They got 5 yards on 3 plays. For total yards multiply the 3 plays by 5 yards. The first play was negative, so add the negative value. The answer is A.
Answer:
A
Step-by-step explanation:
Which functions have an axis of symmetry of x = -2? Check all that apply. A. f(x) = x^2 + 4x + 3 B. f(x) = x^2 - 4x - 5 C. f(x) = x^2 + 6x + 2 D. f(x) = -2x^2 - 8x + 1 E. f(x) = -2x^2 + 8x - 2
Answer:
A. f(x) = x^2 + 4x + 3
D. f(x) = -2x^2 - 8x + 1
Step-by-step explanation:
The axis of symmetry is found by h = -b/2a where ax^2 +bx +c
A. f(x) = x^2 + 4x + 3
h = -4/2*1 = -2 x=-2
B. f(x) = x^2 - 4x - 5
h = - -4/2*1 = 4/2 =2 x=2 not -2
C. f(x) = x^2 + 6x + 2
h = -6/2*1 = -3/2 = x=-3/2 not -2
D. f(x) = -2x^2 - 8x + 1
h = - -8/2*-2 = 8/-4 =-2 x=-2
E. f(x) = -2x^2 + 8x - 2
h = - 8/2*-2 = -8/-4 =2 x=2 not -2
Answer:
Hey there! The answer to this question is
A. f(x) = x^2 + 4x + 3
D. f(x) = -2x^2 - 8x + 1
SOMEBODY HELP
Jill bought 7 books more than Sam. If Sam and Jill together have 25 books, find the
number of books Sam has.
Answer:
Jill bought 16 books and Sam bought 9 books
Step-by-step explanation:
Let the number of books that Jill bought be j.
Let the number of books that Sam bought be s.
Jill bought 7 more books than Sam:
j = 7 + s
They bought 25 books altogether:
j + s = 25
Put j = 7 + s into the second equation:
7 + s + s = 25
7 + 2s = 25
2s = 25 - 7 = 18
s = 18/2 = 9 books
Therefore:
j = 7 + s = 7 + 9
s = 16 books
Jill bought 16 books and Sam bought 9 books.
a water storage tank is in the shape of a hemisphere. If the radius is 29ft, approximate the volume of the tank in cubic feet
Answer:
The answer is 51080.2 cubic feetStep-by-step explanation:
Volume of a hemisphere is given by
[tex]V = \frac{2}{3} \pi {r}^{3} [/tex]
where r is the radius of the hemisphere
From the question
r = 29 ft
Substitute the value of r into the formula
That's
[tex]V = \frac{2}{3} \pi \times {29}^{3} [/tex]
[tex]V = \frac{48778}{3} \pi[/tex]
We have the final answer as
V = 51080.2 cubic feetHope this helps you
Researchers fed mice a specific amount of Dieldrin, a poisonous pesticide, and studied their nervous systems to find out why Dieldrin causes seizures. The absolute refractory period, time required for nerves to recover after a stimulus, was measured and varies Normally. The measurements, in milliseconds, for six mice were 2.2, 2.4, 2.5, 2.5, 2.6, and 2.7. (10 points) Part A: Find the mean refractory period and the standard error of the mean. (2 points) Part B: Calculate a 98% confidence interval for the mean absolute refractory period for all mice when subjected to the same treatment. (4 points) Part C: Suppose the mean absolute refractory period for unpoisoned mice is known to be 2.3 milliseconds. Dieldrin poisoning should slow nerve recovery and therefore increase this period. Do the data give good evidence to support this theory? What can you conclude from a hypothesis test? Justify your response with statistical reasoning. (4 points)
Answer:
Step-by-step explanation:
Part A
Mean = (2.2 + 2.4 + 2.5 + 2.5 + 2.6 + 2.7)/6 = 2.48
Standard deviation = √(summation(x - mean)²/n
n = 6
Summation(x - mean)² = (2.2 - 2.48)^2 + (2.4 - 2.48)^2 + (2.5 - 2.48)^2 + (2.5 - 2.48)^2 + (2.6 - 2.48)^2 + (2.7 - 2.48)^2 = 0.1484
Standard deviation = √(0.1484/6
s = 0.16
Standard error = s/√n = 0.16/√6 = 0.065
Part B
Confidence interval is written as sample mean ± margin of error
Margin of error = z × s/√n
Since sample size is small and population standard deviation is unknown, z for 98% confidence level would be the t score from the student t distribution table. Degree of freedom = n - 1 = 6 - 1 = 5
Therefore, z = 3.365
Margin of error = 3.365 × 0.16/√6 = 0.22
Confidence interval is 2.48 ± 0.22
Part C
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
H0: µ = 2.3
For the alternative hypothesis,
H1: µ > 2.3
This is a right tailed test
Since the number of samples is small and no population standard deviation is given, the distribution is a student's t.
Since n = 6
Degrees of freedom, df = n - 1 = 6 - 1 = 5
t = (x - µ)/(s/√n)
Where
x = sample mean = 2.48
µ = population mean = 2.3
s = samples standard deviation = 0.16
t = (2.48 - 2.3)/(0.16/√6) = 2.76
We would determine the p value using the t test calculator. It becomes
p = 0.02
Assuming significance level, alpha = 0.05.
Since alpha, 0.05 > than the p value, 0.02, then we would reject the null hypothesis. Therefore, At a 5% level of significance, the sample data showed significant evidence that the mean absolute refractory period for all mice when subjected to the same treatment increased.
What is the greatest common factor of the polynomial below 12x^2-9x
Answer:
the greatest common factor of this is 3
Please answer this correctly
Assuming the coin is not weighted and is a fair and standard coin - the chance of flipping head is 1/2. You can either flip head or tails, there are no other possible outcomes.
Pls hurry least to greatest
Answer:
First choice
Step-by-step explanation:
Start by arranging the exponents of 10 in ascending order.
9.4 * 10^-8, 9.25 * 10^-6, 2.5 * 10^3, 7 * 10^3
The exponents are in ascending order, -8, -6, 3, 3
Since the last two exponents are equal, we must compare the numbers that multiply the powers of 10. They are 2.5 and 7. Since 2.5 < 7, ascending order is 2.5, 7. That means the line above is in ascending order.
Answer: First choice
Use the place value chart to write 9.807.
Answer:
9 ones, 8 tenths, 0 hundredths, 7 thousandths
Step-by-step explanation:
Answer:
9 thousands
8 hundreds
0 tens
7 ones
Step-by-step explanation:
Hope it helped!
a)3x-1/5=2x+3/7
b)4x/5-3x/10=2
is this what u need.....
In order to study the mean blood pressure of people in his town, Richard samples the population by dividing the residents by age and randomly selecting a proportionate number of residents from each age group. Which type of sampling is used?
Answer:
Stratified sampling
Step-by-step explanation:
Samples may be classified as:
Convenient: Sample drawn from a conveniently available pool.
Random: Basically, put all the options into a hat and drawn some of them.
Systematic: Every kth element is taken. For example, you want to survey something on the street, you interview every 5th person, for example.
Cluster: Divides population into groups, called clusters, and each element in the cluster is surveyed.
Stratified: Also divides the population into groups. However, then only some elements of the group are surveyed.
In this question:
Population divided into groups. Some members of each group are surveyed. This is stratified sampling
Given that triangle DAE ~ triangle BAC, what is the length of side AE?
Answer:
12
Step-by-step explanation:
For polygons that are similar to each other, the ratio of their corresponding sides are usually equal to each other, as they are proportional.
Therefore, given that ∆DAE is similar to ∆BAC, AD = 6, AB = 6+4 = 10, AE = x, AC = x + 8, therefore:
AD/AB = AE/AC
6/10 = x/(x+8)
Cross multiply
6*(x+8) = x*10
6x + 48 = 10x
Subtract 6x from both sides
48 = 10x - 6x
48 = 4x
Divide both sides by 4
48/4 = x
x = 12
Length of side AE = 12
There are two boxes containing only black and orange pens.
Box A has 4 black pens and 16 orange pens.
Box B has 2 black pens and 3 orange pens.
A pen is randomly chosen from each box. List these events from least likely to most likely.
Event 1: choosing a black pen from Box A.
Event 2: choosing a black or orange pen from Box A.
Event 3: choosing a white pen from Box B.
Event 4: choosing a black pen from Box B.
Answer:
Event 3 -> Event 1 -> Event 4 -> Event 2
Step-by-step explanation:
The probability of choosing a certain pen is the number of that pen in the box over the total number of pens in the box.
So we have that:
Event 1: We have 4 black pen and 20 total pens, so P = 4 / 20 = 1 / 5
Event 2: All pens are black or orange so the probability is 1.
Event 3: We don't have white pens, so the probability is 0.
Event 4: We have 2 black pen and 5 total pens, so P = 2 / 5
Listing from least likely to most likely, we have:
Event 3 -> Event 1 -> Event 4 -> Event 2
In 1998, the average price for bananas was 51 cents per pound. In 2003, the following 7 sample prices (in cents) were obtained from local markets:
50, 53, 55, 43, 50, 47, 58.
Is there significant evidence to suggest that the average retail price of bananas is different than 51 cents per pound? Test at the 5% significance level.
Answer:
[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]
The degrees of freedom are given by:
[tex]df=n-1=7-1=6[/tex]
The p value for this case would be given:
[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]
The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51
Step-by-step explanation:
Info given
50, 53, 55, 43, 50, 47, 58.
We can calculate the sample mean and deviation with this formula:
[tex]\bar X=\frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex]s=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2)}{n-1}}[/tex]
represent the mean height for the sample
[tex]s=5.014[/tex] represent the sample standard deviation for the sample
[tex]n=7[/tex] sample size
represent the value that we want to test
[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.
t would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value
Hypothesis to test
We want to test if the true mean is equal to 51, the system of hypothesis would be:
Null hypothesis:[tex]\mu = 51[/tex]
Alternative hypothesis:[tex]\mu \neq 51[/tex]
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
Replacing we got:
[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]
The degrees of freedom are given by:
[tex]df=n-1=7-1=6[/tex]
The p value for this case would be given:
[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]
The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51
Several terms of a sequence StartSet a Subscript n EndSet Subscript n equals 1 Superscript infinity are given below. {1, negative 5, 25, negative 125, 625, ...} a. Find the next two terms of the sequence. b. Find a recurrence relation that generates the sequence (supply the initial value of the index and the first term of the sequence). c. Find an explicit formula for the general nth term of the sequence.
Answer:
(a) -3125, 15625
(b)
[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]
(c)[tex]a_n=(-5)^{n-1}[/tex]
Step-by-step explanation:
The sequence [tex]a_n$ _{n=1}^\infty[/tex] is given as:
[tex]\{1,-5,25,-125,625,\cdots\}[/tex]
(a)The next two terms of the sequence are:
625 X -5 = - 3125
-3125 X -5 =15625
(b)Recurrence Relation
The recurrence relation that generates the sequence is:
[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]
(c)Explicit Formula
The sequence is an alternating geometric sequence where:
Common Ratio, r=-5First Term, a=1Therefore, an explicit formula for the sequence is:
[tex]a_n=1\times (-5)^{n-1}\\a_n=(-5)^{n-1}[/tex]
1/3 times the difference of a number and five is -2/3 which equation best shows this
Answer:
[tex]\frac{1}{3}*(x-5)=\frac{-2}{3}[/tex]
Step-by-step explanation:
Let the number be x
Difference of a number & 5 : x-5
1/3 time the difference of a number & 5: 1/3 (x-5)
Equation:
[tex]\frac{1}{3}*(x-5)=\frac{-2}{3}[/tex]
Solution:
[tex]x-5=\frac{-2}{3}*\frac{3}{1}\\\\x-5=-2\\\\x=-2+5\\x=3[/tex]
can I get some help please?
━━━━━━━☆☆━━━━━━━
▹ Answer
2,013 cartons
▹ Step-by-Step Explanation
72,468 ÷ 36 = 2,013 cartons
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Answer:
72,468 eggs divided by 36 eggs per carton=2,013 cartons
Step-by-step explanation:
Please answer this correctly
Answer:
[tex] \frac{1}{6} [/tex]
Step-by-step explanation:
the ways of choosing 2 cards out of 4, is calculator by
[tex] \binom{4}{2} = 6[/tex]
so, 6 ways to select 2 cards.
but in only one way we can have 2 even cards. thus, the answer is
[tex] \frac{1}{6} [/tex]
Solve: -1/2+ c =31/4 c=8 c=7 c=33/4 c=29/4
Answer:
c = 29/4Step-by-step explanation:
[tex] - \frac{1}{2} + c = \frac{31 }{4} \\ \\ c = \frac{31}{4} + \frac{1}{2} = \frac{31 - 2}{4} \\ \\ c = \frac{29}{4} [/tex]
Hope this helps you
The life of light bulbs is distributed normally. The standard deviation of the lifetime is 25 hours and the mean lifetime of a bulb is 510 hours. Find the probability of a bulb lasting for at most 552 hours.
Answer:
The probability of a bulb lasting for at most 552 hours.
P(x>552) = 0.0515
Step-by-step explanation:
Step(i):-
Given mean of the life time of a bulb = 510 hours
Standard deviation of the lifetime of a bulb = 25 hours
Let 'X' be the random variable in normal distribution
Let 'x' = 552
[tex]Z = \frac{x-mean}{S.D} = \frac{552-510}{25} =1.628[/tex]
Step(ii):-
The probability of a bulb lasting for at most 552 hours.
P(x>552) = P(Z>1.63)
= 1- P( Z< 1.63)
= 1 - ( 0.5 + A(1.63)
= 1- 0.5 - A(1.63)
= 0.5 -A(1.63)
= 0.5 -0.4485
= 0.0515
Conclusion:-
The probability of a bulb lasting for at most 552 hours.
P(x>552) = 0.0515
What is the value of the angle marked with xxx?
Answer:
Here you go!! :)
Step-by-step explanation:
Given that the sides of the quadrilateral are 3.3
The measure of one angle is 116°
We need to determine the value of x.
Value of x:
Since, the given quadrilateral is a rhombus because it has all four sides equal.
We know the property that the opposite sides of the rhombus are equal.
The measure of the opposite angle is 116°
x = measure of opposite angle
x = 116°
Then, the value of x is 116°
Therefore, the value of x is 116°
Answer:
In the diagram, the measurement of x is 87°
Step-by-step explanation:
In this diagram, this shape is a quadrilateral. This quadrilateral in this picture is known as rhombus. In a rhombus, the consecutive angles are supplementary meaning they have a sum of 180°. Consecutive means the angles are beside each other. So, we will subtract 93 from 180 to find the value of x.
180 - 93 = 87
The measurement of x is 87°
vertex form of x^2+6x+3
Answer:
y = (x + 3)^2 - 6.
Step-by-step explanation:
The vertex formula is Y = a(x - h)^2 + k.
To find the vertex formula, we need to find h and k, by finding the vertex of x^2 + 6x + 3.
h = -b/2a
a = 1, b = 6.
h = -6 / 2 * 1 = -6 / 2 = -3
k = (-3)^2 + 6(-3) + 3 = 9 - 18 + 3 = -9 + 3 = -6
So far, we have Y = a(x - (-3))^2 + -6, so y = a(x + 3)^2 - 6.
In this case, the coefficient of x^2 of the given formula is 1, which means that a will be 1.
The vertex form of x^2 + 6x + 3 is y = (x + 3)^2 - 6.
To check our work...
y = (x + 3)^2 - 6
= x^2 + 3x + 3x + 9 - 6
= x^2 + 6x + 3
Hope this helps!
what is 3(C - 5) = 48
Answer:
c=21
Step-by-step explanation:
[tex]3(c-5)=48\\3c-15=48\\3c=48+15\\3c=63\\c=63/3\\c=21[/tex]
Hope this helps,
plx give brainliest
Answer:
c=21
Step-by-step explanation:
3(c−5)=48
Divide both sides by 3.
c-5=48/3
Divide 48 by 3 to get 16.
c−5=16
Add 5 to both sides.
c=16+5
Add 16 and 5 to get 21.
c=21
Select the correct answer from each drop-down menu.
The given equation has been solved in the table.
Answer: a) additive inverse (addition)
b) multiplicative inverse (division)
Step-by-step explanation:
Step 2: 6 is being added to both sides
Step 4: (3/4) is being divided from both sides
It is difficult to know what options are provided in the drop-down menu without seeing them. If I was to complete a proof and justify each step, then the following justifications would be used:
Step 2: Addition Property of Equality
Step 4: Division Property of Equality
Please answer this correctly without making mistakes
Answer: Anything above 2
Step-by-step explanation:
Answer: 3,4,5,6,7,8,9 (Any of these digits work)
Step-by-step explanation:
We want to find a digit that makes the number greater than 3260.2. There are many digits that can fit in there.
3318.7≥3260.2
Here, we plugged in a 3. that makes this sentence true because 3318.7 is greater than or equal to 3260.2. Since 3 works, we know that any digit greater than 3 would fit.
A boat that can travel 18 mph in still water can travel 21 miles downstream in the same amount of time that it can travel 15 miles upstream. Find the speed (in mph) of the current in the river.
Hey there! I'm happy to help!
We see that if the river isn't moving at all the boat can move at 18 mph (most likely because it has an engine propelling it.)
We want to set up a proportion where our 21 miles downstream time is equal to our 15 miles upstream time so we can find the speed. A proportion is basically showing that two ratios are equal. Since our downstream distance and upstream distance can be done in the same amount of time, we will write it as a proportion.
We want to find the speed of the river. We will use r to represent the speed of the river. When going downstream, the boat will go faster, so it will have a higher mph. So, our speed going down is 18+r. When you are going upstream, it's the opposite, so it will be 18-r.
[tex]\frac{distance}{speed} =\frac{21}{18+r} = \frac{15}{18-r}[/tex]
So, how do we figure out what r is now? Well, one nice thing to know about proportions is that the product of the items diagonal from each other equals the product of the other items. Basically, that means that 15(18+r) is equal to 21(18-r). This is a very nice trick to solve proportions quickly. We see that we have made an equation and now we can solve it!
15(18+r)=21(18-r)
We use the distributive property to undo the parentheses.
270+15r=378-21r
We subtract 270 from both sides.
15r=108-21
We add 21 to both sides.
36r=108
We divide both sides by 36.
r=3
Therefore, the speed of the river is 3 mph.
You also could have noticed that 18mph to 21 mph is +3, and 18mph to 15 mph -3 in -3 mph, so the speed of the river is 3 mph. That would have been a quicker way to solve it XD!
Have a wonderful day!
A 90% confidence interval for the average salary of all CEOs in the electronics industry was constructed using the results of a random survey of 45 CEOs. The interval was ($139,048, $154,144). Give a practical interpretation of the interval.
a) 90% of the sampled CEOs have salaries that fell in the interval $139,048 to $154,144b) We are 90% confident that the mean salary of all CEOs in the electronics industry falls in the interval $139,048 to $154,144. c) 90% of all CEOs in the electronics industry have salaries that fall between $139,048 to $154,144d) We are 90% confident that the mean salary of the sampled CEOs falls in the interval $139,048 to $154,144.
Answer:
b) We are 90% confident that the mean salary of all CEOs in the electronics industry falls in the interval $139,048 to $154,144.
Step-by-step explanation:
Confidence interval:
Confidence level of x%
We build from a sample.
Between a and b.
Intepretation: We are x% sure that the population mean is between a and b.
In this question:
90%
45 CEO's
Between ($139,048, $154,144).
So
We are 90% sure that the mean salary of all CEO's falls within this interval.
The correct answer is:
b) We are 90% confident that the mean salary of all CEOs in the electronics industry falls in the interval $139,048 to $154,144.
Determine the sum of the arithmetic series 6 + 11 + 16 +......
91.
Answer:
873
Step-by-step explanation:
so the equation is: 5x+1
sum is:
[tex] \frac{first \: one \: + \: last \: one}{2} \times quantity \: of \: terms \\ [/tex]
we have 6( 5×1+1) to 91 (5×18+1)
so we have 18 terms
then:
[tex] \frac{91 + 6}{2} \times 18 = 873[/tex]
Given the parametric equations below, eliminate the parameter t to obtain an equation for y as a function of x { x ( t ) = 5 √ t y ( t ) = 7 t + 4
Answer:
y(x) = (7/25)x^2 + 4
Step-by-step explanation:
Given:
x = 5*sqrt(t) .............(1)
y = 7*t+4 ..................(2)
solution:
square (1) on both sides
x^2 = 25t
solve for t
t = x^2 / 25 .........(3)
substitute (3) in (2)
y = 7*(x^2/25) +4
y= (7/25)x^2 + 4
Which of the following is the
graph of
(x - 3)2 + (y - 1)2 = 9 ?
Answer:
Answer is A
Step-by-step explanation:
The equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.
What does the equation of a circle represent?The general equation of a circle is of the form (x - h)² + (y - k)² = r², where (h, k) is the point where the center of the given circle lies, and r is the radius of this given circle.
How to solve the question?In the question, we are asked to find the graph from the given options which represents the equation (x - 3)² + (y - 1)² = 9.
Comparing the given equation, (x - 3)² + (y - 1)² = 9, to the general equation, (x - h)² + (y - k)² = r², we can say that h = 3, k = 1, and r = 3.
Thus the center of the given circle lies at the point (3, 1) and its radius is 3 units.
Now we check the options to find the matching circle:
Option A: The center is at the point (3, -1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Option B: The center is at the point (3, 1), and the radius is 3 units, which is similar to the equation (x - 3)² + (y - 1)² = 9. Thus, this is the right choice.Option C: The center is at the point (-3, 1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Therefore, the equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.
Learn more about circles at
https://brainly.com/question/1559324
#SPJ2
Please answer this correctly
Answer:
1/8
Step-by-step explanation:
Total cards = 8
Card with 4 = 1
P(4) = 1/8