Answer:
a) t = 6.62 s
b) x = 238.6 m
c) H = 53.7 m
Explanation:
a) We can find the time of flight as follows:
[tex] y_{f} = y_{0} + v_{0_{y}}t - \frac{1}{2}gt^{2} [/tex]
Where:
[tex]y_{f}[/tex] is the final height = 0
[tex]y_{0}[/tex] is the initial height = 0
[tex]v_{0_{y}}[/tex] is the initial vertical velocity of the stone
t: is the time
g: is the gravity = 9.81 m/s²
[tex] v_{0}sin(42)t - \frac{1}{2}gt^{2} = 0 [/tex]
[tex] 48.5 m/s*sin(42)*t - \frac{1}{2}9.81 m/s^{2}*t^{2} = 0 [/tex]
By solving the above quadratic equation we have:
t = 6.62 s
b) The maximum range is:
[tex] x = v_{0_{x}}t = 48.5 m/s*cos(42)*6.62 s = 238.6 m [/tex]
c) The maximum height (H) can be found knowing that at this height the final vertical velocity of the stone is zero:
[tex] v_{f_{y}}^{2} = v_{0_{y}}^{2} - 2gH [/tex]
[tex] H = \frac{v_{0_{y}}^{2} - v_{f_{y}}^{2}}{2g} = \frac{(48.5 m/s*sin(42))^{2} - 0}{2*9.81 m/s^{2}} = 53.7 m [/tex]
I hope it helps you!
Freida wants to model the way atoms move when a substance changes its state. To do this, Freida makes a pyramid of marshmallows. Then, she knocked down the pyramid causing the marshmallows to fall. If the marshmallows represent the atoms in the substance, which change of state is Freida modeling?
Answer:melting 2020 edge
Explanation:
:)
Answer:
Melting
Explanation: