Answer: 35 scoops total!
Step-by-step explanation: FIrst, you would add the number of scoops in total which is 3+1+1=5 scoops.
Now you would do 7*5=35
Therefore, Theo uses 35 scoops in all. I hope this helps you!
An old campfire is uncovered during an archaeological dig. Its charcoal is found to contain less than 1/1000 the normal amount of ^{14}\text{C} 14 C. Estimate the minimum age of the charcoal, noting that
An old campfire is uncovered during an archaeological dig. Its charcoal is found to contain less than 1/1000 the normal amount of [tex]^{14}\text{C}[/tex] . Estimate the minimum age of the charcoal, noting that [tex]2^{10} = 1024[/tex]
Answer:
57300 years
Step-by-step explanation:
Using the relation of an half-life time in relation to fraction which can be expressed as:
[tex]\dfrac{N}{N_o} = (\dfrac{1}{2})^{\frac{t}{t_{1/2}}[/tex]
here;
N represents the present atom
[tex]N_o[/tex] represents the initial atom
t represents the time
[tex]t_{1/2}[/tex] represents the half - life
Given that:
Its charcoal is found to contain less than 1/1000 the normal amount of [tex]^{14}\text{C}[/tex] .
Then ;
[tex]\dfrac{N}{N_o} = \dfrac{1}{1000}[/tex]
However; we are to estimate the minimum age of the charcoal, noting that [tex]2^{10} = 1024[/tex]
so noting that [tex]2^{10} = 1024[/tex], then:
[tex]\dfrac{1}{1000}> \dfrac{1}{1024}[/tex]
[tex]\dfrac{1}{1000}> \dfrac{1}{2^{10}}[/tex]
[tex]\dfrac{1}{1000}> (\dfrac{1}{2})^{10}[/tex]
If
[tex]\dfrac{N}{N_o} = \dfrac{1}{1000}[/tex]
Then
[tex]\dfrac{N}{N_o} > (\dfrac{1}{2})^{10}[/tex]
Therefore, the estimate of the minimum time needed is 10 half-life time.
For [tex]^{14}\text{C}[/tex] , the normal half-life time = 5730 years
As such , the estimate of the minimum age of the charcoal = 5730 years × 10
= 57300 years
An oblique cone has a radius of 5 units and a height of 9 units. What is the approximate volume of the oblique cone? Use π ≈ 3.14 and round to the nearest tenth. 117.8 cubic units 141.3 cubic units 235.5 cubic units 282.6 cubic units
Answer:
235.6 units^3
Step-by-step explanation:
The formula for the volume of the oblique cone is the same as for the volume of a right circular cone: V = (1/3)(base area)(height).
Here that comes to V = (1/3)(π)(5 units)^2*(9 units), or
V = 75π units^3, or approximately 235.6 units^3
Answer:
235.5 cubic units
Step-by-step explanation:
[tex] {4}^{3} [/tex]
evaluate this expression
Answer:
64
Step-by-step explanation:
Answer:
64
Step-by-step explanation:
4^3
= 4 * 4 * 4
= 16 * 4
= 64
An economist is interested in studying the spending habits of consumers in a particular region. The population standard deviation is known to be $1,000. A random sample of 50 individuals resulted in an average expense of $15,000. What is the width of the 99% confidence interval for the mean of expense? a. 364.28 b. 728.55 c. 329.00 d. 657.99
Answer:
The width is [tex]w = \$ 729.7[/tex]
Step-by-step explanation:
From the question we are told that
The population standard deviation is [tex]\sigma = \% 1,000[/tex]
The sample size is [tex]n = 50[/tex]
The sample mean is [tex]\= x = \$ 15,000[/tex]
Given that the confidence level is 99% then the level of significance is mathematically represented as
[tex]\alpha = 100 - 99[/tex]
=> [tex]\alpha = 1\%[/tex]
=> [tex]\alpha = 0.01[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.01 }{2} } = 2.58[/tex]
Generally margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 2.58 * \frac{1000 }{\sqrt{50} }[/tex]
[tex]E = 2.58 * \frac{1000 }{\sqrt{50} }[/tex]
[tex]E = 364.9[/tex]
The width of the 99% confidence interval is mathematically evaluated as
[tex]w = 2 * E[/tex]
substituting values
[tex]w = 2 * 364.9[/tex]
[tex]w = \$ 729.7[/tex]
Yo help me real quick?
Answer:
1,2 and 6
Step-by-step explanation:
pie symbol
2/3
0.333333....
PLEASE HELP ASAP WILL GIVE BRAINLIEST
If “n” is a positive integer divisible by 3 and n is less than or equal to 44, then what is the highest possible value of n?
Answer:
Step-by-step explanation:
positive integer divisible by 3 includes
3,6,9,12,15,18,21,24,27,30,33,36,39,42,45...
less than highest possible value is 42
It takes amy 8 minutes to mow 1/6 of her backyard. At that rate how many more minutes will it take her to finish mowing her backyard
Answer:
40 minutes
Step-by-step explanation:
If it takes her 8 minutes to mow 1/6 of it, we can find the total amount of time it will take by multiplying 8 by 6, since 1/6 times 6 is 1 (1 represents the whole lawn mowed)
8(6) = 48
The question asks for how many more minutes it will take, so subtract 48 by 8.
48 - 8 = 40
= 40 minutes
Answer:
40 minutes
Step-by-step explanation:
We can use ratios to solve
8 minutes x minutes
------------------- = ----------------
1/6 yard 1 yard
Using cross products
8 * 1 = 1/6 x
Multiply each side by 6
8*6 = 1/6 * x * 6
48 = x
48 minutes total
She has already done 8 minutes
48-8 = 40 minutes
A project has an initial cost of $40,000, expected net cash inflows of $10,000 per year for 8 years, and a cost of capital of 14%. What is the project's NPV? (Hint: Begin by constructing a time line.) Do not round intermediate calculations. Round your answer to the nearest cent.
Answer:
50k
Step-by-step explanation:
Ayudaaaaaaaa plorafacvor
4/24,7/5,5/3,3/5 espero hallude
In a simple regression analysis with age as the only explanatory variable, the effects of other factors, such as faminc, are
Answer:
In the error term.
Step-by-step explanation:
A simple linear regression is a regression that has only one explanatory variable. It tries to establish the existing relationship between the variable of interest (dependent variable) and the explanatory variable (independent variable).
Since age is the only explanatory variable, other variables such as faminc would be in the error term. The error term exists because the explanatory variable is never able to on its own to predict the dependent variable perfectly.
Which statements about the dilation are true? Check all that apply. Triangle X prime Y prime Z prime. Point X prime is 2 units from the center of dilation C and point Z prime is 3 units from the center of dilation. Triangle X Y Z. Point X is 5 units from point C and point Z is 7.5 units from point C. The center of dilation is point C. It is a reduction. It is an enlargement. The scale factor is 2.5. The scale factor is Two-fifths.
Answer:
I only know two right answers.
A: The center of dilation is point C.
C: It is an enlargement.
E: The scale factor is 2/5.
Step-by-step explanation:
These two answers are correct because When you look in the center you see a C.
You tell if it is a reduction because the pre image is small but the image is big.
The center of dilation is point C.
It is an enlargement.
The scale factor is 2/5
The correct options are D, F, H.
What is dilation?Resizing an item uses a transformation called dilation. Dilation is used to enlarge or shorten the structures. The result of this transformation is an image with the same shape as the original. However, there is a variation in the shape's size. The initial form should be stretched or contracted during a dilatation.
Given:
The transformation of the figure is dilation.
The figure is given in the attached image.
From the diagram:
The center of dilation is point C.
It is an enlargement.
The scale factor is 2/5
Therefore, all the correct statements are given above.
To learn more about the dilation in geometry;
https://brainly.com/question/10713409
#SPJ6
5. During a national debate on changes to health care, a cable news service performs an opinion poll of 500 small business owners. It shows that 65% of small-business owners do not approve of health care changes. Develop a 95% confidence interval for the proportion opposing health care changes. Use 4 decimal places.
Answer:
The 95% confidence interval for the proportion opposing health care changes is (0.6082, 0.6918).
Step-by-step explanation:
The (1 - α)% confidence interval for the population proportion is:
[tex]CI=\hat p\pm z_{\alpha/2}\cdot\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
The information provided is:
[tex]\hat p=0.65\\n=500\\\text{Confidence level}=95\%[/tex]
The critical value of z for 95% confidence level is:
[tex]z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]
*Use a z-table.
Compute the 95% confidence interval for the proportion opposing health care changes as follows:
[tex]CI=\hat p\pm z_{\alpha/2}\cdot\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
[tex]=0.65\pm 1.96\sqrt{\frac{0.65(1-0.65)}{500}}\\\\=0.65\pm 0.04181\\\\=(0.60819, 0.69181)\\\\\approx (0.6082, 0.6918)[/tex]
Thus, the 95% confidence interval for the proportion opposing health care changes is (0.6082, 0.6918).
The set of natural numbers is: infinite finite
Answer:
A natural number is a number that occurs commonly and obviously in nature. As such, it is a whole, non-negative number.
Step-by-step explanation:
Answer:
Finite
Step-by-step explanation:
please give me brainliest
What is the value of x to the nearest tenth?
Step-by-step explanation:
Hello!!!
Let's workout with this figure.
BC is a chord, O is the centre and OA is the perpendicular bisector.
AB = 1/2 of BC (according to circle's theorem)
so, A B = 1/2 × 25.6
Therefore, the measure of AB is 12.8.
now, let's have a small work with triangle AOB.
as it is a Right angled triangle, taking angle B as refrence angle we get,
p=x
b=12.8
h= OB = 16 (it is also a radius.)
now,
by Pythagoras relation we get,
[tex]p = \sqrt{ {h}^{2} - {b}^{2} } [/tex]
or, x = root 16^2- 12.8 ^2
by simplification, we get;
the measure of x is 9.6.
Therefore, the value of x is 9.6.
Hope it helps...
Which expression represents the perimeter of the rectangle above? . 6x + 3. 10x + 6. 8x² + 6x. 12x + 6
There is no any image of rectangle
Example 2.20
Solution
After 7% discount, Faizal get RM1,930 from a bank. He then promised to pay the bank RM2,000
after x days. Determine the value of x.
Kaspersk
Th
The period of days (value of x) for which Faizal promised to pay the bank RM 2,000 after getting 7% discounted present value of RM 1,930 is 180 days.
The value of x is the period of days (number of days) that the loan from the bank will last before Faizal, who received RM 1,930 discounted at 7%, would repay the bank the principal and interest of RM 2,000.
This implies that Faizal is paying an interest of RM 70 (RM 2,000 - RM 1,930), since he borrowed RM 1,930 and will repay RM 2,000.
Data and Calculations:
Present value of loan received = RM 1,930
Discount rate per year = 7%
Future value of the loan to be repaid to the bank = RM 2,000
Interest expense for one year based on 7% = RM 140 (RM 2,000 x 7%)
Interest expense for 180 days or 6 months = RM 70 (RM 2,000 - RM 1,930) or (RM 2,000 x 7%) x 180/360
Interest expense that equals RM 70 will be half of a year or 180 days (RM 140 * 180/360)
Thus, the period of days (x) that will lapse for Faizal to repay the bank is 180 days or half of a year (6 months).
Learn more about time period of a loan here: https://brainly.com/question/19118285
Joe drove 315 miles on 15 gallons of gas. What is his mileage in miles/gallon?
miles/gallon
Answer:
21 miles/gallon
Step-by-step explanation:
To find his mileage in miles/gallon, divide the number of miles by the number of gallons.
315/15
= 21
= 21 miles/gallon
Answer:
21 miles / gallon
Step-by-step explanation:
Take the miles and divide by the gallons
315 miles / 15 gallons
21 miles / gallon
Evaluate the expression you got in part f for d = 5.
Answer:
2(8-d)
2(8-5) (substituting d=5)
2(3)
=6
Step-by-step explanation:
The required expression is f = 6 for d =5 in the for the expression f = 2 (8 -d).
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The expression,
f = 2 (8 - d) (1)
To evaluate the expression for d = 5
Substitute the value of d = 5 in equation (1),
f = 2 (8 - 5)
f = 2 x 3
f = 6
The required expression is f=6.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
One week Leslie earned a total of $425. of that amount $300 was tips
if she worked a 40-hour week, what was the hourly rate she received?
a. $1.88
b. $3.13
c. $8
d. $10.63
Answer:
Step-by-step explanation:
$425-$300 = $125
$125/(40 hr) = $3.125/hr ≈ $3.13/hr
?
6.2
Divided by 1/2
Answer:
The answer is 3.1
[tex]6.2 \div \frac{1}{2} = 3.1[/tex]
If we were to convert it into a **FRACTION** the answer would be : 31/10.
And that i an improper fraction, but as a **MIXED NUMBER** : [tex]3 \frac{1}{10}[/tex]
All answers would be : 3.1 , 31/10 and 3 1/10
Answer:
0.5167
Step-by-step explanation:
6.2/12 first rewrite 6.2 as an improper fraction or 36/5 then multiply by 1/12 to get the solution of 0.5167.
The following 3 points are on a parabola defining the edge of a ski.
(-4, 1), (-2, 0.94), (0,1)
The general form for the equation of a parabola is:
Ax^2 + Bx + C= y
Required:
a. Use the x- and y-values of 1 of the points to build a linear equation with 3 variables: A, B, and C.
b. Record your equation here. Repeat this process with 1 of the other 2 points to build a 2nd linear equation.
c. Record your equation here. Repeat this process with the other point to build a 3rd equation.
d. Record your equation here. Build a matrix equation that represents this system of equations.
e. Record your matrix equation here. Use a graphing calculator or other graphing utility to find the inverse of the coefficient matrix.
f. Record your result here. Use the inverse matrix to solve the system of equations. Record the equation of the parabola here.
a. The linear equation for the first point (-4,1) is 16A-4B+C=1
b. The linear equation for the second point (-2, 0.94) is 4A-2B+C=0.94
c. The linear equation for the third point (0,1) is 0A+0B+C=1
d. The matrix equation looks like this:
[tex]\left[\begin{array}{ccc}16&-4&1\\4&-2&1\\0&0&1\end{array}\right]*\left[\begin{array}{c}A\\B\\C\end{array}\right]=\left[\begin{array}{c}1\\0.94\\1\end{array}\right][/tex]
e. The inverse of the coefficient matrix looks like this:
[tex]A^{-1}=\left[\begin{array}{ccc}\frac{1}{8}&-\frac{1}{4}&\frac{1}{8}\\\frac{1}{4}&-1&\frac{3}{4}\\0&0&1\end{array}\right][/tex]
f. The equation of the parabola is: [tex]\frac{3}{200}x^{2}+\frac{3}{50}x+1=y[/tex]
a. In order to build a linear equation from the given points, we need to substitute them into the general form of the equation.
Let's take the first point (-4,1). When substituting it into the general form of the quadratic equation we end up with:
[tex](-4)^{2}A+(-4)B+C=1[/tex]
which yields:
[tex]16A-4B+C=1[/tex]
b. Let's take the second point (-2,0.94). When substituting it into the general form of the quadratic equation we end up with:
[tex](-2)^{2}A+(-2)B+C=0.94[/tex]
which yields:
[tex]4A-2B+C=0.94[/tex]
c. Let's take the third point (0,1). When substituting it into the general form of the quadratic equation we end up with:
[tex](0)^{2}A+(0)B+C=1[/tex]
which yields:
[tex]0A+0B+C=1[/tex]
d. A matrix equation consists on three matrices. The first matrix contains the coefficients (this is the numbers on the left side of the linear equations). Make sure to write them in the right order, this is, the numbers next to the A's should go on the first column, the numbers next to the B's should go on the second column and the numbers next to the C's should go on the third column.
The equations are the following:
16A-4B+C=1
4A-2B+C=0.94
0A+0B+C=1
So the coefficient matrix looks like this:
[tex]\left[\begin{array}{ccc}16&-4&1\\4&-2&1\\0&0&1\end{array}\right][/tex]
Next we have the matrix that has the variables, in this case our variables are the letters A, B and C. So the matrix looks like this:
[tex]\left[\begin{array}{c}A\\B\\C\end{array}\right][/tex]
and finally the matrix with the answers to the equations, in this case 1, 0.94 and 1:
[tex]\left[\begin{array}{c}1\\0.94\\1\end{array}\right][/tex]
so if we put it all together we end up with the following matrix equation:
[tex]\left[\begin{array}{ccc}16&-4&1\\4&-2&1\\0&0&1\end{array}\right]*\left[\begin{array}{c}A\\B\\C\end{array}\right]=\left[\begin{array}{c}1\\0.94\\1\end{array}\right][/tex]
e. When inputing the coefficient matrix in our graphing calculator we end up with the following inverse matrix:
[tex]A^{-1}=\left[\begin{array}{ccc}\frac{1}{8}&-\frac{1}{4}&\frac{1}{8}\\\frac{1}{4}&-1&\frac{3}{4}\\0&0&1\end{array}\right][/tex]
Inputing matrices and calculating their inverses depends on the model of a calculator you are using. You can refer to the user's manual on how to do that.
f. Our matrix equation has the following general form:
AX=B
where:
A=Coefficient matrix
X=Variables matrix
B= Answers matrix
In order to solve this type of equations, we can make use of the inverse of the coefficient matrix to end up with an equation that looks like this:
[tex]X=A^{-1}B[/tex]
Be careful with the order in which you are doing the multiplication, if A and B change places, then the multiplication will not work and you will not get the answer you need. So when solving this equation we get:
[tex]\left[\begin{array}{c}A\\B\\C\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{8}&-\frac{1}{4}&\frac{1}{8}\\\frac{1}{4}&-1&\frac{3}{4}\\0&0&1\end{array}\right]*\left[\begin{array}{c}1\\\frac{47}{50}\\1\end{array}\right][/tex]
(Notice that I changed 0.94 for the fraction 47/50 you can get this number by dividing 94/100 and simplifying the fraction)
So, in order to do the multiplication, we need to multiply each row of the coefficient matrix by the answer matrix and add the results. Like this:
[tex]\frac{1}{8}*1+(-\frac{1}{4})(\frac{47}{50})+\frac{1}{8}*1[/tex]
[tex]\frac{1}{8}-\frac{47}{200}+\frac{1}{8}=\frac{3}{200}[/tex]
So the first number for the answer matrix is [tex]\frac{3}{200}[/tex]
[tex]\frac{1}{4}*1+(-1)(\frac{47}{50})+\frac{3}{4}*1[/tex]
[tex]\frac{1}{4}-\frac{47}{50}+\frac{3}{4}=\frac{3}{50}[/tex]
So the second number for the answer matrix is [tex]\frac{3}{50}[/tex]
[tex]0*1+0(\frac{47}{50})+1*1[/tex]
[tex]0+0+1=1[/tex]
So the third number for the answer matrix is 1
In the end, the matrix equation has the following answer.
[tex]\left[\begin{array}{c}A\\B\\C\end{array}\right]=\left[\begin{array}{c}\frac{3}{200}\\\frac{3}{50}\\1\end{array}\right][/tex]
which means that:
[tex]A=\frac{3}{200}[/tex]
[tex]B=\frac{3}{50}[/tex]
and C=1
so, when substituting these answers in the general form of the equation of the parabola we get:
[tex]Ax^{2}+Bx+C=y[/tex]
[tex]\frac{3}{200}x^{2}+\frac{3}{50}x+1=y[/tex]
For further information, you can go to the following link:
https://brainly.com/question/12628757?referrer=searchResults
PLZ HELPPPPPP.
A store sells books for $12 each. In the proportional relationship between x, the number of books purchased, and y, the cost per books in dollars" to "y, the total cost of the books in dollars, the constant of proportionality is 12. Which equation shows the relationship between x and y?
A. y=12/x
B. y=12x
C. y=12+x
D. y=12−x
Answer:
B. y=12x
Step-by-step explanation:
x = # of books bought
so then y=12x
Find the final amount in each of these retirement accounts, in which the rate
of return on the account and the regular contribution change over time,
(a) $400 per month invested at 4%, compounded monthly, for 10 years, then
$600 per month invested at 6%, compounded monthly, for 10 years
(b) $1,000 per quarter invested at 4.42%, compounded quarterly, for 10 years,
then $1,500 per quarter invested at 7.4%, compounded quarterly, for 15
years
Answer:
Compound Interest: The future value (FV) of an investment of present value (PV) dollars earning interest at an annual rate of r compounded m times per year for a period of t years is:
FV = PV(1 + r/m)mt
or
FV = PV(1 + i)n
where i = r/m is the interest per compounding period and n = mt is the number of compounding periods.
One may solve for the present value PV to obtain:
PV = FV/(1 + r/m)mt
Numerical Example: For 4-year investment of $20,000 earning 8.5% per year, with interest re-invested each month, the future value is
FV = PV(1 + r/m)mt = 20,000(1 + 0.085/12)(12)(4) = $28,065.30
Notice that the interest earned is $28,065.30 - $20,000 = $8,065.30 -- considerably more than the corresponding simple interest.
Effective Interest Rate: If money is invested at an annual rate r, compounded m times per year, the effective interest rate is:
reff = (1 + r/m)m - 1.
This is the interest rate that would give the same yield if compounded only once per year. In this context r is also called the nominal rate, and is often denoted as rnom.
Numerical Example: A CD paying 9.8% compounded monthly has a nominal rate of rnom = 0.098, and an effective rate of:
r eff =(1 + rnom /m)m = (1 + 0.098/12)12 - 1 = 0.1025.
Thus, we get an effective interest rate of 10.25%, since the compounding makes the CD paying 9.8% compounded monthly really pay 10.25% interest over the course of the year.
Mortgage Payments Components: Let where P = principal, r = interest rate per period, n = number of periods, k = number of payments, R = monthly payment, and D = debt balance after K payments, then
R = P × r / [1 - (1 + r)-n]
and
D = P × (1 + r)k - R × [(1 + r)k - 1)/r]
Accelerating Mortgage Payments Components: Suppose one decides to pay more than the monthly payment, the question is how many months will it take until the mortgage is paid off? The answer is, the rounded-up, where:
n = log[x / (x – P × r)] / log (1 + r)
where Log is the logarithm in any base, say 10, or e.
Future Value (FV) of an Annuity Components: Ler where R = payment, r = rate of interest, and n = number of payments, then
FV = [ R(1 + r)n - 1 ] / r
Future Value for an Increasing Annuity: It is an increasing annuity is an investment that is earning interest, and into which regular payments of a fixed amount are made. Suppose one makes a payment of R at the end of each compounding period into an investment with a present value of PV, paying interest at an annual rate of r compounded m times per year, then the future value after t years will be
FV = PV(1 + i)n + [ R ( (1 + i)n - 1 ) ] / i
where i = r/m is the interest paid each period and n = m × t is the total number of periods.
Numerical Example: You deposit $100 per month into an account that now contains $5,000 and earns 5% interest per year compounded monthly. After 10 years, the amount of money in the account is:
FV = PV(1 + i)n + [ R(1 + i)n - 1 ] / i =
5,000(1+0.05/12)120 + [100(1+0.05/12)120 - 1 ] / (0.05/12)
Question 1 of 10
Is (0,0) a solution to this system?
A. No. (0,0) does not satisfy either inequality.
B. No. (0,0) satisfies y< x2 + 2x + 1 but does not satisfy yz x2 + x - 4.
C. No. (0,0) satisfies ya x2 + x - 4 but does not satisfy y< x2 + 2x + 1.
O
D. Yes. (0,0) satisfies both inequalities.
Answer:
D
Step-by-step explanation:
0=> 0+0-4, 0=>-4 TRUE
0<0+0+1, 0<1 TRUE
How many solutions does 2−9x=−6x+5−3x have?
Answer:
There are no values of x that make the equation true.
No solution
Step-by-step
hope it help
Hi
2-9x = -6x+5-3x
-9x+6x+3x = 5-2
0x = 3
as 0 ≠ 3 , there is no answer possible to your equation.
C-Spec, Inc., is attempting to determine whether an existing machine is capable of milling an engine part that has a key specification of 4 ± .003 inches. After a trial run on this machine, C-Spec has determined that the machine has a sample mean of 4.001 inches with a standard deviation of .002 inch. Calculate the Cpk for this machine.
Answer:
0.3333
Step-by-step explanation:
Given the following :
Sample mean(m) = 4.001 inch
Standard deviation(sd) = 0.002 inch
Key specification : = 4 ± .003 inches
Upper specification LIMIT ( USL) : (4 + 0.003) = 4.003 inches
Lower specification limit (LSL) : (4 - 0.003) = 3.997 inches
Cpk is found using the relation:
min[(USL - mean) / (3 * sd), (mean-LSL) / (3*sd)]
min[(4.003 - 4.001)/(3*0.002), (4.001 - 3.997)/(3*0.002)]
min[(0.002 / 0.006), (0.004 / 0.006)]
min[(0.33333, 0.66667)
Therefore Cpk = 0.3333
Because 0.33333<0.66667
plz help me plz
(2.5a^ + 5.2b^) (6.2a^ + 2.6b^)
Answer:
Sorry my HANDWRITING is not good . :(
Topic: Linear functions and their inverses Carlos and Clarita have a pet sitting business. When they were trying to decide how many each of dogs and cats they could fit into their yard, they made a table based on the following information. Cat pens require 6 ft2 of space, while dog runs require 24 ft2 . Carlos and Clarita have up to 360 ft2 available in the storage shed for pens and runs, while still leaving enough room to move around the cages. They made a table of all of the combinations of cats and dogs they could use to fill the space. They quickly realized that they could fit in 4 cats in the same space as one dog. cats 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 dogs 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 8. Use the information in the table to write 5 ordered pairs that have cats as the input value and dogs as the output value. 9. Write an explicit equation that shows how many dogs they can accommodate based on how many cats they have. (The number of dogs "d" will be a function of the number of cats "c" or 10. Use the information in the table to write 5 ordered pairs that have dogs as the input value and cats as the output value. 11. Write an explicit equation that shows how many cats they can accommodate based on how many dogs they have. (The number of cats "c" will be a function of the number of dogs "d" or c = g(d).) Base your answers in #12 and #13 on the table at the top of the page. 12. Look back at problem 8 and problem 10. Describe how the ordered pairs are different.
if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=
Answer:
3
Step-by-step explanation:
f(x)=3x-3
g(x)=-x^2+4,
f(2) = 3(2) -3 = 6-3 =3
g(-2) = -(-2)^2+4 = -4+4 = 0
f(2)-g(-2)= = 3-0 = 3