Answer:
y = -3
Step-by-step explanation:
The midline of a sinusoidal function is the horizontal center line about which the function oscillates periodically.
The midline is positioned halfway between the maximum (peaks) and minimum (troughs) values of the graph. It serves as a baseline that helps visualize the oscillations of the function.
To find the equation of the midline, we need to determine the average y-value between the maximum and minimum y-values.
In this case, the maximum y-value is -1, and the minimum y-value is -5. To find the equation of the midline, sum the maximum and minimum y-values, and divide by 2:
[tex]y=\dfrac{-1 + (-5)}{2} = \dfrac{-6}{2}=-3[/tex]
Therefore, the equation of the midline for the graphed sinusoidal function is y = -3.
Complete the following number sequence. 2, 4, 7, __, 16, __, 29, __
The completed sequence would then be: 2, 4, 7, 9, 16, 19, 29.
To complete the given number sequence, let's analyze the pattern and identify the missing terms.
Looking at the given sequence 2, 4, 7, __, 16, __, 29, __, we can observe the following pattern:
The difference between consecutive terms in the sequence is increasing by 1. In other words, the sequence is formed by adding 2 to the previous term, then adding 3, then adding 4, and so on.
Using this pattern, we can determine the missing terms as follows:
To obtain the third term, we add 2 to the second term:
7 + 2 = 9
To find the fifth term, we add 3 to the fourth term:
16 + 3 = 19
To determine the seventh term, we add 4 to the sixth term:
__ + 4 = 23
Therefore, the missing terms in the sequence are 9, 19, and 23.
By identifying the pattern of increasing differences, we can extend the sequence and fill in the missing terms accordingly.
For more such questions on sequence.
https://brainly.com/question/30762797
#SPJ8
Please look at photo. Thank you. If you get it right I’ll give you a good rating!
a. The absolute maximum of g is 4.
The absolute minimum of g is -4.
b. The absolute maximum of h is 3.
The absolute minimum of h is -4.
What is a vertical asymptote?In Mathematics and Geometry, the vertical asymptote of a function simply refers to the value of x (x-value) which makes its denominator equal to zero (0).
By critically observing the graph of the polynomial function g shown above, we can logically deduce that its vertical asymptote is at x = 3. Furthermore, the absolute maximum of the polynomial function g is 4 while the absolute minimum of g is -4.
In conclusion, the absolute maximum of the polynomial function h is 3 while the absolute minimum of h is -4.
Read more on vertical asymptotes and functions here: brainly.com/question/28184937
#SPJ1
Find the net area of the following curve on the interval [0, 2].
(SHOW WORK)
f(x) = ex - e
The net area of the curve represented by f(x) = ex - e on the interval [0, 2] is e2 - 1.
To find the net area of the curve represented by the function f(x) = ex - e on the interval [0, 2], we need to calculate the definite integral of the function over that interval. The net area can be determined by taking the absolute value of the integral.
The integral of f(x) = ex - e with respect to x can be computed as follows:
∫[0, 2] (ex - e) dx
Using the power rule of integration, the antiderivative of ex is ex, and the antiderivative of e is ex. Thus, the integral becomes:
∫[0, 2] (ex - e) dx = ∫[0, 2] ex dx - ∫[0, 2] e dx
Integrating each term separately:
= [ex] evaluated from 0 to 2 - [ex] evaluated from 0 to 2
= (e2 - e0) - (e0 - e0)
= e2 - 1
The net area of the curve represented by f(x) = ex - e on the interval [0, 2] is e2 - 1.
For more such questions on curve
https://brainly.com/question/31012623
#SPJ8
Which of the following is the graph of y=-(x-2)³-5?
-5-4-3-2-1
-5-4-3
S
-2+
-3
? 4
-4
-5
997
-6
-7
-8.
-9
& co
-10
1 2 3 45 x
1
2345
X
Answer:
Step-by-step explanation:
I cannot see the graphs.
HURRY PLEASEEE
A cylinder has a volume of 400 feet. If the height of the cylinder is 25 feet, what is the radius of the cylinder? Use 3.14 for π and a round to the nearest hundredth. radius ≈ type your answer… ft
Answer:
the radius of the cylinder is approximately 2.26 feet.
Step-by-step explanation:
To find the radius of the cylinder, we can use the formula for the volume of a cylinder:
Volume = π * radius^2 * height
Given that the volume is 400 feet, the height is 25 feet, and using π ≈ 3.14, we can rearrange the formula to solve for the radius:
400 = 3.14 * radius^2 * 25
Divide both sides of the equation by (3.14 * 25):
400 / (3.14 * 25) = radius^2
Simplifying:
400 / 78.5 ≈ radius^2
5.09 ≈ radius^2
To find the radius, we take the square root of both sides:
√5.09 ≈ √(radius^2)
2.26 ≈ radius
Rounding to the nearest hundredth, the radius of the cylinder is approximately 2.26 feet.
Answer:
Step-by-step explanation:
Volume Formula for a cylinder is V=πr²h
Substitute the following: 400 = 3.14(r²)(25)
r=[tex]\sqrt{\frac{V}{\pi h} }[/tex]
r=[tex]\sqrt{\frac{400}{\pi 25} }[/tex]
r≈2.25676ft
calculate the area of the following shapes
The area of the shaded part is 640.56 m²
What is area of shape?The area of a shape is the space occupied by the boundary of a plane figures like circles, rectangles, and triangles.
The figure is a concentric circle, i.e a circle Ina circle. Therefore to calculate the area of the shaded part,
Area of shaded part = area of big circle - area of small circle
area of big circle = 3.14 × 20²
= 1256
area of small circle = 3.14 × 14²
= 615.44
Area of shaded part = 1256 - 615.44
= 640.56m²
learn more about area of shape from
https://brainly.com/question/25965491
#SPJ1
The school cafetteria recently served a new kind of snack to all the senior high school student. They want to know if more than 50% of the student like the newly served snack, thus, the cafeteria conducted a survey for asking 60 random selection of students whether they like (1), or Do not like (0), the new snack. They responses are show as follows
The cafeteria can conclude that a majority of the senior high school students like the newly served snack.
To determine if more than 50% of the students like the newly served snack, we need to analyze the responses of the 60 randomly selected students.
Analyzing the responses:
Out of the 60 students surveyed, we have:
- Number of students who responded with "1" (liking the snack): 32 students.
- Number of students who responded with "0" (not liking the snack): 28 students.
To determine the percentage of students who liked the snack, we divide the number of students who liked it by the total number of students surveyed and multiply by 100: (32/60) * 100 = 53.33%.
Since the percentage of students who liked the newly served snack is 53.33%, which is greater than 50%, we can conclude that more than 50% of the students like the snack based on the given survey results.
Therefore, the cafeteria can conclude that a majority of the senior high school students like the newly served snack.
for more such question on majority visit
https://brainly.com/question/28293697
#SPJ8
In circle F, FG = 2 and m/GFH = 120°
Find the area of shaded sector. Express your answer as a fraction times T.
Answer:
A = [tex]\frac{4}{3}[/tex] π
Step-by-step explanation:
the area (A) of the sector is calculated as
A = area of circle × fraction of circle
= πr² × [tex]\frac{120}{360}[/tex] ( r is the radius of the circle )
here r = FG = 2 with central angle = 120° , then
A = π × 2² × [tex]\frac{1}{3}[/tex]
= [tex]\frac{4}{3}[/tex] π
Let (1=1,2,3, 4, 5, 6, 7, 8, 9, 10
The list of elements in the sets are as follows:
A. A ∩ B = {2, 9}
B. B ∩ C = {2, 3}
C. A ∪ B ∪ C = {1, 2, 3, 5, 7, 8, 9, 10}
D. B ∪ C = {2, 3, 5, 7, 9, 10}
How to find the elements in a set?Set are defined as the collection of objects whose elements are fixed and can not be changed.
Therefore,
universal set = U = {1,2,3, 4, 5, 6, 7, 8, 9, 10}
A = {1, 2, 7, 8, 9}
B = {2, 3, 5, 9}
C = {2, 3, 7, 10}
Therefore,
A.
A ∩ B = {2, 9}
B.
B ∩ C = {2, 3}
C.
A ∪ B ∪ C = {1, 2, 3, 5, 7, 8, 9, 10}
D.
B ∪ C = {2, 3, 5, 7, 9, 10}
learn more on set here: https://brainly.com/question/29484130
#SPJ1
what percent of 41.12 is 10.28 ?
f(x)= [tex]\frac{5x-5}{x^{2} -7x+6}[/tex]
Answer:
f(x)=5/(x-6)
Step-by-step explanation:
f(x)=(5x-5)/(x^2-7x+6)
f(x)=[5(x-1)]/[(x-1)(x-6)]
f(x)=5/(x-6)
A small college has 204 student athletes. The number of students who play soccer is 52. The number of students who play volleyball is 31. The probability that a student plays in both volleyball and soccer is 5/204.What is the probability that a randomly selected student athlete in this school: Plays both soccer and volleyball? Plays volleyball?
To calculate the probabilities, we can use the following information:
Total number of student athletes = 204
Number of students who play soccer = 52
Number of students who play volleyball = 31
Probability of a student playing both soccer and volleyball = 5/204
1. Probability that a student plays both soccer and volleyball:
Let's denote the probability of playing both soccer and volleyball as P(Soccer and Volleyball). From the given information, we know that the number of students who play both soccer and volleyball is 5.
P(Soccer and Volleyball) = Number of students who play both soccer and volleyball / Total number of student athletes
P(Soccer and Volleyball) = 5 / 204
2. Probability that a student plays volleyball:
We want to find the probability of a student playing volleyball, denoted as P(Volleyball).
P(Volleyball) = Number of students who play volleyball / Total number of student athletes
P(Volleyball) = 31 / 204
Therefore, the probability that a randomly selected student athlete in this school plays both soccer and volleyball is 5/204, and the probability that they play volleyball is 31/204.
for similar questions on probabilities.
https://brainly.com/question/251701
#SPJ8
Average rate of change
Consider the transformation.
2 trapezoids have identical angle measures but different side lengths. The first trapezoid has side lengths of 4, 2, 6, 2 and the second trapezoid has side lengths of 8, 4, 12, 4.
Which statement about the transformation is true?
The true statement about the transformation is that the second trapezoid is a dilation of the first trapezoid with a scale factor of 2.
The given transformation involves two trapezoids with identical angle measures but different side lengths. Let's analyze the two trapezoids and determine the statement that is true about the transformation.
First Trapezoid:
Side lengths: 4, 2, 6, 2
Second Trapezoid:
Side lengths: 8, 4, 12, 4
To determine the relationship between the side lengths of the two trapezoids, we can compare the corresponding sides.
Comparing the corresponding sides:
4 / 8 = 2 / 4 = 6 / 12 = 2 / 4
We can observe that the corresponding sides of the two trapezoids have the same ratio. This indicates that the side lengths of the second trapezoid are twice the lengths of the corresponding sides of the first trapezoid. Therefore, the statement that is true about the transformation is:
The second trapezoid is a dilation of the first trapezoid with a scale factor of 2.
A dilation is a type of transformation that produces an image that is the same shape as the original figure but a different size. In this case, the second trapezoid is obtained by scaling up the first trapezoid by a factor of 2 in all directions.
This transformation preserves the shape and angle measures of the trapezoid but changes its size. The corresponding sides of the second trapezoid are twice as long as the corresponding sides of the first trapezoid.
For more such questions on trapezoid visit:
https://brainly.com/question/1463152
#SPJ8
Find the measure of the numbered angles
Look at picture for reference
Show work when possible
The measure of the numbered angles in the rhombus is determined as angle 1 = 90⁰, angle 2 = 57⁰, angle 3 = 45⁰, and angle 4 = 45⁰.
What is the measure of the numbered angles?The measure of the numbered angles is calculated by applying the following formula as follows;
Rhombus has equal sides and equal angles.
angle 2 = angle 57⁰ (alternate angles are equal)
angle 1 = 90⁰ (diagonals of rhombus intersects each other at 90⁰)
angle 3 = angle 4 (base angles of Isosceles triangle )
angle 3 = angle 4 = ¹/₂ x 90⁰
angle 3 = angle 4 = 45⁰
Thus, the measure of the numbered angles in the rhombus is determined as angle 1 = 90⁰, angle 2 = 57⁰, angle 3 = 45⁰, and angle 4 = 45⁰.
Learn more about angles of a rhombus here: https://brainly.com/question/8994806
#SPJ1
Similar Triangles
Determine whether the triangles are similar. If so, write a similarity statement. If not, what would be sufficient to
prove the triangles similar? Explain your reasoning.
I need help on number 1 and 2
The equivalent ratio of the corresponding sides and the triangle proportionality theorem indicates that the similar triangles are;
1. ΔAJK ~ ΔSWY according to the SAS similarity postulate
2. ΔLMN ~ ΔLPQ according to the AA similarity postulate
3. ΔPQN ~ ΔLMN
LM = 12, QP = 8
4. ΔLMK~ΔLNJ
NL = 21, ML = 14
What are similar triangles?
Similar triangles are triangles that have the same shape but may have different sizes.
1. The ratio of corresponding sides between the two triangles circumscribing the congruent included angle are;
24/16 = 3/2
18/12 = 3/2
The ratio of each of the two sides in the triangle ΔAJK to the corresponding sides in the triangle ΔSWY are equivalent and the included angle, therefore, the triangles ΔAJK and ΔSWY are similar according to the SAS similarity rule.
2. The ratio of the corresponding sides in each of the triangles are;
MN/LN = 8/10 = 4/5
PQ/LQ = 12/(10 + 5) = 12/15 = 4/5
The triangle proportionality theorem indicates that the side MN and PQ are parallel, therefore, the angles ∠LMN ≅ ∠LPQ and ∠LNM ≅ ∠LQP, which indicates that the triangles ΔLMN and ΔLPQ are similar according to the Angle-Angle AA similarity rule
3. The alternate interior angles theorem indicates;
Angles ∠PQN ≅ ∠LMN and ∠MLN ≅ ∠NPQ, therefore;
ΔPQN ~ ΔLMN by the AA similarity postulate
LM/QP = (x + 3)/(x - 1) = 18/12
12·x + 36 = 18·x - 18
18·x - 12·x = 36 + 18 = 54
6·x = 54
x = 54/6 = 9
LM = 9 + 3 = 12
QP = x - 1
QP = 9 - 1 = 8
4. The similar triangles are; ΔLMK and ΔLNJ
ΔLMK ~ ΔLNJ by AA similarity postulate
ML/NL = (6·x + 2)/(6·x + 2 + (x + 5)) = (6·x + 2)/((7·x + 7)
ML/NL = LK/LJ = (24 - 8)/24
(24 - 8)/24 = (6·x + 2)/((7·x + 7)
16/24 = (6·x + 2)/(7·x + 7)
16 × (7·x + 7) = 24 × (6·x + 2)
112·x + 112 = 144·x + 48
144·x - 112·x = 32·x = 112 - 48 = 64
x = 64/32 = 2
ML = 6 × 2 + 2 = 14
NL = 7 × 2 + 7 = 21
MN = 2 + 5 = 7
Learn more on similar triangles here: https://brainly.com/question/2644832
#SPJ1
I've been stuck on this problem for a minute, anyone able to show me what to do?
Use the following duration times (seconds) of 24 eruptions of the Old Faithful geyser in Yellowstone National
Park. The duration times are sorted from lowest to highest.
110 120 178 213 234 234 235 237 240 243 245 245
250 250 251 252 254 255 255 259 260 266 269 273
Describe how to calculate the limits to determine outliers for this data set? Identify any outliers.
Answer:
1. 01= 234, 03= 255 (since the data is
already sorted)
2. I0R = 255 - 234= 21
3. Lower limit = 234- 1.5 * 21= 203.5
Upper limit = 255+ 1.5 * 21= 285.5
4. Outliers: 110, 120, 178 (below the
lower limit), and 273 (above the upper
limit)
Which order pair? Explain.
A function can't have more than one value for an argument. Therefore, it's either (1,1) or (1,3), but since there's not (1,3) among the possible answers, it must be (1,1).
1cm on a picture of a swimming pool represents 1200cm of the actual swimming pool. The length of the pictured swimming pool is 4.5cm and the width is 3cm. What is the perimeter of the actual swimming pool? Express your answer in meters.
Answer:
180 meters
Step-by-step explanation:
To find the perimeter of the actual swimming pool, you need to first find the length and width of the actual swimming pool by multiplying the length and width of the pictured swimming pool by the scale factor of 1200 cm.
Length of actual swimming pool = 4.5 cm × 1200 cm = 5400 cmWidth of actual swimming pool = 3 cm × 1200 cm = 3600 cmPerimeter of actual swimming pool = (5400 cm + 3600 cm) × 2 = 18000 cm.Now that we know that the perimeter of the actual pool is 18000 centimeters, we need to convert that to meters! Keep in mind that:
100cm = 1mNow we can divide 18000 by 100:
18000 cm ÷ 100 = 180 m
Therefore, the perimeter of the actual swimming pool is 180 m.
Which are the roots of the quadratic function f(b) = b² - 75? Select two options.
Ob=5√3
Ob=-5√3
Ob=3√5
Ob=-3√5
Ob=25√3
The two roots of the quadratic function f(b) = b² - 75 are:
b = 5√3 and b = -5√3What is the quadratic function?A quadratic function is a polynomial function with one or more variables in which the highest exponent of the variable is two. Since the highest degree term in a quadratic function is of the second degree, therefore it is also called the polynomial of degree 2. A quadratic function has a minimum of one term which is of the second degree.
We have
[tex]f(b) = b^2 - 75[/tex]Remember that the root of a function is the value of x when the value of the function is equal to zero.
In this problem
The roots are the values of b when the function f(b) is equal to zero.
So,
For f(b)=0
[tex]b^2-75=0[/tex]
[tex]b^2=75[/tex]
Square root both sides
[tex]b=(+/-)\sqrt{75}[/tex]
Simplify
[tex]b=(+/-)5\sqrt{3}[/tex]
[tex]b=5\sqrt{3}[/tex] and [tex]b=-5\sqrt{3}[/tex]
Therefore
[tex]\rightarrow\bold{b = 5\sqrt{3}}[/tex]
[tex]\rightarrow\bold{b=-5\sqrt{3}}[/tex]
Learn more about the quadratic function at:
https://brainly.com/question/30929439
The base of a triangle is 3 inches more than two times the height. If the area of the triangle is 7 in.² find the base and height.
Answer:
Let's denote the height of the triangle as "h" inches.
According to the given information, the base of the triangle is 3 inches more than two times the height. Therefore, the base can be expressed as (2h + 3) inches.
The formula to calculate the area of a triangle is:
Area = (1/2) * base * height
Substituting the given values, we have:
7 = (1/2) * (2h + 3) * h
To simplify the equation, let's remove the fraction by multiplying both sides by 2:
14 = (2h + 3) * h
Expanding the right side of the equation:
14 = 2h^2 + 3h
Rearranging the equation to bring all terms to one side:
2h^2 + 3h - 14 = 0
Now, we can solve this quadratic equation. We can either factor it or use the quadratic formula. In this case, let's use the quadratic formula:
h = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, the values are:
a = 2
b = 3
c = -14
Substituting these values into the quadratic formula:
h = (-3 ± √(3^2 - 4 * 2 * -14)) / (2 * 2)
Simplifying:
h = (-3 ± √(9 + 112)) / 4
h = (-3 ± √121) / 4
Taking the square root:
h = (-3 ± 11) / 4
This gives us two possible solutions for the height: h = 2 or h = -14/4 = -3.5.
Since a negative height doesn't make sense in this context, we discard the negative solution.
Therefore, the height of the triangle is h = 2 inches.
To find the base, we substitute this value back into the expression for the base:
base = 2h + 3
base = 2(2) + 3
base = 4 + 3
base = 7 inches
Hence, the base of the triangle is 7 inches and the height is 2 inches.
Step-by-step explanation:
-The answer for the height is 5.5 units.
-The base of the triangle is aproximately 2.5454 units.
To answer this problem, you have to set an equation with the information you're given. If you do it correctly, it should look like this:
7=1/2(3+2h)
-Now, you have to solve for h:
7=1.5+h
7-1.5=h
5.5=h
-Now that you have the height, you plug it in into the triangle area formula to solve for the base:
7=1/2(b)5.5
7=2.75b
7/2.75=b
b≈2.5454
-To make sure that the corresponding values for the base and height are correct, we plug the values in and this time we are going to solve for a(AREA):
A(triangle)=1/2(2.5454)(5.5)
A=1/2(13.9997)
A=6.99985 square units
-We round the result to the nearest whole number and we get our 7, which is the given value they gave us.
If R = {(x, y) : x and y are integers and x^2 + y^2 = 64} is a relation, then find R.
Answer:
R = {(0, 8), (0, -8), (8, 0), (-8, 0), (6, ±2), (-6, ±2), (2, ±6), (-2, ±6)}
Step-by-step explanation:
Since [tex](\pm8)^2+0^2=64[/tex], [tex]0^2+(\pm 8)^2=64[/tex], [tex](\pm 6)^2+2^2=64[/tex], and [tex]6^2+(\pm 2)^2=64[/tex], then those are your integer solutions to find R.
GEOMETRY 50POINTS
TY GUYS
Answer:
35.7 ft
Step-by-step explanation:
Given
Hypotenuse (length of the ladder) = 50 ft
Base (distance from the ladder to wall) = 35 ft
Height (of the wall) = [tex]\sqrt{50^{2}-35^{2} }[/tex] = [tex]\sqrt{1275}[/tex] = 35.7 ft
50 PTS!!!!!!!!!!! I NEED HELP!!!!!
Answer this question based on the table above. Choose the right answer.
Is the statement true that between 1966 and 1976 the average number of miles flown per passenger increased by one-third. (Yes or no)
Answer:
No
Step-by-step explanation:
To determine if the average number of miles flown per passenger increased by one-third between 1966 and 1976, we need to compare the increase in miles flown during that period.
According to the given table:
In 1966, the average number of miles flown per passenger was 711 miles.In 1976, the average number of miles flown per passenger was 831 miles.To find the increase in miles flown, subtract the 1966 value from the 1976 value:
[tex]\begin{aligned}\sf Increase\; in\; miles\; flown &= \sf 831 \;miles - 711\; miles\\&= \sf 120\; miles\end{aligned}[/tex]
Therefore, the average number of miles flown per passenger between 1966 and 1976 increased by 120 miles.
To check if the increase is one-third of the initial value, we need to calculate one-third of the 1966 value:
[tex]\begin{aligned}\sf One\;third \;of \;711 \;miles &= \sf \dfrac{1}{3} \times 711\; miles\\\\ &= \sf \dfrac{711}{3} \; miles\\\\&=\sf 237\;miles\end{aligned}[/tex]
Since the increase in miles flown (120 miles) is not equal to one-third of the initial 1966 value (237 miles), the statement that the average number of miles flown per passenger increased by one-third between 1966 and 1976 is not true.
Dewan’s bank account balance is -$16.75. He deposits checks totaling $23.59. What is his new balance? -$1.08
Answer:
$6.84
Step-by-step explanation:
This is quite a simple question, simply add the new deposited amount into the original balance to get your answer.
Original balance: -$16.75Deposit: $23.59New balance: -$16.75 + $23.59 = $6.84if 3+5 equals 8 then what does 5+3 equal?
Answer:
8
Step-by-step explanation:
Find the sum of the first 33 terms of the following series, to the nearest
integer.
2, 11, 20,...
Step-by-step explanation:
Common difference , d, is 9
Sn = n/2 ( a1 + a33) a33 = a1 + 32d = 2 + 32(9) = 290
S33 = 33/2 ( 2+290) = 4818
Find the length of KL.
Answer:
KL = 6
Step-by-step explanation:
We see that the length of IL includes IJ, JK, and Kl and is 26.
Since IL = 26 and IJ + JK + KL = IL, we can subtract the sum of the lengths of IJ and Jk from IL to find KL:
IL = IJ + JK + KL
26 = 9 + 11 + KL
26 = 20 + KL
6 = KL
Thus, the length of KL is 6.
We can confirm this fact by plugging in 6 for KL and checking that we get 26 on both sides of the equation when simplifying:
IL = IJ + JK + KL
26 = 9 + 11 + 6
26 = 20 + 6
26 = 26
Thus, our answer is correct.
The exponential growth model y = Ae^rt can be used to calculate the future population of a city. In this model, A is the current population, r is the rate of growth, and y is the future population for a specific time, t, in years.
A certain city's population has a growth rate of r = 0.08. Approximately how long will it take the city's population to grow from 250,000 to 675,000?
NEED ASAP
Step-by-step explanation:
in the formula
y = Ae^rt
y is 675,000
A is 250,000
r is 0.08
to get the value of t
y = Ae^rt
y/A = e^rt
ln(y/A) = rt
[ln(y/A)]/r = t
what is (0.3)0 in binominal distribution
Answer:
When p, the probability of success, is zero in a binomial distribution, the probability of getting exactly k successes in n trials is also zero for all values of k except when k is zero (i.e., when there are no successes).
So, in the case of (0.3)^0, the result would be 1, because any number raised to the power of 0 is equal to 1. Therefore, the probability of getting zero successes in a binomial distribution when the probability of success is 0.3 is 1.