Determine the molar solubility of Ag2CrO4 in a solution containing 0. 153 M AgNO3. The Ksp for Ag2CrO4 is 2. 0 × 10^-12. A) 8. 5 × 10^-11 M

B) 4. 2 × 10^-5 M

C) 1. 9 × 10^-2 M

D) 7. 2 × 10^-5 M

E) 1. 3 × 10^-11 M

Answers

Answer 1

The closest answer option is B) [tex]4.2\times 10^-5 M[/tex], which is within reasonable rounding error.

What is solubility equilibrium?

Solubility equilibrium is a type of chemical equilibrium that occurs when a solid compound is in contact with a solvent, and a dynamic balance is established between the dissolved ions and the undissolved solid. At this point, the concentration of the dissolved ions remains constant over time, and the undissolved solid appears to be at rest or "saturated".

The solubility equilibrium for [tex]Ag$_2$CrO$_4$[/tex] can be represented as:
[tex]\begin{equation}\text{Ag}_2\text{CrO}_4\text{(s)} \rightleftharpoons 2\text{Ag}^{+}(\text{aq}) + \text{CrO}_4^{2-}(\text{aq})\end{equation}[/tex]
The Ksp expression for this equilibrium is:
[tex]\begin{equation}\text{K}_{\text{sp}} = [\text{Ag}^{+}]^2[\text{CrO}_4^{2-}]\end{equation}[/tex]
To perform the calculations, we can use the given values of [tex][Ag$^{+}$][/tex] and [tex]K$_{\text{sp}}$[/tex], and assume that x is the molar solubility of [tex]Ag$_2$CrO$_4$[/tex] in mol/L. At equilibrium, the concentration of [tex]Ag$^{+}$[/tex] and [tex]CrO$_4^{2-}$[/tex] will both be 2x mol/L. So, we can write:
[tex]\begin{equation}\text{K}_{\text{sp}} = (2x)^2(x) = 4x^3\end{equation}[/tex]

Solving for x, we get:
[tex]\begin{equation}x = \left(\frac{\text{K}_{\text{sp}}}{4}\right)^{\frac{1}{3}} = \left(\frac{2.0\times10^{-12}}{4}\right)^{\frac{1}{3}} = 5.3\times10^{-5} \text{ M}\end{equation}[/tex]
Therefore, the molar solubility of [tex]Ag$_2$CrO$_4$[/tex] in the presence of
0.153 M AgNO[tex]$_3$ is 5.3 $\times$ 10$^{-5}$ M[/tex].

To know more about solubility equilibrium visit:

https://brainly.com/question/29610286

#SPJ4


Related Questions

How can the amidomalonate method be applied to synthesize phenylalanine in two steps?

Answers

The amidomalonate method is a useful technique for synthesizing α-amino acids, such as phenylalanine.

It involves the reaction of an aldehyde with an amidomalonate to form an α-iminoester, which is then hydrolyzed and reduced to yield the α-amino acid.Here's how the amidomalonate method can be applied to synthesize phenylalanine in two steps:

Step 1: Synthesis of phenylpyruvate

The first step involves the reaction of benzaldehyde with amidomalonate to form an α-iminoester, which can be hydrolyzed to produce phenylpyruvate. The reaction scheme is as follows:

Benzaldehyde + Amidomalonate → α-Iminoester → Phenylpyruvate + NH3

Step 2: Reduction of phenylpyruvate to phenylalanine

The second step involves the reduction of phenylpyruvate to phenylalanine using sodium borohydride (NaBH4) as a reducing agent. The reaction scheme is as follows:

Phenylpyruvate + NaBH4 → Phenylalanine

Overall, the two-step synthesis of phenylalanine using the amidomalonate method involves the following reactions:

Benzaldehyde + Amidomalonate → α-Iminoester → Phenylpyruvate + NH3

Phenylpyruvate + NaBH4 → Phenylalanine

This method provides an efficient and practical route to synthesize phenylalanine in only two steps, which is useful for both laboratory-scale and industrial-scale production of this important amino acid.

To know more about refer phenylalanine here

brainly.com/question/14951426#

#SPJ11

Use the information and table to answer the following question A student is planning to determine the specific heat of iron. To do this experiment the student will need to perform the following procedures: StepProcedure 1 Measure the mass of the iron sample 2 Measure the initial temperature of a known volume of water 3 Heat the iron sample . 4 Place the iron sample in the water What is Step 5 in the experiment?

Answers

Based on the given information and procedure steps, Step 5 in the experiment would be to measure the final temperature of the water after adding the heated iron sample.

Why is measuring the final temperature a necessary step?

This step is necessary to determine the change in temperature of the water, which is used to calculate the heat gained by the water and the heat lost by the iron sample.

By measuring the initial and final temperatures of the water, the student can determine the temperature change and use it in the calculation of specific heat.

Find out more on experiment here: https://brainly.com/question/25303029

#SPJ1

calculate the solubility of fe oh 2 in water at 25°c

Answers

To calculate the solubility of Fe(OH)2 in water at 25°C, we need to know its solubility product constant (Ksp). The solubility product constant is a measure of the equilibrium between the dissolved and solid states of a sparingly soluble substance.

For Fe(OH)2, the Ksp value at 25°C is approximately 4.87 × 10^-17. We can use this value to find the solubility of Fe(OH)2. First, let's write the balanced chemical equation and the corresponding solubility product expression:
Fe(OH)2 (s) ⇌ Fe²⁺ (aq) + 2 OH⁻ (aq)
Ksp = [Fe²⁺] [OH⁻]²
Let x represent the solubility of Fe(OH)2 in moles per liter. Then, [Fe²⁺] = x and [OH⁻] = 2x. Substitute these values into the solubility product expression:
4.87 × 10⁻¹⁷ = x (2x)²
Solve for x:
4.87 × 10⁻¹⁷ = 4x³
x³ = 1.2175 × 10⁻¹⁷
x = (1.2175 × 10⁻¹⁷)^(1/3)
x ≈ 2.30 × 10⁻⁶6 M
The solubility of Fe(OH)₂ in water at 25°C is approximately 2.30 × 10⁻⁶ moles per liter.

Learn more about chemical here:

https://brainly.com/question/29240183

#SPJ11

X-rays with a wavelength of 0.085 nm diffract from a crystal in which the spacing between atomic planes is 0.213 nm. How many diffraction orders are observed?

Answers

A wavelength of 0.085 nm diffract from a crystal in which the spacing between atomic planes is 0.213 nm, the number of diffraction are 5.

Bragg's law states that, "When the X-ray is incident onto a crystal surface, its angle of incidence, θ, will reflect with the same angle of scattering, θ".

Use Bragg's law to calculate the order's of diffraction.

According to Bragg's law, the condition for diffraction is,

nλ = 2d sinθ

⇒ n = (2d sinθ) / λ

Substitute the values,

n = (2 × 0.213 nm × sin 90°) / 0.085 nm

  = 5

Therefore, the number of diffraction patterns are observed are 5.

Learn more about Bragg's law from the link given below.

https://brainly.com/question/14617319

#SPJ4

between ethanoic acid, methanoic acid, and pentanoic acid, the most soluble of these compounds is . this is due to its .

Answers

The most soluble of these compounds is methanoic acid. This is due to its smaller molecular size and ability to form stronger hydrogen bonds with water molecules compared to ethanoic acid and pentanoic acid.

Methanoic acid has only one carbon atom and a carboxylic acid functional group, allowing it to readily interact with water molecules through hydrogen bonding. Ethanoic acid has a longer carbon chain and a weaker hydrogen bonding ability, while pentanoic acid has an even longer carbon chain and is less soluble due to its large molecular size.

In addition, the smaller size of methanoic acid allows it to dissolve more easily in water and form a more stable solution due to its ability to interact more closely with water molecules, leading to higher solubility compared to the other two acids.

To know more about the methanoic acid refer here :

https://brainly.com/question/29587812#

#SPJ11

Which of the following solutions would be expected to have a pH greater than 7.00? a)NH4Br b)C6H5NH3Br c)Ca(NO3)2 d)C6H5COONa

Answers

The solutions that are expected to have a pH greater than 7.00 are [tex]Ca(NO_3)_2[/tex] and [tex]C_6H_5COONa[/tex].

The solutions with a pH greater than 7.00 are basic, meaning they have a higher concentration of hydroxide ions ([tex]OH^-[/tex]) than hydrogen ions ([tex]H^+[/tex]). To determine which of the given solutions is basic, we need to identify which ones will produce hydroxide ions when dissolved in water.

a) [tex]NH_4Br[/tex] is the salt of a weak base ([tex]NH_3[/tex]) and a strong acid (HBr). When [tex]NH_4Br[/tex] is dissolved in water, the [tex]NH^{4+}[/tex] ion acts as a weak acid and releases [tex]H^+[/tex] ions, which will make the solution acidic rather than basic. Therefore, [tex]NH_4Br[/tex] is not expected to have a pH greater than 7.00.

b) [tex]C_6H_5NH_3Br[/tex] is the salt of a weak base ([tex]C_6H_5NH_2[/tex]) and a strong acid (HBr). Similar to [tex]NH_4Br[/tex], [tex]C_6H_5NH_3Br[/tex] will not produce hydroxide ions when dissolved in water and will instead release [tex]H^+[/tex] ions, making the solution acidic. Therefore, [tex]C_6H_5NH_3Br[/tex] is not expected to have a pH greater than 7.00.

c) [tex]Ca(NO_3)_2[/tex] is a salt of a strong base ([tex]Ca(OH)_2[/tex]) and a strong acid ([tex]HNO_3[/tex]). When [tex]Ca(NO_3)_2[/tex] is dissolved in water, it dissociates into [tex]Ca^{2+}[/tex] and [tex]NO^{3-}[/tex]  ions. [tex]Ca^{2+}[/tex] ions can react with water to form [tex]Ca(OH)^+[/tex] and [tex]OH^-[/tex] ions, which will increase the concentration of hydroxide ions in the solution, making it basic. Therefore, [tex]Ca(NO_3)_2[/tex] is expected to have a pH greater than 7.00.

d) [tex]C_6H_5COONa[/tex] is the salt of a weak acid ([tex]C_6H_5COONa[/tex]) and a strong base (NaOH). When [tex]C_6H_5COONa[/tex] is dissolved in water, it dissociates into [tex]C_6H_5COO^-[/tex] and [tex]Na^+[/tex] ions. [tex]C_6H_5COO^-[/tex] can react with water to form [tex]C_6H_5COONa[/tex] and [tex]OH^-[/tex] ions, which will increase the concentration of hydroxide ions in the solution, making it basic. Therefore, [tex]C_6H_5COONa[/tex] is expected to have a pH greater than 7.00.

For more question on pH click on

https://brainly.com/question/172153

#SPJ11

The complex ion NiCl4 ^2- has two unpaired electrons, whereas Ni(CN)4^2- is diamagnetic. propose structures for these two complex ions.

Answers

The complex ion NiCl₄²⁻ has a tetrahedral structure with two unpaired electrons, while Ni(CN)₄²⁻ has a square planar structure and is diamagnetic.

The NiCl₄²⁻ complex ion has a tetrahedral structure with four chloride ions surrounding a central nickel ion. Each chloride ion donates a lone pair of electrons to the nickel ion, forming four coordinate bonds. Since nickel has two electrons in its d-orbitals that are unpaired, the complex ion has a magnetic moment and is paramagnetic.

On the other hand, the Ni(CN)₄²⁻ complex ion has a square planar structure with four cyanide ions surrounding a central nickel ion. Each cyanide ion donates a lone pair of electrons to the nickel ion, forming four coordinate bonds. The nickel ion is in the d⁸ configuration, which means that all of its d-orbitals are filled. Since there are no unpaired electrons, the complex ion has no magnetic moment and is diamagnetic.

In summary, the presence or absence of unpaired electrons in a complex ion depends on the number of electrons in the d-orbitals of the central metal ion and the geometry of the surrounding ligands.

learn more about tetrahedral structure here:

https://brainly.com/question/2108211

#SPJ11

a periodic karman vortex street is formed when

Answers

A periodic Karman vortex street is formed when a fluid flow, such as air or water, encounters an obstacle, typically a cylindrical or bluff body.

This phenomenon occurs due to the separation of fluid layers around the object, which creates alternating low-pressure regions on each side. The fluid flow begins to shed vortices in a periodic manner, generating a pattern known as a Karman vortex street, these vortices are formed at regular intervals, creating a distinct street-like pattern downstream of the obstacle. The shedding of vortices is influenced by the Reynolds number, which determines the fluid flow regime. In low Reynolds number conditions, the flow is laminar, and no vortex street is formed. However, as the Reynolds number increases, the flow transitions to a turbulent regime, leading to the formation of the Karman vortex street.

The presence of a Karman vortex street can have various consequences on structures, such as increased vibrations and dynamic loads. In engineering applications, understanding and mitigating the effects of vortex shedding is crucial to ensure structural stability and prevent failures. To reduce the impact of a Karman vortex street, engineers may implement design modifications or use devices such as vortex breakers or flow control techniques to alter the flow characteristics around the object. So therefore when a fluid flow, such as air or water, encounters an obstacle, typically a cylindrical or bluff body, a periodic Karman vortex street is formed.

To learn more about fluid here:

https://brainly.com/question/29654184

#SPJ11

how many moles of h2o are required to form 1.6 l of o2 at a temperature of 321 k and a pressure of 0.993 atm ?

Answers

The amount of H₂O required to form 1.6 L of O₂ at a temperature of 321 K and a pressure of 0.993 atm is 0.0807 moles.

We can use the ideal gas law to calculate the amount of O₂ in moles:

PV = nRT

n = PV/RT

where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant (0.08206 L atm/mol K), and T is the temperature in Kelvin.

n(O₂) = (0.993 atm)(1.6 L)/(0.08206 L atm/mol K)(321 K) ≈ 0.0657 mol

The balanced chemical equation for the reaction of H₂O and O₂ is:

2H₂O + O₂ → 2H₂O

We can see that for every mole of O₂, we need 2 moles of H₂O. Therefore, the number of moles of H₂O required is:

n(H₂O) = 2n(O₂) = 2(0.0657 mol) ≈ 0.1314 mol

However, this is the amount of H₂O required under standard conditions (0°C and 1 atm). To calculate the amount required under the given conditions, we need to use the combined gas law:

(P₁V₁/T₁)(T₂/P₂) = P₂V₂/T₂

where the subscripts 1 and 2 refer to the initial and final conditions, respectively.

Rearranging and solving for V₁, we get:

V₁ = (P₁V₂T₁)/(P₂T₂) = (1 atm)(1.6 L)(321 K)/(0.993 atm)(273 K) ≈ 5.24 L

So the amount of H₂O required under the given conditions is:

n(H₂O) = 2n(O₂) = 2(0.0657 mol)(1.6 L/5.24 L) ≈ 0.0807 mol

learn more about ideal gas law here:

https://brainly.com/question/30458409

#SPJ11

Calculate the average speed (meters / second) of a molecule of C6H6 gas (Molar mass - 78.1 mln) ar 20.0 Celsius ? OA 405 m Ox10 m OC304m's OD 306 m O E 9.67 m

Answers

The average speed of a molecule of C6H6 gas at 20.0 Celsius is approximately 306 m/s (Option D).

To calculate the average speed of a C6H6 molecule at 20.0 Celsius, we'll use the formula for the root-mean-square (rms) speed:

v_rms = √(3RT/M)

where:
- v_rms is the average speed of the gas molecules
- R is the universal gas constant (8.314 J/(mol·K))
- T is the temperature in Kelvin (20.0 Celsius + 273.15 = 293.15 K)
- M is the molar mass of C6H6 in kg/mol (78.1 g/mol × 0.001 kg/g = 0.0781 kg/mol)

Now, we'll plug the values into the formula:

v_rms = √(3 × 8.314 × 293.15 / 0.0781)

v_rms ≈ 306 m/s

Therefore, the average speed of a molecule of C6H6 gas at 20.0 Celsius is approximately 306 m/s (Option D).

Learn more about molecule

brainly.com/question/19922822

#SPJ11

write the formula for a complex formed between ni2 and cn− with a coordination number of 4

Answers

The formula for the complex formed between Ni2+ and CN- with a coordination number of 4 is [Ni(CN)4]2-.
In this complex, Ni2+ ion acts as the central metal ion and four CN- ions act as ligands.

Each CN- ion donates one electron pair to the central Ni2+ ion forming four coordinate covalent bonds. The resulting complex has a tetrahedral geometry with a coordination number of 4.The negative charge on the complex ion is due to the presence of two extra electrons on the complex as a result of the coordination of four CN- ligands. The overall charge of the complex ion is balanced by the 2- charge on the complex ion.
 

In this complex, Ni²⁺ is the central metal ion, and CN⁻ is the ligand. The coordination number of 4 indicates that there are four CN⁻ ligands attached to the Ni²⁺ ion.To write the formula, you enclose the central metal ion and the ligands in square brackets, followed by the overall charge of the complex. In this case, Ni²⁺ has a +2 charge, and there are four CN⁻ ligands with a -1 charge each. Thus, the overall charge of the complex is 2 - 4 = -2, and the formula is [Ni(CN)₄]²⁻.

To know more about metal visit:

https://brainly.com/question/29400906

#SPJ11

A main reason why molecular absorption spectrometry shows higher detection limits than molecular fluorescence spectrometry is because ... (5 points) (a) absorption involves one wavelength of light, which makes it less precise. (b) fluorescence intensity is dependent upon the light source intensity by absorbance is not. (c) the difference between a small intensity and no intensity can be measured more precisely than the same difference between two large intensities. (d) intensity in absorption spectrometry is logarithmically related to concentration whereas fluorescence intensity is linearly related to concentration.

Answers

The main reason why molecular absorption spectrometry shows higher detection limits than molecular fluorescence spectrometry is because intensity in absorption spectrometry is logarithmically related to concentration whereas fluorescence intensity is linearly related to concentration.

This means that the difference between a small intensity and no intensity can be measured more precisely than the same difference between two large intensities. Additionally, molecular absorption spectrometry involves the use of one wavelength of light which can make it less precise compared to fluorescence which is dependent upon the light source intensity. Overall, detection limits in molecular absorption spectrometry are typically higher due to the nature of the spectroscopy technique and its relationship with intensity and concentration.
The main reason why molecular absorption spectrometry shows higher detection limits than molecular fluorescence spectrometry is because (c) the difference between a small intensity and no intensity can be measured more precisely than the same difference between two large intensities. This allows for better detection and sensitivity in fluorescence spectrometry compared to absorption spectrometry

To know more about molecular absorption spectroscopy visit:

https://brainly.com/question/29271915

#SPJ11

What change in volume results if 170. 0 mL of gas is cooled from 30. 0 °C to 20. 0 °C? (Charles Law)

Answers

To calculate the change in volume when 170.0 mL of gas is cooled from 30.0 °C to 20.0 °C using Charles' Law, we need to use the relationship between volume and temperature for an ideal gas. Charles' Law states that at constant pressure, the volume of a gas is directly proportional to its temperature.

By using the formula V₁ / T₁ = V₂ / T₂, where V₁ and T₁ are the initial volume and temperature, and V₂ and T₂ are the final volume and temperature, we can determine the change in volume.

According to Charles' Law, the ratio of the initial volume to the initial temperature is equal to the ratio of the final volume to the final temperature:

V₁ / T₁ = V₂ / T₂

Plugging in the given values:

V₁ = 170.0 mL

T₁ = 30.0 °C + 273.15 = 303.15 K

T₂ = 20.0 °C + 273.15 = 293.15 K

Substituting these values into the equation:

170.0 mL / 303.15 K = V₂ / 293.15 K

To solve for V₂, we rearrange the equation:

V₂ = (170.0 mL / 303.15 K) * 293.15 K

Simplifying the equation:

V₂ ≈ 163.3 mL

Therefore, the change in volume is approximately 163.3 mL when 170.0 mL of gas is cooled from 30.0 °C to 20.0 °C.

To learn more about Charles' Law - brainly.com/question/14842720

#SPJ11

for the reaction a (g) → 3 b (g), kp = 0.215 at 298 k. what is the value of ∆g for this reaction at 298 k when the partial pressures of a and b are 6.15 atm and 0.110 atm?

Answers

The value of ΔG for the reaction at 298 K when the partial pressures of A and B are 6.15 atm and 0.110 atm, respectively, is -12.9 kJ/mol.

The relationship between ΔG°, the standard Gibbs free energy change, and the equilibrium constant Kp is given by the following equation:

ΔG° = -RTln(Kp)

where R is the gas constant (8.314 J/mol·K), T is the temperature in Kelvin, and ln is the natural logarithm.

To determine the value of ΔG for the given reaction at 298 K, we need to calculate the equilibrium constant Kp using the partial pressures of A and B and the value of Kp at that temperature.

The expression for Kp for the reaction a(g) → 3b(g) is:

Kp = (Pb)^3 / Pa

where Pa and Pb are the partial pressures of A and B, respectively.

Substituting the given values of Kp, Pa, and Pb, we get:

0.215 = (0.110 atm)^3 / (6.15 atm)

Solving for Kp, we get:

Kp = 0.0426 atm^2

Now, substituting the value of Kp and T into the above equation for ΔG°, we get:

ΔG° = -RTln(Kp) = -(8.314 J/mol·K)(298 K)ln(0.0426 atm^2)

ΔG° = -12.9 kJ/mol

Therefore, the value of ΔG for the reaction at 298 K when the partial pressures of A and B are 6.15 atm and 0.110 atm, respectively, is -12.9 kJ/mol.

Click the below link, to learn more about Gibbs Energy:

https://brainly.com/question/20358734

#SPJ11

3.00 moles of an ideal gas at 230k and 150 kpa is subjected to isothermal compression and its entropy decreases by 15.0 j/k. what is the pressure of the gas after the compression is finished?

Answers

The pressure of the gas after the compression is finished is 147.4 kPa.

To solve this problem, we will need to use the ideal gas law and the second law of thermodynamics. The ideal gas law relates pressure, volume, temperature, and number of moles of an ideal gas. It is given by PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is the temperature.
The second law of thermodynamics states that the entropy of an isolated system always increases or remains constant. In this problem, the entropy of the gas decreases by 15.0 J/K. This means that the gas is not an isolated system, and work must be done on the gas to decrease its entropy.
Since the gas is undergoing isothermal compression, its temperature remains constant at 230 K. Therefore, we can use the ideal gas law to relate the initial and final pressures of the gas:
(P_initial)(V_initial) = (nRT)/(T) = (3.00 mol)(8.31 J/mol·K)(230 K)/(1 atm) = 5596.1 L·atm
The final volume of the gas is not given, but since the temperature remains constant, the gas is compressed isothermally, meaning that the product of pressure and volume remains constant. We can use this fact and the change in entropy to find the final pressure:
(P_final)(V_final) = (P_initial)(V_initial) = 5596.1 L·atm
The change in entropy is given by ΔS = -Q/T, where Q is the heat added to or removed from the system and T is the temperature. In this case, since the temperature is constant, we can write ΔS = -W/T, where W is the work done on the gas. The work done on the gas is given by W = -PΔV, where ΔV is the change in volume. Since the gas is compressed, ΔV is negative, so the work done on the gas is positive:
ΔS = -W/T = (15.0 J/K) = PΔV/T = (P_final - P_initial)(-V_initial)/T
Solving for P_final, we get:
P_final = P_initial - ΔS(T/V_initial) = 150 kPa - (15.0 J/K)(230 K)/(5596.1 L) = 147.4 kPa
For more such questions on compression

https://brainly.com/question/29320737
#SPJ11

Balance the following redox reactions in acidic solutions:BrO3- + N2H4 ⟶Br − +N2

Answers

BrO3- + 3N2H4 ⟶ Br- + 3N2 + 6H2O Assign oxidation numbers to all elements in the reaction.

BrO3-: Br = +5, O = -2

N2H4: N = -2, H = +1

Br-: Br = -1

N2: N = 0

2. Determine which elements are being oxidized and reduced.

Br is being reduced from +5 to -1.

N is being oxidized from -2 to 0.

3. Balance the non-hydrogen and non-oxygen elements first.

We balance Br by adding 5 electrons to the right-hand side:

[tex]BrO3- + 5e- + 3N2H4 ⟶ Br- + 3N2 + 6H2O[/tex]

4. Balance oxygen by adding water molecules.

[tex]BrO3- + 5e- + 3N2H4 ⟶ Br- + 3N2 + 6H2O[/tex]

5. Balance hydrogen by adding H+ ions.

[tex]BrO3- + 5e- + 3N2H4 + 4H+ ⟶ Br- + 3N2 + 6H2O[/tex]

6. Finally, balance the charges by adding electrons.

[tex]BrO3- + 5e- + 3N2H4 + 4H+ ⟶ Br- + 3N2 + 6H2O[/tex]

Learn more about  redox reactions here:

https://brainly.com/question/13293425

#SPJ11

A container measures 2. 50 cm x 10. 1cm x 12. 2cm. When it is full of a liquid,


it has a mass of 8501g. When it is empty, it has a mass of 682g. What is the


density of the liquid in grams per cubic centimeter?

Answers

The density of the liquid in the container is 25.45 grams per cubic centimetre which can be calculated by finding the difference in mass between the full and empty container and dividing it by the volume of the container.

To calculate the density of the liquid in the container, we need to find the difference in mass between the full and empty container. The mass of the liquid can be obtained by subtracting the mass of the empty container from the mass of the full container: 8501g - 682g = 7819g.

Next, we need to calculate the volume of the container. The volume of a rectangular container can be determined by multiplying its length, width, and height: [tex]2.50 cm * 10.1 cm * 12.2 cm = 306.95 cm^3.[/tex]

Finally, we can calculate the density by dividing the mass of the liquid by the volume of the container: [tex]7819g / 306.95 cm^3 = 25.45 g/cm^3.[/tex]

Therefore, the density of the liquid in the container is 25.45 grams per cubic centimetre.

Learn more about  density of the liquid here:

https://brainly.com/question/17736639

#SPJ11

isotretinoin is a medication used for the treatment of severe acne. how many different isomers arising from double-bond isomerizations are possible?

Answers

The total number of isomers arising from double-bond isomerizations is 2 x 2 x 2 x 2 = 16.

Isotretinoin has a total of four double bonds in its structure. For each double bond, two isomers are possible due to cis-trans isomerism.

Therefore, the total number of isomers arising from double-bond isomerizations is 2 x 2 x 2 x 2 = 16.

However, it is important to note that not all of these isomers may be biologically active or have the desired therapeutic effect.

Additionally, other types of isomerism such as optical isomerism may also exist in isotretinoin, further increasing the number of possible isomers.

To know more about Isotretinoin, refer here:

https://brainly.com/question/29111352#

#SPJ11

what volume of 0.200 m k2c2o4 is required to react completely with 30.0 ml of 0.100 m fe(no3)3? 2fe(no3)3 3k2c2o4fe2(c2o4)3 6kno3

Answers

11.25 mL of 0.200 M K₂C₂O₄ is required to react completely with 30.0 mL of 0.100 M Fe(NO₃)₃ (iron(III) nitrate).

The balanced chemical equation for the reaction is:

2Fe(NO₃)₃ + 3K₂C₂O₄ → Fe₂(C₂O₄)₃ + 6KNO₃

From the balanced equation, we can see that 3 moles of K₂C₂O₄ are required to react with 2 moles of Fe(NO₃)₃.

First, we can calculate the number of moles of Fe(NO₃)₃ in 30.0 mL of 0.100 M solution:

n(Fe(NO₃)₃) = (0.100 mol/L) x (30.0 mL/1000 mL) = 0.003 mol

According to the stoichiometry of the reaction, 1.5 times more moles of K₂C₂O₄ are required to react with Fe(NO₃)₃.

n(K₂C₂O₄) = (1.5 mol) x (0.003 mol/2 mol) = 0.00225 mol

Finally, we can calculate the volume of 0.200 M K₂C₂O₄ required to obtain 0.00225 mol:

V = n / c = 0.00225 mol / 0.200 mol/L = 0.01125 L = 11.25 mL

Therefore, 11.25 mL of 0.200 M K₂C₂O₄ is required to react completely with 30.0 mL of 0.100 M Fe(NO₃)₃.

To learn more about iron(III) nitrate refer here:

https://brainly.com/question/30764007#

#SPJ11

What is the temperature (in °C) when the pressure increases to 15 psi?​

Answers

When the pressure increases by 15 PSI, the new temperature will be 472 ⁰C.

What is pressure law?

The pressure law, also known as Gay-Lussac's law, states that the pressure of a fixed amount of gas at a constant volume is directly proportional to its temperature, provided that the mass and volume of the gas remain constant.

This law can be expressed mathematically as;

P₁/T₁ = P₂/T₂

T₂ = (P₂T₁)/P₁

When the pressure increases by 15 PSI, the new temperature will be;

T₂ = (15 + P₁)T₁ / P₁

Let the initial pressure = 10 Psi, and initial temperature = 25⁰C = 298 K

T₂ = (15 + 10) x 298 / 10

T₂ = 745 K = 472 ⁰C

Learn more about temperature here: https://brainly.com/question/25677592

#SPJ1

For the reaction NH4Cl(aq)NH3(g) + HCl(aq) H° = 86.4 kJ and S° = 79.1 J/K The equilibrium constant for this reaction at 261.0 K is

Answers

The equilibrium constant for the reaction NH₄Cl(aq)NH₃(g) + HCl(aq) at 261.0 K is 3.98 x 10⁽⁻¹¹⁾.

We can use Gibbs free energy equation to find the equilibrium constant (K) at a given temperature;

ΔG° = -RTlnK

Where;

ΔG° = standard free energy change

R = gas constant (8.314 J/K mol)

T = temperature in Kelvin

K = equilibrium constant

First, we need to convert the given entropy value from J/K to J/mol K;

ΔS° = 79.1 J/K = 79.1 J/mol K

Next, we can calculate the standard free energy change at 261.0 K;

ΔG° = 86.4 kJ/mol - 261.0 K × (79.1 J/mol K / 1000 J/kJ)

= 61.0 kJ/mol

Finally, we can use the equation to find the equilibrium constant;

ΔG° = -RTlnK

61.0 kJ/mol = -(8.314 J/K mol) × (261.0 K) × ln(K)

ln(K) = -23.90

K = [tex]e^{(-23.90)}[/tex]= 3.98 x 10⁽⁻¹¹⁾

Therefore, the equilibrium constant is 3.98 x 10⁽⁻¹¹⁾.

To know more about Gibbs free energy here

https://brainly.com/question/20358734

#SPJ4

when this equation is balanced with the smallest set of whole numbers, what is the coefficient for n2? ___n2h4(g) ___n2o4(g)___n2(g) ___h2o(g)

Answers

The balanced equation for the reaction:

n2h4(g) + n2o4(g) → n2(g) + h2o(g)

is:

2N2H4(g) + N2O4(g) → 3N2(g) + 4H2O(g)

The coefficient for n2 in the balanced equation is 3.

The given chemical equation is:

n2h4(g) + n2o4(g) → n2(g) + 2h2o(g)

To balance this equation with the smallest set of whole numbers, we need to adjust the coefficients in front of the chemical formulas until we have the same number of each type of atom on both sides of the equation.

First, we can balance the nitrogen atoms by placing a coefficient of 1 in front of N2 on the right-hand side:

n2h4(g) + n2o4(g) → 2n2(g) + 2h2o(g)

Next, we balance the hydrogen and oxygen atoms by placing a coefficient of 4 in front of H2O on the right-hand side:

n2h4(g) + n2o4(g) → 2n2(g) + 4h2o(g)

Now we have the same number of each type of atom on both sides of the equation. Therefore, the coefficient for N2 is 2.

Therefore, the balanced chemical equation is:

N2H4(g) + N2O4(g) → 2N2(g) + 4H2O(g)

Click the below link, to learn more about Balancing equation:

https://brainly.com/question/12405075

#SPJ11

What is the angle between two of the carbon-chlorine bonds in the carbon tetrachloride (CCI) molecule? X ?

Answers

The angle between any two adjacent carbon-chlorine bonds in CCl4 is approximately 109.5 degrees.

In carbon tetrachloride (CCl4), each carbon atom is covalently bonded to four chlorine atoms in a tetrahedral geometry. The angle between any two adjacent carbon-chlorine bonds is known as the bond angle.

To determine the bond angle in CCl4, we need to consider the molecular geometry of the molecule. The tetrahedral geometry of CCl4 means that the carbon atom and its four chlorine atoms form a regular tetrahedron, with each bond pointing towards one of the tetrahedron's vertices.

The bond angles in a regular tetrahedron are all the same and are given by the formula:

arccos(-1/3) ≈ 109.5°

Therefore, the angle between any two adjacent carbon-chlorine bonds in CCl4 is approximately 109.5 degrees.

It is worth noting that the bond angle in CCl4 is slightly distorted from the ideal tetrahedral angle due to the repulsion between the four chlorine atoms. This distortion causes the bond angles to be slightly smaller than 109.5 degrees, with the exact angle depending on the specific orientation of the carbon-chlorine bonds in the molecule.

In summary, the angle between any two adjacent carbon-chlorine bonds in the carbon tetrachloride (CCl4) molecule is approximately 109.5 degrees, which is the ideal bond angle for a regular tetrahedron.

To learn more about carbon-chlorine bonds refer here:

https://brainly.com/question/24173790

#SPJ11

for the sn2 reactions, you can see a difference in leaving groups when comparing the rate of reaction of bromobutane and which other alkyl halide? 1-chlorobutane which is the better leaving group?

Answers

The better leaving group in this comparison is bromide ion ([tex]Br^-[/tex]) from bromobutane.

The rate of reaction between bromobutane and 1-chlorobutane, bromobutane is the better leaving group due to the larger size of the bromine atom compared to chlorine. The larger size of bromine makes it easier for the leaving group to dissociate from the carbon atom, leading to a faster rate of reaction compared to 1-chlorobutane.

This is because bromide ion is a larger and more polarizable group than the chloride ion ([tex]Cl^-[/tex]) from 1-chlorobutane, which makes it more stable as a leaving group and results in a faster rate of reaction for bromobutane in [tex]SN_2[/tex] reactions.

Therefore, For the [tex]SN_2[/tex] reactions, when comparing the rate of reaction between bromobutane and 1-chlorobutane, the difference in leaving groups can be observed. Hence,  The better leaving group in this comparison is bromide ion ([tex]Br^-[/tex]) from bromobutane.

To know more about bromobutane refer here :

https://brainly.com/question/26372887

#SPJ11

is nylon-6,10 a linear, branched, and/or cross-linked polymer? use the reaction mechanism to help explain your choice.

Answers

nylon-6,10 is a linear polymer.

This is because it is formed by the reaction between hexamethylenediamine (a diamine) and sebacic acid (a dicarboxylic acid), which results in the formation of amide bonds between the monomer units. The amide bonds connect the diamine and dicarboxylic acid monomers in a linear chain.
Nylon is a synthetic polymer that was first produced in the 1930s and is widely used in various applications, including clothing, packaging, and industrial materials. Nylon-6,10 is a type of nylon that has a total of 16 carbon atoms in its repeating unit, with 6 carbon atoms coming from the diamine and 10 carbon atoms coming from the dicarboxylic acid.
In summary, nylon-6,10 is a linear polymer that is formed by the reaction of hexamethylenediamine and sebacic acid. The resulting amide bonds between the monomer units create a linear chain of repeating units.

To know more about Polymers visit:
https://brainly.com/question/14629674
#SPJ11

Why is equivalent mass of CO2 used when analyzing greenhouse gas emissions?
Because the mass of CO2 varies with atmospheric pressure
To have a measurement that can be used to compare emissions of different greenhouse gases with each other
To have a measurement that can be easily calculated from measurements at one location
Because the mass of CO2 varies with atmospheric temperature

Answers

equivalent mass of CO2 is used when analyzing greenhouse gas emissions is to have a measurement that can be used to compare emissions of different greenhouse gases with each other.

This is because greenhouse gases have different global warming potentials (GWPs) and lifetimes in the atmosphere, making it difficult to directly compare their impacts on climate change. By converting emissions of other greenhouse gases into equivalent masses of CO2, we can more easily quantify their impact and track progress towards reducing overall greenhouse gas emissions. Additionally, using equivalent mass of CO2 as a standardized measurement can be easily calculated from measurements at one location, making it a practical tool for monitoring emissions.

The equivalent mass of CO2 is used when analyzing greenhouse gas emissions is to have a measurement that can be used to compare emissions of different greenhouse gases with each other. By using CO2 equivalents, it allows for a standardized unit of measurement, making it easier to understand the overall impact of various greenhouse gases on climate change. This comparison is essential for policymakers and researchers to determine the most effective ways to reduce emissions and mitigate climate change.

To know more about CO2 visit :

https://brainly.com/question/28870590

#SPJ11

The activity of a sample of a radioisotope at some time is 10.3 mCi and 0.46 h later it is 4.60 mCi. Determine the following. (a) Decay constant (in s−1) s−1 (b) Half-life (in h) h (c) Nuclei in the sample when the activity was 10.3 mCi nuclei (d) Activity (in mCi) of the sample 1.70 h after the time when it was 10.3 mCi mCi

Answers

(a) The decay constant (in s⁻¹) is 0.752 h⁻¹ , (b) the half-life (in h) is 0.922 h, (c) the number of nuclei in the sample when the activity was 10.3 mCi is 2.70 x 10¹⁷ nuclei , and (d) the activity (in mCi) of the sample 1.70 h after the time when it was 10.3 mCi is 2.26 mCi

(a) The decay constant (λ) can be determined using the relation:

A = A₀e^(-λt)

where A₀ is the initial activity, A is the activity after time t, and e is the base of the natural logarithm. Taking the natural logarithm of both sides and solving for λ, we get:

λ = ln(A₀/A) / t

Substituting the given values, we get:

λ = ln(10.3/4.6) / 0.46 h ≈ 0.752 h⁻¹

(b) The half-life (t₁/₂) can be determined using the relation:

t₁/₂ = ln(2) / λ

Substituting the value of λ, we get:

t₁/₂ = ln(2) / 0.752 h⁻¹ ≈ 0.922 h

(c) The number of nuclei in the sample when the activity was 10.3 mCi can be determined using the relation:

N = A / (λN_A)

where N_A is Avogadro's number. Substituting the given values, we get:

N = (10.3 mCi) / (0.752 h⁻¹)(6.022 x 10²³) ≈ 2.70 x 10¹⁷ nuclei

(d) The activity of the sample 1.70 h after the time when it was 10.3 mCi can be determined using the relation:

A = A₀e^(-λt)

Substituting the given values, we get:

A = (10.3 mCi)e^(-0.752 h⁻¹ x 1.70 h) ≈ 2.26 mCi

To know more about Avogadro's number refer here:

https://brainly.com/question/28812626#

#SPJ11

Choose starting materials and reagents from the following tables for synthesis of valine by either the acetamidomalonate or reductive amination method. Specify starting material (by number) first. Specify reagents in order of use (by letter) second by nun Examplesents in Starting Materials diethyl acetamidomalonate 4 3-methyl-2-oxo-hexanoic acid diethyl malonate 5 3-methyl-2-oxo-pentanoic acid 3 CH SCH2CH2-CO-CO,H 3-methyl-2-oxo-butanoic acid Reagents a Hyo, heat methyl iodide 9 benzyl bromide b sodium ethoxide 2-bromobutane h Hy over Pac C NH3 /NaBHA 1-bromo-2-methylpropane

Answers

The specific starting materials and reagents chosen will depend on various factors such as availability, cost, efficiency, and desired product purity.

To synthesize valine using the acetamidomalonate method, we can use starting material number 4, diethyl acetamidomalonate, and reagents in the following order:
a) Hydrazine, followed by heat, to remove the acetamide group and form the enamine intermediate.
b) Methyl iodide to alkylate the enamine and form the α-alkylated product.
c) Sodium ethoxide to remove the ethyl ester group and form the carboxylic acid intermediate.
d) Hydride reduction over Pd/C catalyst to reduce the carboxylic acid to the alcohol and form valine.

To synthesize valine using the reductive amination method, we can use starting material number 3, 3-methyl-2-oxo-butanoic acid, and reagents in the following order:
a) NH3/NaBH3, to form the imine intermediate.
b) Benzyl bromide to alkylate the imine and form the N-alkylated intermediate.
c) 1-bromo-2-methylpropane to reduce the imine and form the valine product.

It is important to note that these are just two possible routes to synthesize valine, and there are likely many other ways to achieve the same end result. The specific starting materials and reagents chosen will depend on various factors such as availability, cost, efficiency, and desired product purity.

To know more about reagents click here:

https://brainly.com/question/28463799

#SPJ11

for a particular reaction at 164.4 °c, δ=−833.32 kj , and δ=866.05 j/k . calculate δ for this reaction at −79.0 °c.

Answers

The enthalpy change(δH) for the reaction at -79.0 °C is -769.98 kJ.

To solve this problem, we will use the following equation:

ΔH = ΔH° + CpΔT

where ΔH is the enthalpy change at the new temperature,

ΔH° is the enthalpy change at the standard temperature (in this case, 164.4 °C),

Cp is the heat capacity of the system,

ΔT is the difference in temperature.

δH = -833.32 kJ = -833,320 J
δH° = 866.05 J/K

Calculating the heat capacity, Cp:

Cp = (ΔH - ΔH°) / ΔT

Cp = (-833,320 J - 866.05 J/K x 164.4 K) / (164.4 - (-79.0)K)

Cp = -834,186.58 J/K

Use the same equation to find the enthalpy change at the new temperature:

ΔH = ΔH° + CpΔT

ΔH = -833,320 J + (-834,186.58 J/K x (-79.0 - 164.4))

ΔH = -769,982.69 J

Convert this value back to the original units:

δ = ΔH / 1000 = -769.98 kJ

Therefore, the reaction's enthalpy change at -79.0 °C is -769.98 kJ.

To learn more about enthalpy change visit:

https://brainly.com/question/24180470

#SPJ11

Draw all the structures for the conjugate bases formed on deprotonation of the following compounds.
Possible structures include both resonance structures, stereochemical isomers (i.e. EZ isomers for C=C and C-N bonds), and structural isomers. You should be able to come up with at least the number of structures listed parentheticallya. nitropropane (3)
b. 2-pentanone (3)
c. the N-phenylimine of cyclohexanone (2, 3 actually but I only expect you to see '2")
d. diethyl malonate (3)
e. ethyl acetoacetate (5)

Answers

a. Nitropropane can form three conjugate bases through deprotonation, including two resonance structures and a structural isomer.

b. Deprotonating 2-pentanone can yield three different conjugate bases with distinct resonance structures.

c. The N-phenylimine of cyclohexanone can form at least two distinct conjugate bases through deprotonation, but possibly up to three depending on how the nitrogen is deprotonated.

d. Deprotonation of diethyl malonate can yield three distinct conjugate bases, including two resonance structures and a structural isomer.

e. Ethyl acetoacetate can form up to five different conjugate bases through deprotonation, including two stereoisomers and three resonance structures.

To calculate the number of conjugate bases, you must identify the acid site and determine how many ways it can be deprotonated. For example, nitropropane has one acid site, the proton on the alpha carbon, which can be deprotonated to form two resonance structures.

Alternatively, the proton on the nitro group can be deprotonated to form a structural isomer. Repeat this process for each compound to arrive at the total number of possible conjugate bases.

For more questions like Conjugate click the link below:

https://brainly.com/question/30086613

#SPJ11

Other Questions
use part one of the fundamental theorem of calculus to find the derivative of the function. f(x) = 0 1 sec(7t) dt x hint: 0 x 1 sec(7t) dt = x 0 1 sec(7t) dt By weight, chromatin consists roughly of:_________ which electronic transition in a hydrogen atom is associated with the largest emission of energy? data sheet and periodic table n = 2 to n =1 n = 2 to n = 3 n = 2 to n = 4 n = 3 to n = 2 Suppose the net number of electrons that leave the negative side of a voltage source is 2. 35x1020 electrons and thecircuit has been in operation for 1. 75 hours. If the voltage source is 12V, then what is the value of the resistor? R =2007 the electron configuration of copper, following hund's rule, would seem to be [ar]4s23d9, but the actual electron configuration is [ar]4s13d10. what is the electron configuration of cu2 ? what are the arithmetic and geometric average returns for a stock with annual returns of 22 percent, 9 percent, 7 percent, and 13 percent? Your location has been assigned the 172.16.99.0 /24 network. You are tasked with dividing the network into 7 subnets with the maximum number of hosts possible on each subnet. What is the dotted decimal value for the subnet mask? suppose that an algorithm performs f(n) steps, and each step takes g(n) time. how long does the algorithm take? f(n)g(n) f(n) g(n) f(n^2) g(n^2) If Joy, Irene, and Wendy all take 2. 0 h to walk from their house to their school at a rate of 1. 0 m/s, how far is their school from the house? (first, convert 2hrs to minutes before you follow the gresa method) If the MPC in an economy is 0.75, government could close a recessionary expenditure gap of $225 billion by cutting taxes byA. $300 billionB. $225 billionC. $75 billionD. $168 billion 13- what is the limiting reactant and how much ammonia (nh3) is formed when 5.65 g of nitrogen reacts with 1.15 g of hydrogen? start by writing a balanced chemical equation for the reaction. find the critical value(s) and rejection region(s) for a right-tailed chi-square test with a sample size and level of significance . Explain the distinction between synchronous and asynchronous inputs to a flip-flop. View the following political cartoon on the New Deal. Analyze the cartoon. Explain who is the patient, the doctor and the caretaker and what all the bottles represent. Then sum up the cartoon in your own words If blue light of wavelength 434 nm shines on a diffraction grating and the spacing of the resulting lines on a screen that is 1.05m away is what is the spacing between the slits in the grating? Which of the following accounts are included in the Stockholder's Equity section of the Balance Sheet: 1. Common Stock II. Preferred Stock III. Deferred Revenue IV. Retained Earnings O A. All of the above OB. I and Il only OC. I, II and IV only D. II and Ill only treatment of the dna sequence 5-atggatcctaagctttagagc-3 with hind iii, ecori, and bamhi will produce how many dna fragments? find the missing coordinate of p, using the fact that p lies on the unit circle in the given quadrant. coordinates quadrant p 2 3 , ii According to the _____ guidelines, motivation of the school board in removing a book is the key in determining whether it violates the First Amendment rights of minors to access the ideas in the book The metal loop is being pulled through a uniform magnetic field. Is the magnetic flux through the loop changing?