E A rugby player passes the ball 7.00 m across the field, where it is caught at the same height as it left his hand. (a) At what angle was the ball thrown if its initial speed was 11.5 m/s, assuming that the smaller of the two possible angles was used? (b) What other angle gives the same range? (c) How long did this pass take? Submit Question

Answers

Answer 1

a) The rugby player threw the ball at an angle of 38.6° to the horizontal. b) The other angle that gives the same range is 51.4°. c) The pass took 0.55 seconds.

The range of a projectile is the horizontal distance it travels. The range is determined by the initial speed of the projectile, the angle at which it is thrown, and the acceleration due to gravity.

In this case, the initial speed of the ball is 11.5 m/s and the range is 7.00 m. We can use the following equation to find the angle at which the ball was thrown:

tan(theta) = 2 * (range / initial speed)^2 / g

where:

theta is the angle of the throw

g is the acceleration due to gravity (9.8 m/s^2)

Plugging in the values, we get:

tan(theta) = 2 * (7.00 m / 11.5 m)^2 / 9.8 m/s^2

theta = tan^-1(0.447) = 38.6°

The other angle that gives the same range is 51.4°. This is because the range of a projectile is symmetrical about the vertical axis.

The time it took the ball to travel 7.00 m can be found using the following equation:

t = (2 * range) / initial speed

Plugging in the values, we get:

t = (2 * 7.00 m) / 11.5 m/s = 0.55 s

Therefore, the rugby player threw the ball at an angle of 38.6° to the horizontal. The other angle that gives the same range is 51.4°. The pass took 0.55 seconds.

Learn more about projectile here:

brainly.com/question/28043302

#SPJ11


Related Questions

2. For each pair of systems, circle the one with the larger entropy. If they both have the same entropy, explicitly state it. a. 1 kg of ice or 1 kg of steam b. 1 kg of water at 20°C or 2 kg of water at 20°C c. 1 kg of water at 20°C or 1 kg of water at 50°C d. 1 kg of steam (H₂0) at 200°C or 1 kg of hydrogen and oxygen atoms at 200°C Two students are discussing their answers to the previous question: Student 1: I think that 1 kg of steam and 1 kg of the hydrogen and oxygen atoms that would comprise that steam should have the same entropy because they have the same temperature and amount of stuff. Student 2: But there are three times as many particles moving about with the individual atoms not bound together in a molecule. I think if there are more particles moving, there should be more disorder, meaning its entropy should be higher. Do you agree or disagree with either or both of these students? Briefly explain your reasoning.

Answers

a. 1 kg of steam has the larger entropy. b. 2 kg of water at 20°C has the larger entropy. c. 1 kg of water at 50°C has the larger entropy. d. 1 kg of steam (H2O) at 200°C has the larger entropy.

Thus, the answers to the question are:

a. 1 kg of steam has a larger entropy.

b. 2 kg of water at 20°C has a larger entropy.

c. 1 kg of water at 50°C has a larger entropy.

d. 1 kg of steam (H₂0) at 200°C has a larger entropy.

Student 1 thinks that 1 kg of steam and 1 kg of hydrogen and oxygen atoms that make up the steam should have the same entropy because they have the same temperature and amount of stuff. Student 2, on the other hand, thinks that if there are more particles moving around, there should be more disorder, indicating that its entropy should be higher.I agree with student 2's reasoning. Entropy is directly related to the disorder of a system. Higher disorder indicates a higher entropy value, whereas a lower disorder implies a lower entropy value. When there are more particles present in a system, there is a greater probability of disorder, which results in a higher entropy value.

To know more about entropy:

https://brainly.com/question/20166134

#SPJ11

answer quick pls
A 2.0 x 102 g mass is tied to the end of a 1.6 m long string and whirled around in a circle that describes a vertical plane. What is the minimum frequency of rotation required to keep the mass moving

Answers

To keep a 2.0 x 10² g mass moving in a circle, a minimum frequency of approximately 0.395 Hz is required. This frequency ensures that the tension in the string is equal to the weight of the mass, providing the necessary centripetal force.

The minimum frequency of rotation required to keep the mass moving can be determined by considering the tension in the string.

At the minimum frequency, the tension in the string must be equal to the weight of the mass to provide the necessary centripetal force.

The tension in the string can be calculated using the formula:

T = m * g,

where T is the tension, m is the mass, and g is the acceleration due to gravity.

Substituting the given values:

m = 2.0 x 102 g = 0.2 kg (converted to kilograms)

g = 9.8 m/s²

T = (0.2 kg) * (9.8 m/s²) = 1.96 N

The tension in the string is 1.96 N.

The centripetal force required to keep the mass moving in a circle is equal to the tension, so:

F = T = m * ω² * r,

where F is the centripetal force, m is the mass, ω is the angular velocity, and r is the radius of the circle.

The radius of the circle is the length of the string, given as 1.6 m.

Substituting the known values:

1.96 N = (0.2 kg) * ω² * 1.6 m

Solving for ω²:

ω² = (1.96 N) / (0.2 kg * 1.6 m)

= 6.125 rad²/s²

Taking the square root to find ω:

ω = √(6.125 rad²/s²)

≈ 2.48 rad/s

The minimum frequency of rotation required to keep the mass moving is equal to the angular velocity divided by 2π:

f = ω / (2π)

Substituting the calculated value of ω:

f ≈ (2.48 rad/s) / (2π)

≈ 0.395 Hz

Therefore, the minimum frequency of rotation required to keep the mass moving is approximately 0.395 Hz.

Learn more about mass from the given link:

https://brainly.com/question/11954533

#SPJ11

: 5. Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards. a. setup a conservation of momentum equation. b. Use the equation above to determine the mass of the boat. c. What

Answers

Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.

a. A conservation of momentum equation is:

Final momentum = (mass of the boat + mass of the girls) * velocity of the boat

b. The mass of the boat is -250 kg.

c. Type of collision is inelastic.

a. To set up the conservation of momentum equation, we need to consider the initial momentum and the final momentum of the system.

The initial momentum is zero since the boat and the girls are at rest.

The final momentum can be calculated by considering the momentum of the girls and the boat together. Since the girls dive in the same direction with a velocity of -2.5 m/s and the empty boat moves at 0.15 m/s in the same direction, the final momentum can be expressed as:

Final momentum = (mass of the boat + mass of the girls) * velocity of the boat

b. Using the conservation of momentum equation, we can solve for the mass of the boat:

Initial momentum = Final momentum

0 = (mass of the boat + 5 * 50 kg) * 0.15 m/s

We know the mass of each girl is 50 kg, and there are five girls, so the total mass of the girls is 5 * 50 kg = 250 kg.

0 = (mass of the boat + 250 kg) * 0.15 m/s

Solving for the mass of the boat:

0.15 * mass of the boat + 0.15 * 250 kg = 0

0.15 * mass of the boat = -0.15 * 250 kg

mass of the boat = -0.15 * 250 kg / 0.15

mass of the boat = -250 kg

c. In a valid scenario, this collision could be considered an inelastic collision, where the boat and the girls stick together after the dive and move with a common final velocity. However, the negative mass suggests that further analysis or clarification is needed to determine the type of collision accurately.

To know more about direction here

https://brainly.com/question/32262214

#SPJ4

The complete question is:

Five 50 kg girls are sitting in a boat at rest. They each simultaneously dive horizontally in the same direction at -2.5 m/s from the same side of the boat. The empty boat has a speed of 0.15 m/s afterwards.

a. setup a conservation of momentum equation.

b. Use the equation above to determine the mass of the boat.

c. What type of collision is this?

a) The law of conservation of momentum states that the total momentum of a closed system remains constant if no external force acts on it.

The initial momentum is zero. Since the boat is at rest, its momentum is zero. The velocity of each swimmer can be added up by multiplying their mass by their velocity (since they are all moving in the same direction, the direction does not matter) (-2.5 m/s). When they jumped, the momentum of the system remained constant. Since momentum is a vector, the direction must be taken into account: 5*50*(-2.5) = -625 Ns. The final momentum is equal to the sum of the boat's mass (m) and the momentum of the swimmers. The final momentum is equal to (m+250)vf, where vf is the final velocity. The law of conservation of momentum is used to equate initial momentum to final momentum, giving 0 = (m+250)vf + (-625).

b) vf = 0.15 m/s is used to simplify the above equation, resulting in 0 = 0.15(m+250) - 625 or m= 500 kg.

c) The speed of the boat is determined by using the final momentum equation, m1v1 = m2v2, where m1 and v1 are the initial mass and velocity of the boat and m2 and v2 are the final mass and velocity of the boat. The momentum of the boat and swimmers is equal to zero, as stated in the conservation of momentum equation. 500*0 + 250*(-2.5) = 0.15(m+250), m = 343.45 kg, and the velocity of the boat is vf = -250/(500 + 343.45) = -0.297 m/s. The answer is rounded to the nearest hundredth.

In conclusion, the mass of the boat is 500 kg, and its speed is -0.297 m/s.

Learn more about momentum

https://brainly.com/question/30677308

#SPJ11

Give at least one example for each law of motion that you
observed or experienced and explain each in accordance with the
laws of motion.

Answers

Isaac Newton's Three Laws of Motion describe the way that physical objects react to forces exerted on them. The laws describe the relationship between a body and the forces acting on it, as well as the motion of the body as a result of those forces.

Here are some examples for each of the three laws of motion:

First Law of Motion: An object at rest stays at rest, and an object in motion stays in motion at a constant velocity, unless acted upon by a net external force.

EXAMPLE: If you roll a ball on a smooth surface, it will eventually come to a stop. When you kick the ball, it will continue to roll, but it will eventually come to a halt. The ball's resistance to changes in its state of motion is due to the First Law of Motion.

Second Law of Motion: The acceleration of an object is directly proportional to the force acting on it, and inversely proportional to its mass. F = ma

EXAMPLE: When pushing a shopping cart or a bike, you must apply a greater force if it is heavily loaded than if it is empty. This is because the mass of the object has increased, and according to the Second Law of Motion, the greater the mass, the greater the force required to move it.

Third Law of Motion: For every action, there is an equal and opposite reaction.

EXAMPLE: A bird that is flying exerts a force on the air molecules below it. The air molecules, in turn, exert an equal and opposite force on the bird, which allows it to stay aloft. According to the Third Law of Motion, every action has an equal and opposite reaction.

Learn more about Law of Motion at https://brainly.com/question/28171613

#SPJ11

Planet Z is 1.00×10 km in diameter. The free-tall acceleration on Planet Zi 8.00m/² You may want to review (Pages 342-343) Part A What is the mass of Planet Z? Express your answer to two significant figures and include the appropriate units. 20 m= Value Units Submit Request Answer Part B What is the free-fall acceleration 5000 km above Planet Z's north pole? Express your answer to two significant figures and include the appropriate units. PA 4 -0 ? Value Submit Provide Feedback Request Answer Units Revies

Answers

The mass of Planet Z is approximately 2.40×10^26 kg, given its diameter and free-fall acceleration. The free-fall acceleration 5000 km above Planet Z's north pole is approximately 9.68 m/s² using the formula for acceleration due to gravity at a certain height above the planet's surface.

Part A:

The mass of Planet Z can be calculated using the formula for the acceleration due to gravity, which is:

g = G(M/Z) / r^2

Given that the diameter of Planet Z is 1.00×10 km, its radius Z is 5.00×10 km or 5.00×10^7 m. The free-fall acceleration on Planet Z is 8.00 m/s². Substituting these values into the formula, we get:

8.00 m/s² = (6.67×10^-11 N(m/kg)^2) (M/Z) / (5.00×10^7 m)^2

Solving for M/Z, we get:

M/Z = (8.00 m/s²) (5.00×10^7 m)^2 / (6.67×10^-11 N(m/kg)^2)

M/Z = 2.40×10^26 kg

Since the mass of the planet is equal to M, we can conclude that the mass of Planet Z is approximately 2.40×10^26 kg, rounded to two significant figures.

Therefore, the mass of Planet Z is 2.40×10^26 kg.

Part B:

To calculate the free-fall acceleration 5000 km above Planet Z's north pole, we can use the formula:

g' = g (R/Z)^2

Since the height above the surface is 5000 km, the distance R is:

R = Z + h

R = 5.00×10^7 m + 5.00×10^6 m

R = 5.50×10^7 m

Substituting the given values into the formula, we get:

g' = 8.00 m/s² (5.50×10^7 m / 5.00×10^7 m)^2

g' = 9.68 m/s²

Therefore, the free-fall acceleration 5000 km above Planet Z's north pole is approximately 9.68 m/s², rounded to two significant figures.

To know more about acceleration due to gravity, visit:
brainly.com/question/13860566
#SPJ11

A person walks aimlessly 1.35km to the west, suddenly changing their direction south for the next 2.06km. Tired, she decides to lie down and calculate how far away she is from the starting point.
Expresses the result of the computations with 3 significant figures and with units.

Answers

The person is approximately 2.35 km away from the starting point in a southwesterly direction.

To determine the distance from the starting point, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. In this case, the westward distance traveled (1.35 km) forms one side of the triangle, and the southward distance traveled (2.06 km) forms the other side.

By applying the Pythagorean theorem, we can calculate the hypotenuse as follows:

Hypotenuse = sqrt((1.35 km)^2 + (2.06 km)^2) = sqrt(1.8225 km^2 + 4.2436 km^2) ≈ sqrt(6.0661 km^2) ≈ 2.464 km.

Rounding to three significant figures, the person is approximately 2.35 km away from the starting point in a southwesterly direction.

To learn more about direction, click here:

brainly.com/question/30173481

#SPJ11

A 45μF air-filled capacitor is charged to a potential difference of 3304 V. What is the energy stored in it?

Answers

Capacitance is a fundamental property of a capacitor, which is an electronic component used to store and release electrical energy. It is a measure of a capacitor's ability to store an electric charge per unit voltage.Capacitors are widely used in electronic circuits for various purposes, such as energy storage, filtering, timing, coupling, and decoupling. They can also be used in power factor correction, smoothing voltage fluctuations, and as tuning elements in resonant circuits.

Capacitance of the capacitor, C = 45μF, Potential difference across the capacitor, V = 3304 V. Substitute the given values in the formula: E = (1/2)CV²E = (1/2)(45 × 10⁻⁶) × (3304)²E = (1/2) × (45 × 3304 × 3304) × 10⁻¹²E = 256.86 J.

Therefore, the energy stored in the given capacitor is 256.86 J.

Let's learn more about capacitor:

https://brainly.com/question/14883923

#SPJ11

An evacuated tube uses an accelerating voltage of 40 kV to accelerate electrons to hit a copper plate and produce X-rays. a. How much potential energy does a single electron loose due to being accelerated through the 40 kV potential? Hint: what is the charge of a single electron? b. What would be the maximum speed of these electrons? Hint: Potential energy is converted into another form of energy and the mass of an electron is 9.11x10" kg.

Answers

a. A single electron loses 6.408 × 10⁻¹⁵ J of potential energy.

b. The maximum speed of the electrons is 8.9 × 10⁶ m/s.

a. The potential energy lost by a single electron can be calculated using the equation for electric potential energy:

ΔPE = qΔV, where ΔPE is the change in potential energy, q is the charge of the electron (1.6 × 10⁻¹⁹ C), and ΔV is the change in voltage (40,000 V). Plugging in the values,

we get ΔPE = (1.6 × 10⁻¹⁹ C) × (40,000 V)

                    = 6.4 × 10⁻¹⁵ J.

b. To determine the maximum speed of the electrons, we can equate the loss in potential energy to the gain in kinetic energy.

The kinetic energy of an electron is given by KE = ½mv²,

where m is the mass of the electron (9.1 × 10⁻³¹ kg) and v is the velocity. Equating ΔPE to KE, we have ΔPE = KE.

Rearranging the equation, we get

(1.6 × 10⁻¹⁹ C) × (40,000 V) = ½ × (9.1 × 10⁻³¹ kg) × v².

Solving for v, we find

v = √((2 × (1.6 × 10⁻¹⁹ C) × (40,000 V)) / (9.1 × 10⁻³¹ kg))

  = 8.9 × 10⁶ m/s.

Learn more About electron from the given link

https://brainly.com/question/25674345

#SPJ11

An ideal gas expands isothermally, performing 5.00×10 3
J of work in the process. Calculate the change in internal energy of the gas. Express your answer with the appropriate units. Calculate the heat absorbed during this expansion. Express your answer with the appropriate units.

Answers

For an isothermal expansion of an ideal gas, the change in internal energy is zero. In this case, the gas performs 5.00×10^3 J of work, and the heat absorbed during the expansion is also 5.00×10^3 J.

An isothermal process involves a change in a system while maintaining a constant temperature. In this case, an ideal gas is expanding isothermally and performing work. We need to calculate the change in internal energy of the gas and the heat absorbed during the expansion.

To calculate the change in internal energy (ΔU) of the gas, we can use the first law of thermodynamics, which states that the change in internal energy is equal to the heat (Q) absorbed or released by the system minus the work (W) done on or by the system. Mathematically, it can be represented as:

ΔU = Q - W

Since the process is isothermal, the temperature remains constant, and the change in internal energy is zero. Therefore, we can rewrite the equation as:

0 = Q - W

Given that the work done by the gas is 5.00×10^3 J, we can substitute this value into the equation:

0 = Q - 5.00×10^3 J

Solving for Q, we find that the heat absorbed during this expansion is 5.00×10^3 J.

To know more about the first law of thermodynamics, refer here:

https://brainly.com/question/32101564#

#SPJ11

a 2-kg mass is suspended from an ideal linear spring with a spring constant of 500-n/m. from equilibrium, the mass is raised upward by 1-cm and then let go of. (a) what is the angular frequency of the oscillations that ensue? (b) what is the frequency of the oscillations? (c) what is the period of the oscillations? (d) what is the total energy of the mass/spring system? (e) what is the speed of the mass as it passes through the equilibrium position?

Answers

a. The angular frequency of the oscillations is 10 rad/s.

b. The frequency is 1.59 Hz,

c. The period is 0.63 s,

d. The total energy of the mass/spring system is 0.1 J,

e. The speed of the mass as it passes through the equilibrium position is 0.1 m/s.

The angular frequency of the oscillations can be determined using the formula ω = √(k/m), where k is the spring constant (500 N/m) and m is the mass (2 kg). Plugging in the values, we get ω = √(500/2) = 10 rad/s.

The frequency of the oscillations can be found using the formula f = ω/(2π), where ω is the angular frequency. Plugging in the value, we get f = 10/(2π) ≈ 1.59 Hz.

The period of the oscillations can be calculated using the formula T = 1/f, where f is the frequency. Plugging in the value, we get T = 1/1.59 ≈ 0.63 s.

The total energy of the mass/spring system can be determined using the formula E = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium (0.01 m in this case). Plugging in the values, we get E = (1/2)(500)(0.01)² = 0.1 J.

The speed of the mass as it passes through the equilibrium position can be found using the formula v = ωA, where ω is the angular frequency and A is the amplitude (0.01 m in this case). Plugging in the values, we get v = (10)(0.01) = 0.1 m/s.

Learn more about Frequency

brainly.com/question/29739263

#SPJ11

Pick the correct statement. You can't put a virtual image on a screen. You can't take a picture of a virtual image. Mirrors reflect light, therefore they always make real images. You can't see a virtual image with unaided eyes. Real images are always upright.

Answers

The correct statement is, You can't put a virtual image on a screen.

A virtual image is formed when the light rays appear to diverge from a point behind the mirror or lens. Virtual images cannot be projected onto a screen because they do not actually exist at a physical location. They are perceived by the observer as if the light rays are coming from a certain point, but they do not converge to form a real image.

In contrast, real images are formed when the light rays converge to a point, and they can be projected onto a screen. Real images can be captured by a camera or observed directly with the eyes because they are formed by the actual intersection of light rays.

So, the correct statement is that you can't put a virtual image on a screen because virtual images do not have a physical existence at a specific location.

To know more about virtual image please refer:

https://brainly.com/question/29759052

#SPJ11

When throwing a ball, your hand releases it at a height of 1.0 m above the ground with a velocity of 6.5 m/s in a direction 57° above the horizontal.
A) How high above the ground (not your hand) does the ball go?
B) At the highest point, how far is the ball horizontally from the point of release?

Answers

A) The ball reaches a height of approximately 2.45 meters above the ground.

B) At the highest point, the ball is approximately 4.14 meters horizontally away from the point of release.

The ball's vertical motion can be analyzed separately from its horizontal motion. To determine the height the ball reaches (part A), we can use the formula for vertical displacement in projectile motion. The initial vertical velocity is given as 6.5 m/s * sin(57°), which is approximately 5.55 m/s. Assuming negligible air resistance, at the highest point, the vertical velocity becomes zero.

Using the kinematic equation v_f^2 = v_i^2 + 2ad, where v_f is the final velocity, v_i is the initial velocity, a is the acceleration, and d is the displacement, we can solve for the vertical displacement. Rearranging the equation, we have d = (v_f^2 - v_i^2) / (2a), where a is the acceleration due to gravity (-9.8 m/s^2). Plugging in the values, we get d = (0 - (5.55)^2) / (2 * -9.8) ≈ 2.45 meters.

To determine the horizontal distance at the highest point (part B), we use the formula for horizontal displacement in projectile motion. The initial horizontal velocity is given as 6.5 m/s * cos(57°), which is approximately 3.0 m/s. The time it takes for the ball to reach the highest point is the time it takes for the vertical velocity to become zero, which is v_f / a = 5.55 / 9.8 ≈ 0.57 seconds.

The horizontal displacement is then given by the formula d = v_i * t, where v_i is the initial horizontal velocity and t is the time. Plugging in the values, we get d = 3.0 * 0.57 ≈ 1.71 meters. However, since the ball travels in both directions, the total horizontal distance at the highest point is twice that value, approximately 1.71 * 2 = 3.42 meters.

To learn more about vertical motion, click here:

brainly.com/question/12640444

#SPJ11

An air-track cart with mass m₁ = 0.22 kg and initial speed v0.95 m/s collides with and sticks to a second cart that is at rest initially. If the mass of the second cart is m₂= 0.46 kg, how much kinetic energy is lost as a result of the collision? Express your answer to two significant figures and include appropriate units.

Answers

Approximately 0.074 Joules of kinetic energy is lost as a result of the collision. The initial kinetic energy is given by KE_initial = (1/2) * m₁ * v₀^2,

where m₁ is the mass of the first cart and v₀ is its initial speed. The final kinetic energy is given by KE_final = (1/2) * (m₁ + m₂) * v_final^2, where m₂ is the mass of the second cart and v_final is the final speed of the combined carts after the collision.

Since the second cart is initially at rest, the conservation of momentum tells us that m₁ * v₀ = (m₁ + m₂) * v_final. Rearranging this equation, we can solve for v_final.

Once we have v_final, we can substitute it into the equation for KE_final. The kinetic energy lost in the collision is then calculated by taking the difference between the initial and final kinetic energies: KE_lost = KE_initial - KE_final.

Performing the calculations with the given values, the amount of kinetic energy lost in the collision is approximately [Answer] with appropriate units.

Learn more about collision here:

brainly.com/question/13138178

#SPJ11

3. In a spring block system, a box is stretched on a horizontal, frictionless surface 20cm from equilibrium while the spring constant= 300N/m. The block is released at 0s. What is the KE (J) of the system when velocity of block is 1/3 of max value. Answer in J and in the hundredth place.Spring mass is small and bock mass unknown.

Answers

The kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

In a spring-block system with a spring constant of 300 N/m, a box is initially stretched 20 cm from equilibrium on a horizontal, frictionless surface.

The box is released at t = 0 s. We are asked to find the kinetic energy (KE) of the system when the velocity of the block is one-third of its maximum value. The answer will be provided in joules (J) rounded to the hundredth place.

The potential energy stored in a spring-block system is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium. In this case, the box is initially stretched 20 cm from equilibrium, so the potential energy at that point is PE = (1/2)(300 N/m)(0.20 m)² = 6 J.

When the block is released, the potential energy is converted into kinetic energy as the block moves towards equilibrium. At maximum displacement, all the potential energy is converted into kinetic energy. Therefore, the maximum potential energy of 6 J is equal to the maximum kinetic energy of the system.

The velocity of the block can be related to the kinetic energy using the equation KE = (1/2)mv², where m is the mass of the block and v is the velocity. Since the mass of the block is unknown, we cannot directly calculate the kinetic energy at one-third of the maximum velocity.

However, we can use the fact that the kinetic energy is proportional to the square of the velocity. When the velocity is one-third of the maximum value, the kinetic energy will be (1/9) of the maximum kinetic energy. Therefore, the kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.

Learn more about spring constant here: brainly.com/question/29975736

#SPJ11

An LC circuit consists of a 2.5 mH inductor and a 4.5 μF
capacitor. its impedance Z at 55 Hz in Ω.Find its impedance
Z at 5 kHz in Ω.

Answers

The impedance of the LC circuit at 55 Hz is approximately 269.68 Ω and at 5 kHz is approximately 4.43 Ω.

To find the impedance (Z) of the LC circuit at 55 Hz and 5 kHz, we can use the formula for the impedance of an LC circuit:

Z = √((R^2 + (ωL - 1/(ωC))^2))

Given:

L = 2.5 mH = 2.5 × 10^(-3) H

C = 4.5 μF = 4.5 × 10^(-6) F

1. For 55 Hz:

ω = 2πf = 2π × 55 = 110π rad/s

Z = √((0 + (110π × 2.5 × 10^(-3) - 1/(110π × 4.5 × 10^(-6)))^2))

≈ √((110π × 2.5 × 10^(-3))^2 + (1/(110π × 4.5 × 10^(-6)))^2)

≈ √(0.3025 + 72708.49)

≈ √72708.79

≈ 269.68 Ω (approximately)

2. For 5 kHz:

ω = 2πf = 2π × 5000 = 10000π rad/s

Z = √((0 + (10000π × 2.5 × 10^(-3) - 1/(10000π × 4.5 × 10^(-6)))^2))

≈ √((10000π × 2.5 × 10^(-3))^2 + (1/(10000π × 4.5 × 10^(-6)))^2)

≈ √(19.635 + 0.00001234568)

≈ √19.63501234568

≈ 4.43 Ω (approximately)

Therefore, the impedance of the LC circuit at 55 Hz is approximately 269.68 Ω and at 5 kHz is approximately 4.43 Ω.

Learn more about impedance: https://brainly.com/question/17153017

#SPJ11

An electron accelerates from 0 to 10 x 109 m/s in an electric field. Through what potential difference did the electron travel? The mass of an electron is 9.11 x 10-31 kg, and its charge is -1.60 x 10-18C. a. 29 την b. 290 mV c. 2,900 mv d. 29 V

Answers

The potential difference through which the electron traveled is -2.84 x 10⁶ V. So, none of the options are correct.

To determine the potential difference (V) through which the electron traveled, we can use the equation that relates the potential difference to the kinetic energy of the electron.

The kinetic energy (K) of an electron is given by the formula:

K = (1/2)mv²

where m is the mass of the electron and v is its final velocity.

The potential difference (V) can be calculated using the formula:

V = K / q

where q is the charge of the electron.

Given that the final velocity of the electron is 10 x 10^9 m/s, the mass of the electron is 9.11 x 10^-31 kg, and the charge of the electron is -1.60 x 10^-19 C, we can substitute these values into the equations:

K = (1/2)(9.11 x 10⁻³¹ kg)(10 x 10⁹ m/s)²

K = 4.55 x 10⁻¹⁴ J

V = (4.55 x 10^⁻¹⁴ J) / (-1.60 x 10⁻¹⁹ C)

V = -28.4 x 10⁴ V

Since the potential difference is generally expressed in volts, we can convert it to the appropriate units:

V = -28.4 x 10⁴ V = -2.84 x 10⁶ V

Therefore, the potential difference through which the electron traveled is approximately -2.84 x 10⁶ V. So, none of the options are correct.

To learn more about potential difference: https://brainly.com/question/24142403

#SPJ11

1. In the Millikan experiment it is assumed that two forces are equal. a) State these two forces. b) Draw a free-body diagram of these two forces acting on a balanced oil drop.

Answers

In the Millikan oil-drop experiment, two forces are assumed to be equal: the gravitational force acting on the oil drop and the electrical force due to the electric field. The experiment aims to determine the charge on an individual oil drop by balancing these two forces. A free-body diagram can be drawn to illustrate these forces acting on a balanced oil drop.

a) The two forces assumed to be equal in the Millikan experiment are:

1. Gravitational force: This force is the weight of the oil drop due to gravity, given by the equation F_grav = m * g, where m is the mass of the drop and g is the acceleration due to gravity.

2. Electrical force: This force arises from the electric field in the apparatus and acts on the charged oil drop. It is given by the equation F_elec = q * E, where q is the charge on the drop and E is the electric field strength.

b) A free-body diagram of a balanced oil drop in the Millikan experiment would show the following forces:

- Gravitational force (F_grav) acting downward, represented by a downward arrow.

- Electrical force (F_elec) acting upward, represented by an upward arrow.

The free-body diagram shows that for a balanced oil drop, the two forces are equal in magnitude and opposite in direction, resulting in a net force of zero. By carefully adjusting the electric field, the oil drop can be suspended in mid-air, allowing for the determination of the charge on the drop.

To learn more about Gravitational force - brainly.com/question/32609171

#SPJ11

In an R−C circuit the resistance is 115Ω and Capacitance is 28μF, what will be the time constant? Give your answer in milliseconds. Question 5 1 pts What will be the time constant of the R−C circuit, in which the resistance =R=5 kilo-ohm, Capacitor C1 =6 millifarad, Capacitor C2=10 millifarad. The two capacitors are in series with each other, and in series with the resistance. Write your answer in milliseconds. Question 6 1 pts What will be the time constant of the R−C circuit, in which the resistance =R=6 kilo-ohm, Capacitor C1 = 7 millifarad, Capacitor C2 = 7 millifarad. The two capacitors are in parallel with each other, and in series with the resistance. Write your answer in milliseconds.

Answers

The time constant of the R−C circuit is 132.98 ms.

1: In an R−C circuit, the resistance is 115Ω and capacitance is 28μF.

The time constant of the R−C circuit is given as:

Time Constant (τ) = RC

where

R = Resistance

C = Capacitance= 115 Ω × 28 μ

F= 3220 μs = 3.22 ms

Therefore, the time constant of the R−C circuit is 3.22 ms.

2: In an R−C circuit, the resistance

R = 5 kΩ, Capacitor

C1 = 6 mF and

Capacitor C2 = 10 mF.

The two capacitors are in series with each other, and in series with the resistance.

The total capacitance in the circuit will be

CT = C1 + C2= 6 mF + 10 mF= 16 mF

The equivalent capacitance for capacitors in series is:

1/CT = 1/C1 + 1/C2= (1/6 + 1/10)×10^-3= 0.0267×10^-3F = 26.7 µF

The total resistance in the circuit is:

R Total = R + R series

The resistors are in series, so:

R series = R= 5 kΩ

The time constant of the R−C circuit is given as:

Time Constant (τ) = RC= (5×10^3) × (26.7×10^-6)= 0.1335 s= 133.5 ms

Therefore, the time constant of the R−C circuit is 133.5 ms.

3: In an R−C circuit, the resistance

R = 6 kΩ,

Capacitor C1 = 7 mF, and

Capacitor C2 = 7 mF.

The two capacitors are in parallel with each other and in series with the resistance.

The equivalent capacitance for capacitors in parallel is:

CT = C1 + C2= 7 mF + 7 mF= 14 mF

The total capacitance in the circuit will be:

C Total = CT + C series

The capacitors are in series, so:

1/C series = 1/C1 + 1/C2= (1/7 + 1/7)×10^-3= 0.2857×10^-3F = 285.7 µFC series = 1/0.2857×10^-3= 3498.6 Ω

The total resistance in the circuit is:

R Total = R + C series= 6 kΩ + 3498.6 Ω= 9498.6 Ω

The time constant of the R−C circuit is given as:

Time Constant (τ) = RC= (9.4986×10^3) × (14×10^-6)= 0.1329824 s= 132.98 ms

Therefore, the time constant of the R−C circuit is 132.98 ms.

To know more about R−C circuit visit:

https://brainly.com/question/32250409

#SPJ11

Some air at 21 °C is trapped inside a cylinder with the help of a 16-kg piston which can move along the cylinder
with almost no friction. The atmospheric pressure (outside) is 1.00 atm (=1.013 x 10^5 Pa). The piston fits the
cylinder so well that there is no leakage of air inside the cylinder. Given the initial height h; = 57 cm, and the
radius of the piston is r = 45 cm. Then, a 21-kg dog stands on the piston, compressing the air, which remains at
21°C.
How far down does the piston move when the dog steps onto it (|A/|)? (in milimeters)
To what temperature should the gas be warmed to raise the piston and dog back to h;? (in degree Celcius)

Answers

The piston moves approximately X millimeters down when the dog steps onto it, and the gas should be warmed to Y degrees Celsius to raise the piston and dog back to their initial height.

To determine the distance the piston moves when the dog steps onto it, we can use the principles of fluid mechanics and the equation for pressure.

Given:

Initial height of the piston (h1) = 57 cm = 0.57 m

Radius of the piston (r) = 45 cm = 0.45 m

Mass of the piston (m1) = 16 kg

Mass of the dog (m2) = 21 kg

Initial temperature of the air (T1) = 21°C = 294 K

Atmospheric pressure (P1) = 1.00 atm = 1.013 x 10^5 Pa

First, let's find the pressure exerted by the piston and the dog on the air inside the cylinder. The total mass on the piston is the sum of the mass of the piston and the dog:

M = m1 + m2 = 16 kg + 21 kg = 37 kg

The force exerted by the piston and the dog is given by:

F = Mg

The area of the piston is given by:

A = πr^2

The pressure exerted on the air is:

P2 = F/A = Mg / (πr^2)

Now, let's calculate the new height of the piston (h2):

P1A1 = P2A2

(1.013 x 10^5 Pa) * (π(0.45 m)^2) = P2 * (π(0.45 m)^2 + π(0.45 m)^2 + 0.57 m)

Simplifying the equation:

P2 = (1.013 x 10^5 Pa) * (0.45 m)^2 / [(2π(0.45 m)^2) + 0.57 m]

Next, we can calculate the change in height (∆h) of the piston:

∆h = h1 - h2

To find the temperature to which the gas should be warmed to raise the piston and dog back to h1, we can use the ideal gas law:

P1V1 / T1 = P2V2 / T2

Since the volume of the gas does not change (∆V = 0), we can simplify the equation to:

P1 / T1 = P2 / T2

Solving for T2:

T2 = T1 * (P2 / P1)

Substituting the given values:

T2 = 294 K * (P2 / 1.013 x 10^5 Pa)

Finally, we can convert the ∆h and T2 to the required units of millimeters and degrees Celsius, respectively.

Note: The calculations involving specific numerical values require additional steps that are omitted in this summary.

Learn more about volume from the given link:

https://brainly.com/question/28058531

#SPJ11

1. A m=750 g object is released with an initial speed of 20 cm/s from the top of a smooth track h=1m above the top of a table which is H-2m high. (use scalar methods - ie conservation of energy) H (a) What is the speed of the block when it leaves the incline (ie when it reaches the incline bottom) (b) With what speed does the block hit the floor?

Answers

The speed of the block, when it leaves the incline, is approximately 4.43 m/s. With this speed of 7.675 m/s, the block hit the floor.

a) The initial potential energy of the object at the top of the track is given by:

PE(initial) = m × g × h

KE(final) = (1/2) × m × v(final)²

According to the law of conservation of energy,

PE(initial) = KE(final)

m × g × h =  (1/2) × m × v(final)²

v(final) = √(2 × g × h)

v_final = √(2 × 9.8 × 1) = 4.43 m/s

Hence, the speed of the block when it leaves the incline is approximately 4.43 m/s.

b) Gravity work done = Change in kinetic energy,

mg(h +H) =  (1/2) × m × v(final)² - 1/2 × m × v(20/100)²

9.8 (2+1) =  v(final)²/2 - 0.02

v(final) = 7.675 m/s

Hence, with this speed of 7.675 m/s, the block hit the floor.

To know more about the conservation of energy:

https://brainly.com/question/29414137

#SPJ4

Inside a 138 mm x 346 mm rectangular duct, air at 17 N/s, 20 deg
C, and 112 kPa flows. Solve for the volume flux if R = 28.5 m/K.
Express your answer in 3 decimal places.

Answers

The volume flux inside the rectangular duct is 0.028 m³/s.

Volume flux, also known as volumetric flow rate, is a measure of the volume of fluid passing through a given area per unit time. It is commonly expressed in cubic meters per second (m³/s). To calculate the volume flux in the given scenario, we can use the formula:

Volume Flux = (Air flow rate) / (Cross-sectional area)

First, we need to calculate the cross-sectional area of the rectangular duct. The area can be determined by multiplying the length and width of the duct:

Area = (138 mm) * (346 mm)

To maintain consistent units, we convert the dimensions to meters:

Area = (138 mm * 10⁻³ m/mm) * (346 mm * 10⁻³ m/mm)

Next, we can calculate the air flow rate using the given information. The air flow rate is given as 17 N/s, which represents the mass flow rate. We can convert the mass flow rate to volume flow rate using the ideal gas law:

Volume Flow Rate = (Mass Flow Rate) / (Density)

The density of air can be determined using the ideal gas law:

Density = (Pressure) / (Gas constant * Temperature)

where the gas constant (R) is given as 28.5 m/K, the pressure is 112 kPa, and the temperature is 20 degrees Celsius.

With the density calculated, we can now determine the volume flow rate. Finally, we can divide the volume flow rate by the cross-sectional area to obtain the volume flux.

Learn more about volume

brainly.com/question/14568432

#SPJ11

The gravitational force changes with altitude. Find the change in gravitational force for someone who weighs 760 N at sea level as compared to the force measured when on an airplane 1600 m above sea level. You can ignore Earth's rotation for this problem. Use a negative answer to indicate a decrease in force.
For reference, Earth's mean radius (RE) is 6.37 x 106 m and Earth's mass (ME) is 5.972 x 1024 kg. [Hint: take the derivative of the expression for the force of gravity with respect to r, such that Aweight dF dr Ar. Evaluate the derivative at

Answers

Substituting the given values for Earth's mean radius (RE) and Earth's mass (ME), as well as the weight of the individual[tex](m1 = 760 N / 9.8 m/s^2 = 77.55 kg)[/tex], we can calculate the change in gravitational force.

To find the change in gravitational force experienced by an individual weighing 760 N at sea level compared to the force measured when on an airplane 1600 m above sea level, we can use the equation for gravitational force:

[tex]F = G * (m1 * m2) / r^2[/tex]

Where:

F is the gravitational force,

G is the gravitational constant,

and r is the distance between the centers of the two objects.

Let's denote the force at sea level as [tex]F_1[/tex] and the force at 1600 m above sea level as [tex]F_2[/tex]. The change in gravitational force (ΔF) can be calculated as:

ΔF =[tex]F_2 - F_1[/tex]

First, let's calculate [tex]F_1[/tex] at sea level. The distance between the individual and the center of the Earth ([tex]r_1[/tex]) is the sum of the Earth's radius (RE) and the altitude at sea level ([tex]h_1[/tex] = 0 m).

[tex]r_1 = RE + h_1 = 6.37 * 10^6 m + 0 m = 6.37 * 10^6 m[/tex]

Now we can calculate [tex]F_1[/tex] using the gravitational force equation:

[tex]F_1 = G * (m_1 * m_2) / r_1^2[/tex]

Next, let's calculate [tex]F_2[/tex] at 1600 m above sea level. The distance between the individual and the center of the Earth ([tex]r_2[/tex]) is the sum of the Earth's radius (RE) and the altitude at 1600 m ([tex]h_2[/tex] = 1600 m).

[tex]r_2[/tex] = [tex]RE + h_2 = 6.37 * 10^6 m + 1600 m = 6.37 * 10^6 m + 1.6 * 10^3 m = 6.3716 * 10^6 m[/tex]

Now we can calculate [tex]F_2[/tex] using the gravitational force equation:

[tex]F_2[/tex] = G * ([tex]m_1 * m_2[/tex]) /[tex]r_2^2[/tex]

Finally, we can find the change in gravitational force by subtracting [tex]F_1[/tex] from [tex]F_2[/tex]:

ΔF = [tex]F_2 - F_1[/tex]

To know more about Earth's mean radius, here

brainly.com/question/31408822

#SPJ4

The gravitational force acting on the person has decreased by 0.104 N when they are on an airplane 1600 m above sea level as compared to the force measured at sea level.

Gravitational force is given by F = G (Mm / r²), where G is the universal gravitational constant, M is the mass of the planet, m is the mass of the object, and r is the distance between the center of mass of the planet and the center of mass of the object.Given,At sea level, a person weighs 760N.

On an airplane 1600 m above sea level, the weight of the person is different. We need to calculate this difference and find the change in gravitational force.As we know, the gravitational force changes with altitude. The gravitational force acting on an object decreases as it moves farther away from the earth's center.To find the change in gravitational force, we need to first calculate the gravitational force acting on the person at sea level.

Gravitational force at sea level:F₁ = G × (Mm / R)²...[Equation 1]

Here, M is the mass of the earth, m is the mass of the person, R is the radius of the earth, and G is the gravitational constant. Putting the given values in Equation 1:F₁ = 6.674 × 10⁻¹¹ × (5.972 × 10²⁴ × 760) / (6.371 × 10⁶)²F₁ = 7.437 NNow, let's find the gravitational force acting on the person at 1600m above sea level.

Gravitational force at 1600m above sea level:F₂ = G × (Mm / (R+h))²...[Equation 2]Here, M is the mass of the earth, m is the mass of the person, R is the radius of the earth, h is the height of the airplane, and G is the gravitational constant. Putting the given values in Equation 2:F₂ = 6.674 × 10⁻¹¹ × (5.972 × 10²⁴ × 760) / (6.371 × 10⁶ + 1600)²F₂ = 7.333 NNow, we can find the change in gravitational force.ΔF = F₂ - F₁ΔF = 7.333 - 7.437ΔF = -0.104 NThe change in gravitational force is -0.104 N. A negative answer indicates a decrease in force.

Therefore, the gravitational force acting on the person has decreased by 0.104 N when they are on an airplane 1600 m above sea level as compared to the force measured at sea level.

Know more Gravitational Force

https://brainly.com/question/16613634

#SPJ11

A resistance heater of 0.5 kg mass and specific heat capacity 0.74 kJ/kg K, is immersed in a mass of oil of 2.5 kg mass and specific heat capacity 2.0 kJ/kg K. Both the heater and the oil are initially at 20 C. For 1 min an electric current of 2.0 A provided by a 220 V source flows through the heater. Assuming that thermal equilibrium is reached quickly, the reading of a thermometer placed in the oil bath reads 22 C. Electrical work in watts, Welectric = V*I, with V in volts and I in ampere. Determine:
(a) The heat transferred from the heater to the oil, in kJ.
b) The heat transferred from the oil to the environment, in kJ

Answers

a) the heat transferred from the heater to the oil is 10 kJ.

b) the heat transferred from the oil to the environment is 10 kJ.

a) The heat transferred from the heater to the oil, in kJ:

Since the heater is in thermal equilibrium with the oil, the heat transferred from the heater is equal to the heat gained by the oil.

Let's start by calculating the electrical energy input to the heater.

Electrical work done, W

electric = V * I = 220 V * 2.0 A = 440 W

Power input into the heater, P = W

electric = 440 W

Time, t = 1 minute = 60 seconds

Energy input into the heater, E = P * t = 440 W * 60 s = 26400 J = 26.4 kJ

The heat gained by the oil is given by:Q = mcΔT

where m is the mass of oil, c is the specific heat capacity of oil, and ΔT is the change in temperature of oil.

Substituting the given values, we get:Q = (2.5 kg) * (2.0 kJ/kg K) * (22 - 20) K = 10 kJ

b) The heat transferred from the oil to the environment, in kJ:

Since the heater and the oil are in thermal equilibrium with each other, their temperatures are equal. Therefore, the final temperature of the heater is 22°C

.The heat lost by the oil is given by:

Q = mcΔT

where m is the mass of oil, c is the specific heat capacity of oil, and ΔT is the change in temperature of oil.

Substituting the given values, we get:

Q = (2.5 kg) * (2.0 kJ/kg K) * (22 - 20) K = 10 kJ

Learn more about electric heater at

https://brainly.com/question/14821267

#SPJ11

Consider LC circuit where at time t = 0, the energy in capacitor is maximum. What is the minimum time t (t> 0) to maximize the energy in capacitor? (Express t as L,C). (15pts)

Answers

An LC circuit, also known as a resonant circuit or a tank circuit, is a circuit in which the inductor (L) and capacitor (C) are connected together in a manner that allows energy to oscillate between the two.



When an LC circuit has a maximum energy in the capacitor at time

t = 0,

the energy then flows into the inductor and back into the capacitor, thus forming an oscillation.

The energy oscillates back and forth between the inductor and the capacitor.

The oscillation frequency, f, of the LC circuit can be calculated as follows:

$$f = \frac {1} {2\pi \sqrt {LC}} $$

The period, T, of the oscillation can be calculated by taking the inverse of the frequency:

$$T = \frac{1}{f} = 2\pi \sqrt {LC}$$

The maximum energy in the capacitor is reached at the end of each oscillation period.

Since the period of oscillation is

T = 2π√LC,

the end of an oscillation period occurs when.

t = T.

the minimum time t to maximize the energy in the capacitor can be expressed as follows:

$$t = T = 2\pi \sqrt {LC}$$

To know more about resonant visit:

https://brainly.com/question/32273580

#SPJ11

A bungee cord loosely hangs from a bridge. Its length while hanging is 52.9 m. When a 51.3 kg bungee jumper is attached and makes her leap, after bouncing around for a bit, she ends up hanging upside down 57.2 m from the jump point, where the bungee cord is tied. What is the spring constant of the bungee cord?

Answers

After considering the given data we conclude that the spring constant of the bungee cord is 116.92 N/m. when Force is 502.74 N and Displacement is  4.3 m.

We have to apply the Hooke’s law to evaluate the spring constant of the bungee cord which is given as,

[tex]F = -k * x[/tex]

Here

F = force exerted by the spring

x = displacement from equilibrium.

From the given data it is known to us that

Hanging length (  initial position ) = 52.9 m

Hanging upside down (  Final position ) = 57.2 m

Mass = 51.3 kg

g = 9.8 m/s²

Staging the values in the equation we get:

[tex]Displacement (x) = Final position - initial position\\[/tex]

[tex]x = 57.2 m - 52.9 m[/tex]

= 4.3 m.

The force exerted by the bungee cord on the jumper is evaluated as,

F = mg

Here,

m = mass

g = acceleration due to gravity

Placing the m and g values in the equation we get:

[tex]F = (51.3 kg) * (9.8 m/s^2)[/tex]

= 502.74 N.

Staging the values in Hooke’s law to evaluate the spring constant of the bungee cord we get:

[tex]k = \frac{F}{x}[/tex]

= (502.74 N)/(4.3 m)

= 116.92 N/m.

Therefore, the spring constant of the bungee cord is 116.92 N/m.

To learn more about Hooke’s law:

brainly.com/question/31066055

#SPJ4

What is the impact speed when a car moving at 95 km/hour runs into the back of another car moving (in the same direction) at 85 km/hour?
A. 10 km/hour B. 20 km/hour C. 5 km/hour D. 0.95 km/hour

Answers

The impact speed when a car moving at 95 km/h runs into the back of another car moving at 85 km/h (in the same direction) is 10 km/h.

The impact speed refers to the velocity at which an object strikes or collides with another object. It is determined by considering the relative velocities of the objects involved in the collision.

In the context of a car collision, the impact speed is the difference between the velocities of the two cars at the moment of impact. If the cars are moving in the same direction, the impact speed is obtained by subtracting the velocity of the rear car from the velocity of the front car.

To calculate the impact speed, we need to find the relative velocity between the two cars. Since they are moving in the same direction, we subtract their velocities.

Relative velocity = Velocity of car 1 - Velocity of car 2

Relative velocity = 95 km/h - 85 km/h

Relative velocity = 10 km/h

Therefore, the impact speed when the cars collide is 10 km/h.

To learn more about impact speed click here:

brainly.com/question/30328110

#SPJ11

A car moving at 38 km/h negotiates a 160 m -radius banked turn
designed for 60 km/h. What coefficient of friction is needed to
keep the car on the road?

Answers

we need to find the value of What coefficient of friction is needed to keep the car on the road. The concepts we can use are centripetal force, gravity etc.

Given data:
The speed of the car v = 38 km/h

Radius of the turn r = 160 m

The turn is designed for the speed of the car v' = 60 km/h

The coefficient of friction between the tires and the road = μ

First, we convert the speed of the car into m/s.1 km/h = 0.27778 m/s

Therefore, 38 km/h = 38 × 0.27778 m/s = 10.56 m/s

Similarly, we convert the speed designed for the turn into m/s
60 km/h = 60 × 0.27778 m/s
60 km/h = 16.67 m/s

To keep the car on the road, the required centripetal force must be provided by the frictional force acting on the car. The maximum frictional force is given by μN, where N is the normal force acting on the car. To find N, we use the weight of the car, which is given by mg where m is the mass of the car and g is the acceleration due to gravity, which is 9.81 m/s². We assume that the car is traveling on a level road. So, N = mg. We can find the mass of the car from the centripetal force equation. The centripetal force acting on the car is given by F = mv²/r where m is the mass of the car, v is the velocity of the car, and r is the radius of the turn. We know that the required centripetal force is equal to the maximum frictional force that can be provided by the tires. Therefore,

F = μN

F = μmg

So,
mv²/r = μmg

m = μgr/v²

Now we can substitute the values in the above formula to calculate the required coefficient of friction.

μ = mv²/(gr)

μ = v²/(gr) × m = (10.56)²/(160 × 9.81)

μ = 0.205

So, the required coefficient of friction to keep the car on the road is μ = 0.205.

to know more about coefficient of friction visit:

brainly.com/question/29281540

#SPJ11

This time we have a crate of mass 30.9 kg on an inclined surface, with a coefficient of kinetic friction 0.118. Instead of pushing on the crate, you let it slide down due to gravity. What must the angle of the incline be, in order for the crate to slide with an acceleration of 3.66 m/s^2?
22.8 degrees
39.9 degrees
25.7 degrees
28.5 degrees
A block of mass 1.17 kg is placed on a frictionless floor and initially pushed northward, whereupon it begins sliding with a constant speed of 3.12 m/s. It eventually collides with a second, stationary block, of mass 4.79 kg, head-on, and rebounds back to the south. The collision is 100% elastic. What will be the speeds of the 1.17-kg and 4.79-kg blocks, respectively, after this collision?
1.33 m/s and 1.73 m/s
1.90 m/s and 1.22 m/s
1.22 m/s and 1.90 m/s
1.88 m/s and 1.56 m/s

Answers

The correct answer for the speeds of the 1.17-kg and 4.79-kg blocks, respectively, after the collision is approximately 1.22 m/s and 1.90 m/s.

To determine the angle of the incline in the first scenario, we can use the following equation:

\(a = g \cdot \sin(\theta) - \mu_k \cdot g \cdot \cos(\theta)\)

Where:

\(a\) is the acceleration of the crate (3.66 m/s\(^2\))

\(g\) is the acceleration due to gravity (9.8 m/s\(^2\))

\(\theta\) is the angle of the incline

\(\mu_k\) is the coefficient of kinetic friction (0.118)

Substituting the given values into the equation, we have:

\(3.66 = 9.8 \cdot \sin(\theta) - 0.118 \cdot 9.8 \cdot \cos(\theta)\)

To solve this equation for \(\theta\), we can use numerical methods or algebraic approximation techniques.

By solving the equation, we find that the closest angle to the given options is approximately 28.5 degrees.

Therefore, the correct answer for the angle of the incline in order for the crate to slide with an acceleration of 3.66 m/s\(^2\) is 28.5 degrees.

For the second scenario, where two blocks collide elastically, we can apply the conservation of momentum and kinetic energy.

Since the collision is head-on and the system is isolated, the total momentum before and after the collision is conserved:

\(m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_1' + m_2 \cdot v_2'\)

where:

\(m_1\) is the mass of the first block (1.17 kg)

\(v_1\) is the initial velocity of the first block (3.12 m/s)

\(m_2\) is the mass of the second block (4.79 kg)

\(v_1'\) is the final velocity of the first block after the collision

\(v_2'\) is the final velocity of the second block after the collision

Since the collision is elastic, the total kinetic energy before and after the collision is conserved:

\(\frac{1}{2} m_1 \cdot v_1^2 + \frac{1}{2} m_2 \cdot v_2^2 = \frac{1}{2} m_1 \cdot v_1'^2 + \frac{1}{2} m_2 \cdot v_2'^2\)

Substituting the given values into the equations, we can solve for \(v_1'\) and \(v_2'\). Calculating the velocities, we find:

\(v_1' \approx 1.22 \, \text{m/s}\)

\(v_2' \approx 1.90 \, \text{m/s}\)

Therefore, the correct answer for the speeds of the 1.17-kg and 4.79-kg blocks, respectively, after the collision is approximately 1.22 m/s and 1.90 m/s.

Learn more about collision from the given link:

https://brainly.com/question/7221794

#SPJ11

If an electron has a measured wavelength of 0.850 x 10¹0 m. what is its kinetic energy? (h=6.63 x 1034 J-s. 1 eV = 1.6 x 10-19 J, and me = 9.11 x 1031 kg)

Answers

The kinetic energy of the electron is approximately 24.94 eV.

To calculate the kinetic energy of an electron, we can use the de Broglie wavelength equation, which relates the wavelength of a particle to its momentum:

λ = h / p

where λ is the wavelength, h is the Planck's constant, and p is the momentum.

Since we are given the wavelength (λ = 0.850 x 10¹⁰ m), we can rearrange the equation to solve for the momentum:

p = h / λ

Substituting the values, we have:

p = (6.63 x 10⁻³⁴ J·s) / (0.850 x 10¹⁰ m)

Calculating this expression, we find:

p ≈ 7.8 x 10⁻²⁵ kg·m/s

Next, we can calculate the kinetic energy (K) using the formula for kinetic energy:

K = p² / (2m)

where m is the mass of the electron.

Substituting the values, we have:

K = (7.8 x 10⁻²⁵ kg·m/s)² / (2 * 9.11 x 10⁻³¹ kg)

Calculating this expression, we find:

K ≈ 3.99 x 10⁻¹⁸ J

Finally, we can convert the kinetic energy to electron volts (eV) using the conversion factor:

1 eV = 1.6 x 10⁻¹⁹ J

So, the kinetic energy of the electron is:

K ≈ (3.99 x 10⁻¹⁸ J) / (1.6 x 10⁻¹⁹ J/eV) ≈ 24.94 eV

Therefore, the kinetic energy of the electron is approximately 24.94 eV.

Learn more about kinetic energy here:

brainly.com/question/29552176

#SPJ11

A 3 kg cannon ball is loaded into a 200 kg cannon. When the
cannon is fired, it recoils at 6 m/s. What is the cannon ball’s
velocity after the explosion?

Answers

 The cannonball's velocity after the explosion is 400 m/s.

To find the cannonball's velocity after the explosion, we can use the principle of conservation of momentum. According to this principle, the total momentum before the explosion is equal to the total momentum after the explosion.

The momentum of an object is calculated by multiplying its mass by its velocity.

Let's assume the initial velocity of the cannonball is v1, and the final velocity of the cannonball after the explosion is v2.

According to the conservation of momentum:

Initial momentum = Final momentum

(3 kg) * (v1) + (200 kg) * (0) = (3 kg) * (v2) + (200 kg) * (-6 m/s)

Since the cannon is initially at rest, the initial velocity of the cannonball (v1) is 0 m/s.

0 = 3v2 - 1200

Rearranging the equation, we find:

3v2 = 1200

v2 = 400 m/s

After the explosion, the cannonball will have a velocity of 400 m/s. This means it will move away from the cannon with a speed of 400 m/s.

To know more about velocity visit:  

https://brainly.com/question/80295

#SPJ11  

Other Questions
An average-sized asteroid located 9.0x107 km from Earth with mass 4.00x1013 kg is detected headed directly toward Earth with speed of 4.70 km/s. What will its kinetic energy just before it hits Earth? speed be just before it hits our atmosphere? (You may ignore the size of the asteroid.)What is the speed of the asteroid just before it hits Earth?Compare this energy to the output of the largest fission bomb, 2200 TJ. Find the ratio of the kinetic energy to that of the bomb (What impact would this have on Earth?) What does IAU stands for? Madeleine invests $12,000 at an interest rate of 5%, compounded continuously. (a) What is the instantaneous growth rate of the investment? (b) Find the amount of the investment after 5 years. (Round your answer to the nearest cent.) (c) If the investment was compounded only quarterly, what would be the amount after 5 years? Every student who takes Chemistry this semester has passed Math. Everyone who passed Math has an exam this week. Mariam is a student. Therefore, if Mariam takes Chemistry, then she has an exam this week". a) (10 pts) Translate the above statement into symbolic notation using the letters S(x), C(x), M(x), E(x), m a) (15 pts) By using predicate logic check if the argument is valid or not. An ammonia refrigeration cycle involves the conversion of 0.78 kg of liquid ammonia into vapor every minute at the boiling-point temperature. Part A At what rate does the ammonia absorb energy? Expres Discuss, in your own words, the importance ofinventory management pertaining to the product"materials" and the final finished good. A radio station transmits isotropic Car in all directions) eletromagnetic radiation at fresurney 928 M Hz. At a certain distance from the caulio station the chave intensity I = 0.335 W/m IS a) what will be the intensity of the wave at half distance from the radio station? b) What is the mave length of the transmitted signale c) If the power of the antenna is 6 MHz, At what distance from the source will the intenste p ve be O. 168 W/m ? of the d) And, what will be the absorption pressure exerted by the wave at that distance? e) And what will be the effectue electric field. crins) exerted by the by the wave at that distance? Anne is going to an exhibit called "Portraits of Ancient Japan". What is she most likely to assume will unite all the paintings in this exhibit?A. country, era, and mediumB. genre, era, and countryC.medium, artist. and styleD. style, genre, and medium Explain the significance of the slopes of each of the three rising segments. why are the slopes different? A long straight wire carries a current of 50 A in the positive y-direction. An electron, traveling at Ix10^7m/s, is 5.0 cm from the wire. What is the magnitude and direction of the magnetic force on the electron if the electron velocityis directed (a) toward the wire, (b) parallel to the wire in the direction of the current, and (c) perpendicular to the two directions defined by (a) and (b)? An elevator has mass 630 kg, not including passengers. The elevator is designed to ascend, at constant speed, a vertical distance of 22.0 m (five floors) in 16.0 s, and it is driven by a motor that can provide up to 36 hp to the elevator. What is the maximum number of passengers that can ride in the elevator? A barge floating on fresh water is 5.893 m wide and 8.760 m long. when a truck pulls onto it, the barge sinks 7.65 cm deeper into the water.what is the weight (in kN) of the truck?a) 38.1 kNb) 38.5 kNc) 38.7 kNd) 38.3 kNe) none of these MAX POINTS!!!Lab: Kinetic EnergyAssignment: Lab ReportPLEASE GIVE FULL ESSAY UNHELPFUL ANSWERS WILL BE REPORTED 1. which of these statements concerning tissue remodelling during wound repair is false?a. collagen type iii synthesis predominates in the early stage of healing. b. after 6-12 months, tensile strength is equivalent to normal tissue.c. in the first two months, collagen synthesis exceeds degradation.d. the increase in strength is mediated by collagen cross-linking and the formation of bundles.e. in the first month the tensile strength is about 10% of normal.2. which of the following is a product of the coagulation cascade which is important in the early stages of wound healing by second intention?a. vascular endothelial growth factorb. collagenc.fibrind.bradykinine.interleukin 6 In this episode, the student is the head of Information Technology (IT) Services. When student test results for an upstanding member of the community come back as positive for Syphilis, the student is presented with some ethical decision making challenges based on laws requiring that the results be reported to the state Public Health department, versus the ethics of patient/physician confidentiality. How long will it take for 30 grams of Rn-222 to decay to 7.5g?Half-Life: 3.823 Days A firm just paid a dividend of $3.27. The dividend is expected to grow at a rate of the first year and 15% the second year. The dividend is then expected to grow at a constant rate of 3.34% forever and the required rate of return is 14.33%. What is the value of the stock? a. $36.97 b. $37.22 c. $39.35 d. $42.01 In a running competition, a bronze, silver and gold medal must be given to the top three girls and top three boys. If 11 boys and 8 girls are competing, how many different ways could the six medals possibly be given out? at the movie theatre, child admission is $5.20 and adult admission is $9.60 on sunday, 131 tickets were sold for a total sales of $1020.00 how many adult tickets were sold that day We are 7.8 meters from a speaker putting out 0.625 Watts of sound power uniformly in all directions, and also 4.3 meters from a speaker putting out .258 Watts uniformly. Find the decibel level for the sound noise we will hear. (Hint: this will take a couple steps)