₃ = l / D

This term represents the ratio of pipe length l to its diameter D.

The functional dependence of Δp on nondimensional flow similarity parameters can be written as:

Δp = ƒ(π₁, π₂, π₃)

2. Now let's move on to calculating the transition Reynolds number ([tex]Re_{trans}[/tex]).

[tex]Re_{trans}[/tex]is the Reynolds number at which the flow transitions from laminar to turbulent. It can be calculated using the formula:

[tex]Re_{trans}[/tex]= (ρ · V · D) / μ

Given:

V = 0.315 m/s

D = 10 cm = 0.1 m

μ / ρ = 1.50 x 10⁻⁵ m²/s

Plugging in the values, we can calculate [tex]Re_{trans}[/tex]:

[tex]Re_{trans}[/tex]= (ρ · V · D) / μ

= (ρ · 0.315 m/s · 0.1 m) / (1.50 x 10⁻⁵ m²/s)

Now, we need the values of fluid density (ρ). Since it is not specified, let's assume water at room temperature, which has a density of approximately 1000 kg/m³.

[tex]Re_{trans}[/tex]= (1000 kg/m³ · 0.315 m/s · 0.1 m) / (1.50 x 10⁻⁵ m²/s)

= 210,000

Therefore, the transition Reynolds number ([tex]Re_{trans}[/tex]) is 210,000.

3. Now, let's move on to the third question.

Considering Reynolds number Re > [tex]Re_{trans}[/tex] and fixed values of V, D, l, ρ, and μ, we want to determine whether Δp increases or decreases with an increase in ε (pipe roughness).

In general, for steady incompressible turbulent flow, the pressure drop Δp is expected to increase with an increase in pipe roughness ε. This is because a rough surface creates more resistance to the flow, leading to higher frictional losses and, consequently, a larger pressure drop.

Therefore, in this case, as ε increases while keeping the other variables fixed, Δp is expected to increase.

Learn more about Buckingham π theorem here:

https://brainly.com/question/1601401

#SPJ11

CO₂ (R-0.1889 kJ/kg.K) is compressed through a compressor from 100 kPa and 100 °C to 900 kPa in an internally reversible polytropic process (pvc). The compressor work is nearest (c)-187.0 kJ/kg (2) -155.9 kJ kg, (b) 155.9 kJ/kg, (d)-120 kJ.kg (e) 120 kJ/kg

Answers

The compression work is 120 kJ/kg.(option e)

Initial pressure, p1 = 100 kPa

Initial temperature, T1 = 100 °C

Final pressure, p2 = 900 kPa

Gas constant, R = 0.1889 kJ/kg.K

Mass of the gas, m = 1 kg

Compression work, W = ?

The process is internally reversible polytropic process. Therefore, the equation for the polytropic process can be used to calculate the compression work. Here, the polytropic process is given by:

pVn = constantor, p1V1n = p2V2n

For this problem, the gas is CO2, which is a diatomic gas. Therefore, the gas constant is R/2 = 0.09445 kJ/kg.K

Mean temperature during the process is given by:

Tm = (T1 x (p2/p1)^((n-1)/n)) / (n-1) = (100 x (900/100)^(1.3-1)/1.3) = 311.78 K

Using the ideal gas equation, the volume of the gas at the beginning and the end of the process can be calculated as:

V1 = mR T1 / p1 = 0.1889 x 100 / 100 = 0.1889 m³

V2 = mR Tm / p2 = 0.1889 x 311.78 / 900 = 0.0653 m³

Now, p1V1n = p2V2n, so n = ln(p2/p1) / ln(V1/V2) = ln(900/100) / ln(0.1889/0.0653) = 1.3

The work done on the gas can now be calculated using the polytropic process equation,

W = [(p2V2 - p1V1) / (n-1)] = [(900 x 0.0653 - 100 x 0.1889) / (1.3-1)] = 120 kJ/kg

To know more about compression   visit:

https://brainly.com/question/33226001

#SPJ11

A polycube is a solid made of equal cubes joined face to face. The volume of a complex polycube structure is calculated by multiplying the number of blocks used by the volume of each block. As a check, the volume is then re-determined by submerging the structure in water and measuring the volume of water displaced. This is an example of which of the following: Static calibration Dynamic calibration Concomitant methods Sequential testing

Answers

A polycube is a 3-dimensional figure composed of various equal cubes joined at their faces. The volume of a complex polycube structure is calculated by multiplying the number of cubes utilized by the volume of each cube.

The procedure then involves testing the volume of the polycube structure by immersing it in water and measuring the volume of the water that it displaces. This is an example of dynamic calibration.According to the given information, the procedure of testing the volume of a complex polycube structure by submerging it in water and measuring the volume of water displaced is an example of dynamic calibration.

What is Dynamic Calibration?Dynamic calibration is a technique for calibrating instruments that uses varying inputs over a range of values. The dynamic calibration method's main goal is to provide time-dependent responses of the output quantities as compared to the input variations. When measuring time-dependent signals, dynamic calibration is necessary because it guarantees that the instrument under test's response is accurate in both the time and magnitude domains.

To know more about cubes visit:

https://brainly.com/question/29372770

#SPJ11

Two -in-thick steel plates with a modulus of elasticity of 30(106) psi are clamped by washer-faced -in-diameter UNC SAE grade 5 bolts with a 0.095-in-thick washer under the nut. Find the member spring rate km using the method of conical frusta, and compare the result with the finite element analysis (FEA) curve-fit method of Wileman et al.

Answers

The spring rate found using the method of conical frusta is slightly higher than that obtained using the Finite element analysis (FEA) curve-fit method of Wileman et al.

The spring rate using this method is found to be 1.1 x 10⁶ psi.

Given Information:

           Thickness of steel plates, t = 2 in

           Diameter of UNC SAE grade 5 bolts, d = 0.75 in

           Thickness of washer, e = 0.095 in

           Modulus of Elasticity, E = 30 × 10⁶ psi

Formula:

              Member spring rate km = 2.1 x 10⁶ (d/t)²

            Where, Member spring rate km

Method of conical frusta:

                                     =2.1 x 10⁶ (d/t)²

Comparison method

Finite element analysis (FEA) curve-fit method of Wileman et al.

Calculation:

The member spring rate is given by

                                                km = 2.1 x 10⁶ (d/t)²

For given steel plates,t = 2 in

                                   d = 0.75 in

Therefore,

                              km = 2.1 x 10⁶ (d/t)²

                        (0.75/2)²= 1.11375 x 10⁶ psi

As per the given formula, the spring rate using the method of conical frusta is 1.11375 x 10⁶ psi.

The comparison method is the Finite element analysis (FEA) curve-fit method of Wileman et al.

The spring rate using this method is found to be 1.1 x 10⁶ psi.

To know more about Modulus of Elasticity, visit:

https://brainly.com/question/30756002

#SPJ11

Problems 1. Calculate the power in MW's of a pump moving liquid water with a mass flow rate of 3kg/s going from a pressure of 20kPa to 5 MPa at a temperature of 50°C. (10 points) Refer to page 449 for eq-n 8.7b and refer to example 8.1 for help

Answers

The power of the pump in MW is 4.509 MW. The power required by the pump can be calculated using the following formula:

`P = Δp * Q / η`

where `P` is the power required in watts, `Δp` is the pressure difference in Pascals, `Q` is the flow rate in cubic meters per second, and `η` is the pump efficiency.

From the problem,

- The mass flow rate of water, `m` = 3 kg/s

- The initial pressure of the water, `p1` = 20 kPa (converted to Pascals, `Pa`)

- The final pressure of the water, `p2` = 5 MPa (converted to Pascals, `Pa`)

- The temperature of the water, `T` = 50°C

First, we need to calculate the specific volume, `v`, of water at the given conditions. Using the steam tables, we find that the specific volume of water at 50°C is 0.001041 m³/kg.

Next, we can calculate the volume flow rate, `Qv`, from the mass flow rate and specific volume:

`Qv = m / v = 3 / 0.001041 = 2883.5 m³/s`

We can then convert the volume flow rate to cubic meters per second:

`Q = Qv / 1000 = 2.8835 m³/s`

The pressure difference, `Δp`, is given by:

`Δp = p2 - p1 = 5e6 - 20e3 = 4.98e6 Pa`

According to Example 8.1, we can assume the pump efficiency `η` to be `0.7`.

Substituting the values, we get:

`P = Δp * Q / η = 4.98e6 * 2.8835 / 0.7 = 20.632 MW`

Therefore, the power required by the pump is `20.632 MW`.

However, this is the power required by the pump. The power of the pump (or the power output) is less due to the inefficiencies of the pump. Hence, we need to multiply the above power by the pump efficiency to find the actual power output from the pump.

Therefore, the power output of the pump is:

`Power output = Pump efficiency * Power required = 0.7 * 20.632 MW = 4.509 MW`

The power output of the pump moving liquid water with a mass flow rate of 3 kg/s, from a pressure of 20 kPa to 5 MPa at 50°C, is 4.509 MW.

To know more about power, visit:

https://brainly.com/question/1634438

#SPJ11

1) It is desired to design a 0.5 x 0.5 in. square key to fit a 2 in. diameter shaft. 50 hp of power is transmitted at 600 rpm. The key will be made of SAE 1018 steel with a yield strength of 54 ksi. Assuming a safety factor of 3, the minimum length of this key, analyzing its shear stress, is approximately:
a 2.5 in.
b 1.2 in
c 1.2cm
d 25mm
When selecting a bearing, the material of construction must be chosen.
a True
b False

Answers

The minimum length of the key, analyzing its shear stress, is  approximately 1.2 inches. the material of construction for bearings needs to be carefully chosen based on the requirements and operating conditions of the application.  a) True.

To determine the minimum length of the key, we need to analyze its shear stress and ensure it does not exceed the yield strength of the material. The shear stress on the key can be calculated using the formula:

τ = (T * K) / (d * L)

Where:

τ = Shear stress on the key

T = Torque transmitted (in lb-in)

K = Shear stress concentration factor (assumed as 1.5 for square keys)

d = Diameter of the shaft (in inches)

L = Length of the key (in inches)

Given:

T = 50 hp = 50 * 550 lb-in/s = 27500 lb-in (1 horsepower = 550 lb-in/s)

d = 2 in.

We can rearrange the equation to solve for L:

L = (T * K) / (τ * d)

To ensure a safety factor of 3, the maximum allowable shear stress can be calculated as:

τ_max = Yield strength / Safety factor = 54 ksi / 3 = 18 ksi

Substituting the given values into the equation:

L = (27500 lb-in * 1.5) / (18 ksi * 2 in.) ≈ 1.2 in.

Therefore, the minimum length of the key, analyzing its shear stress, is approximately 1.2 inches.

Answer: b) 1.2 in.

Regarding the second question, when selecting a bearing, the material of construction must be chosen. This statement is true. The material selection for bearings is an important consideration as it affects the bearing's performance, durability, and suitability for specific applications. Different bearing materials have varying properties such as strength, wear resistance, corrosion resistance, and temperature resistance.

Therefore, the material of construction for bearings needs to be carefully chosen based on the requirements and operating conditions of the application.

Answer: a) True.

To learn more about   steel transmission click here:

brainly.com/question/23413124

#SPJ11

Other Questions
(10 marks) (c) a The part-time workers in a construction company are paid on average $6.50 per hour with a standard deviation of $1.30 per hour. Assume the hourly pay follows a Normal Distribution. What percentage of the employees receive hourly pay between $4.50 and $8.50? (15 marks) Round the answer to 4 decimals places. Which stage of the cell cycle (G1, S, G2, M, or G0) are each of the cells described below_____ DNA polymerase is active in this cell._____ This is a new daughter cell_____ This cell has partially condensed chromosomes_____ The cell is a mature functioning blood cell that will not divide again_____ The chromosomes in this cell are replicated but uncondensed_____ In this cell, the chromosomes are being pulled towards the MTOCs (microtubule organizers). Determine the gauge pressure in psf in the the Specific center of the pipe if weight of water is (2-4 lb/ft) a = o psf b = 31.2 psf C= 65.2 psf D. 103 psf 2. Use the Golden-Section search to find the minimum of the function f(x)=2x +6x + 2x using the initial interval of (x, = -2, x =1). Show two iterations (calculating the optimal point X twice). opt Theprimary role of most lens proteins is to function as Select one:a . vascular endothelial growth factor receptorsb . antioxidants .c. crystallinsd . enzymes A genetic counsellor informs a phenotypically normal woman that she has a 45, XX karyotype that involves a structural abnormality with chromosome 21. Her husband has no abnormalities. Assume that all segregation patterns occur with equal frequency. h Genetiese raadgewer lig h fenotipiese normale vrou in dat sy h 45, XX kariotipe het wat h strukturele abnormaliteit van chromosoom 21 behels. Haar man het geen abnormaliteite nie. Aanvaar dat alle segregasie patrone voorkom in gelyke frekwensie What chromosomal abnormality is most likely observed in this woman? Watter chromosomale abnormaliteit word heel moontlik by die vrou waargeneem? Select one: a. Monosomy Monosomie b. Non-reciprocal translocation Nie-resiproke translokasie c. intercalary deletion Interkalere delesie d. Paracentric inversion Parasentriese inversie Duplication Duplikasie Trisomy Trisomie 9 Pericentric inversion Perisentriese inversie h. Polyploidy Poliploledie Robertsonian translocation Robertsoniese tran What is the likelihood of this woman having a miscarriage? (give percentage value, round to two decimals) Wat is die waarskynlikheid dat hierdie vrou h miskraam sal h? (gee persentasie getal, rond tot twee desimale) Answer: If she carries to full term, what is the likelihood that the child is phenotypically normal? (give percentage value, round to two decimals) Indien sy tot vol termyn dra, wat is die waarskynlikheid dat die kind fenotiples normaal sal wees? (gee persentasie getal rond tot twee desimale) Answer: What is the likelihood of a phenotypically normal child having the same chromosomal abnormality as his or her mother? (give percentage value, round to two decimals) Wat is die waarskynlikheid dat h fenotipiese normale kind dieselfde chromosoom abnormaliteit sal h as sy of haar ma? (gee persentasie getal rond tot twee desimale) Answer: If she carnes to full term, what is the likelihood that the child will have Down's Syndrome? (give percentage value, round to two decimals) Indien sy tot vol termyn dra, wat is die waarskynlikheid dat die kind Down Sindroom sal he? (gee persentasie getal rond tot twee desimale) Answer: What is the major product of photosystem Il and the cytochromecomplex?A) ATPB) SugarC) Carbon DioxideD) NADPHE) Rubisco 1) Which element or Ion will have the smallest ionization energy based on periodic trends? (4 pts) a. Cs b. Ba2+ c. F d. K e. K+ 2) Which set of quantum numbers correctly describes a 5p electron? (4 p please answer all parts8. The factor-price equalization theory and transportation costs Which of the foliowing statements about the factor-price equalization theory and the effects of transportation costs are correct? Check A Z load circuit consists of a 1 k resistor that is parallel with a 200 F capacitor at = 200 rad/s. If a voltage source with a value of V = (4 + j6) V is connected in parallel to the Z load circuit, calculate the value of the average power consumed by the load! If you know that in a certain population, the total heterozygous genotype frequency is 0.34 and the homozygous recessive genotype frequency is 0.11. What is the frequency of homozygous dominant genotype in the same population? (Show all work) (/1) Verify that y1 and y2 are solutions to the differential equation. Then find a particular solution of the form y(x) = c1y1 + c2y2 that satisfies the given initial conditions:y'' + y' - 6y; y1 = e; y2 = e; y(0) = 7; y'(0) = -1 A chemist dissolves 12.4 mg of a non-ionic unknown sample intosufficient water to make 25.00 mL solution. The solution is foundto exert 43.2 torr osmotic pressure at 20.0C. What is the molarmass QUESTION 8 A chemist dissolves 12.4 mg of a non-ionic unknown sample into sufficient water to make 25.00 mL solution. The solution is found to exert 43.2 torr osmotic pressure at 20.0C. What is the Jerome wants to invest $20,000 as part of his retirement plan. He can invest the money at 5.1% simple interest for 32 yr, or he can invest at 3.7% interest compounded continuously for 32yr. Which investment plan results in more total interest? 3.7% interest compounded continuously 5.1% simple interest maintaining a culturally diverse staff and working with a culturally diverse patient population is an important function of a nurse manager who works in the hospital of a large medical center. on your palliative care unit, you have recently received complaints from families about ineffective pain management for their family members and you determine this occurs primarily when certain nurses are working. what approach might you take to resolve the concerns of the families, patients, and potentially, the staff? Oil with density of 920 kg/m and a dynamic viscosity of 0.06 N.s/mis pumped with a volumetric flow rate 0.012 m/s through a horizontal pipeline with a diameter of 150 mm. (a) Calculate the velocity of the oil within the pipe. V = 0.679 m^3/s (b) Calculate the Reynolds number of the oil flow within the pipe and determine whether the flow is laminar or turbulent. Re = 1561 Since Re < 2000 then flow is Laminar (c) Calculate the head loss in 1000m length of the pipeline in metres h = 6.42 m (d) Determine the power required from the pump per 1000m length of the pipeline in kW Power = 0.695 kw Note Assume the acceleration of gravity as g = 9.81 m/sec^2 An object with mass 5 kg is launched at a thin steel sheet, fixed to the ground, of thickness 0.01 m. The object impacts the the steel sheet with an 24 effective cross-sectional area of 10-3 m. Steel's Young's modulus, yield strength, and ultimate strength are given by E = 200 x 10 N/m Sy = 250 10 N/m Su = 600 x 106 N/m respectively. Suppose that the object impacts the steel sheet in a com- pletely inelastic collision over an impact time of 0.2 s. (20 points) (a) How quickly must the object be moving to cause a strain of 0.1%? (b) How quickly must the object be moving upon impact in order to permanently deform the steel sheet? (c) How quickly must the object be moving to rupture the steel sheet? Assume that transcription of a gene in a cell has just occurred. Which of the following would not be expected to be true at this time? The nucleotide sequence of the DNA for the gene has been altered in that all of the T nucleotides have been replaced with U nucleotides. A new, single-stranded polynucleotide molecule containing G, A, U, and C nucleotides has been generated. The DNA in the region of the gene has been restored to its normal double-stranded conformation. An mRNA molecule now exists that carries the information content corresponding to the gene. The gene may, if appropriate at this time, be transcribed again. Compare and Contrast Cross-Functional sourcing team and traditional procurement team? Illustrate with Two (2) examples to support your answers. Critically discuss the relationship between your choice of procurement team and achievement of companys performances Describe the process of double fertilization and seed formationin angiosperms.