Dead load PD and live load P, act on the end of the cantilever beam, which is length. Then, only 60 percent of the live load is under sustained load. Derive an equation that calculates the maximum total deflection after 5 years. Then, the applied moment is less than the cracking moment, p = 0.008. = 2.0. flexural rigidity is El.

Answers

Answer 1

The maximum total deflection after 5 years is (PD + 0.6P)L^4 / 76.8El.

Given: Dead load PD and live load P, act on the end of the cantilever beam, which is length. Only 60 percent of the live load is under sustained load.

The applied moment is less than the cracking moment, p = 0.008 = 2.0, flexural rigidity is El.

To derive an equation that calculates the maximum total deflection after 5 years, we can apply the following steps:

Step 1: Calculate the total load on the beam. The total load on the beam can be calculated as follows:

P_total = PD + 0.6P

Step 2: Calculate the maximum deflection. The maximum deflection can be calculated using the following formula:

δ_max = 5wL^4 / 384EI

Where, δ_max = maximum deflection, w = total load per unit length of the beam, L = length of the beam, I = moment of inertia of the beam, E = modulus of elasticity of the beam

Substituting the value of the total load on the beam and the value of p, we get:

δ_max = 5(PD + 0.6P)L^4 / 384El(1 - p)

Substituting the value of p, we get:

δ_max = 5(PD + 0.6P)L^4 / 384El(1 - 0.008)

δ_max = 5(PD + 0.6P)L^4 / 384El(0.992)

δ_max = (PD + 0.6P)L^4 / 76.8El

The maximum total deflection after 5 years is (PD + 0.6P)L^4 / 76.8El.

Learn more about deflection visit:

brainly.com/question/31967662

#SPJ11


Related Questions

(b) Describe three of the 3D printing research papers discussed in the Journal Club according to the following questions. What is the objective of the research? (i) What is the key idea of the researc

Answers

Light-Powered, Fast, Self-Healing, and Anti-Icing Electrothermal Nanocomposites with High Strain Capability Objective: The objective of this research paper was to fabricate a self-healing and anti-icing electrothermal.

Nanocomposite material with high strain capability. This could be used for deicing and anti-icing coatings, with applications in various industries. Key Idea: The key idea of this research paper was to explore the possibilities of developing a flexible and durable electrothermal nanocomposite material.

That could be used for deicing and anti-icing coatings. To achieve this, the researchers used a combination of graphene and a polymer-based matrix to create the material. They then exposed the material to ambient light, which triggered the release of stored thermal energy.  

To know more about Nanocomposites visit:

https://brainly.com/question/32312162

#SPJ11

A natural-circulation pillow-block bearing has a journal diameter D of 62.5 mm with a unilateral tolerance of -0.025 mm. The bushing bore diameter B is 62.6 mm with a unilateral tolerance of 0.1 mm. The shaft runs at an angular speed of 1120 rev/min; the bearing uses SAE grade 20 oil and carries a steady load of 1350 N in shaft- stirred air at 21°C. The lateral area of the pillow-block housing is 38,700 mm2. Perform a design assessment using minimum radial clearance for a load of 2700 N and 1350 N. Use Trumpler's criteria and that both 1/d and a are unity.

Answers

Natural-circulation pillow-block bearing has a journal diameter D of 62.5 mm with a unilateral tolerance of -0.025 mm. The bushing bore diameter B is 62.6 mm with a unilateral tolerance of 0.1 mm.

The shaft runs at an angular speed of 1120 rev/min; the bearing uses SAE grade 20 oil and carries a steady load of 1350 N in shaft- stirred air at 21°C. The lateral area of the pillow-block housing is 38,700 mm². We need to perform a design assessment using the minimum radial clearance for a load of 2700 N and 1350 N using Trumpler's criteria.

Both `1/d` and `a` are unity. Trumpler's criteria states that the minimum radial clearance should be not less than [tex]`C=5.3(1/d)^(1/3)a^(2/3)`mm[/tex]. Given that the `1/d` and `a` are unity. `[tex]1/d=1`, and `a=1[/tex]`.Let us find the radial clearance `C` for the load of 2700 N by substituting the given values of `d` and `a`.`[tex]C=5.3(1/d)^(1/3)a^(2/3)[/tex]`For load = 2700 N:  `[tex]C=5.3(1/62.5)^(1/3)×1^(2/3)` = `0.051 mm[/tex].

To know more about Natural-circulation visit:

https://brainly.com/question/28269937

#SPJ11

List ten different built-in functions and describe each with examples. 6. What happens if we don't assign a variable to an expression which evaluates a numerical value? a) MATLAB shows error b) Nothing happens c) The evaluated values are assigned to a variable ans automatically d) Depends on the numerical value 7. What does the Workspace show? a) Attributes of variables, functions from command window b) Attributes of variables, script files from command window c) Attributes of variables, script files, functions from command window d) Attributes of variables from command window

Answers

Ten different built-in functions in MATLAB are: abs, sqrt, sin, cos, exp, log, floor, ceil, round, and rand.

MATLAB provides a wide range of built-in functions that offer convenient ways to perform various mathematical operations. Here are ten different built-in functions along with their descriptions and examples:

1. abs: Returns the absolute value of a number. Example: abs(-5) returns 5.

2. sqrt: Calculates the square root of a number. Example: sqrt(25) returns 5.

3. sin: Computes the sine of an angle given in radians. Example: sin(pi/2) returns 1.

4. cos: Computes the cosine of an angle given in radians. Example: cos(0) returns 1.

5. exp: Evaluates the exponential function e^x. Example: exp(2) returns approximately 7.3891.

6. log: Calculates the natural logarithm of a number. Example: log(10) returns approximately 2.3026.

7. floor: Rounds a number down to the nearest integer. Example: floor(3.8) returns 3.

8. ceil: Rounds a number up to the nearest integer. Example: ceil(1.2) returns 2.

9. round: Rounds a number to the nearest integer. Example: round(2.6) returns 3.

10. rand: Generates a random number between 0 and 1. Example: rand() returns a random number.

Learn more about MATLAB

brainly.com/question/30763780

#SPJ11

By considering the mechanical behaviour of polymers in terms of spring and dashpot models, describe and explain (with the aid of diagrams) the four systems that can represent the response of a polymer to a stress pulse. Your answer should include the models, the strain-time responses to a stress pulse and explanations of response characteristics from (as appropriate) a molecular perspective.

Answers

Polymers, one of the most common materials used today, possess complex mechanical behaviour which can be understood using spring and dashpot models. In these models, the spring represents the elastic nature of a polymer, whereas the dashpot represents the viscous behaviour. The four systems that represent the response of a polymer to a stress pulse include:

1. The Elastic Spring ModelIn this model, the polymer responds elastically to the applied stress and returns to its original state when the stress is removed.2. The Maxwell ModelIn this model, the polymer responds in a viscous manner to the applied stress, and the deformation is proportional to the duration of the stress.3. The Voigt ModelIn this model, both the elastic and viscous behaviour of the polymer are considered. The stress-strain response of this model is characterized by an initial steep curve,  representing the combined elastic and viscous response.

4. The Kelvin ModelIn this model, the polymer responds in a combination of elastic and viscous manners to the applied stress, and the deformation is proportional to the square of the duration of the stress. The stress-strain response of this model is characterized by an initial steep curve, similar to the Voigt model, but with a longer time constant.As we go down from 1 to 4, the mechanical behaviour of the polymer becomes more and more complex and can be explained from a molecular perspective.

The combination of these two behaviours gives rise to the complex mechanical behaviour of polymers, which can be understood using these models.

To know more about mechanical behaviour visit :

https://brainly.com/question/25758976

#SPJ11

Determine the cross correlation sequences for the following pair of signals using the time domain formula : x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4) [7 marks]

Answers

Using the time-domain formula, cross-correlation sequence is calculated. Cross-correlation of x(n) and h(n) can be represented as y(k) = x(-k)*h(k) or y(k) = h(-k)*x(k).

For computing cross-correlation sequences using the time-domain formula, use the following steps:

Calculate the expression for cross-correlation. In the expression, replace n with n - k.

After that, reverse the second signal. And finally, find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

Substitute the given values of x(n) and h(n) in the cross-correlation formula.

y(k) = sum(x(n)*h(n-k)) => y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).  

We calculate y(k) as follows for each value of k: for k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1,

y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are

y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

We can apply the time-domain formula to determine the cross-correlation sequences. We can calculate the expression for cross-correlation.

Then, we replace n with n - k in the expression, reverse the second signal and find the sum over all n values.

We use the formula as follows:

y(k) = sum(x(n)*h(n-k)), where n ranges from negative infinity to positive infinity.

In this problem, we can use the formula to calculate the cross-correlation sequences for the given pair of signals,

x(n) = {3,1} and h(n) = δ(n) + 3δ(n-2) - 5δ(n-4).

We substitute the values of x(n) and h(n) in the formula,

y(k) = sum(x(n)*h(n-k))

=> y(k) = sum((3,1)*(δ(n) + 3δ(n-2) - 5δ(n-4))).

We can compute y(k) for each value of k.

For k=0,

y(k) = 3*1 + 1*1 + 0 = 4.

For k=1, y(k) = 3*0 + 1*0 + 3*1 = 3.

For k=2, y(k) = 3*0 + 1*3 + 0 = 3.

For k=3, y(k) = 3*0 + 1*0 + 0 = 0.

For k=4, y(k) = 3*0 + 1*0 - 5*1 = -5.

Hence, the cross-correlation sequences are y(0) = 4, y(1) = 3, y(2) = 3, y(3) = 0, and y(4) = -5.

To learn more about signal

https://brainly.com/question/30431572

#SPJ11

B: Find the solution to the following linear programming problem using the simplex method Max (Z) 5x+10y Subjected to: 8x+8y ≤ 160 12x+12y ≤ 180 x,y20

Answers

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

How to solve Linear Programming Using Simplex Method?

The standard form of a linear programming problem is expressed as:

Maximize:

Z = c₁x₁ + c₂x₂

Subject to:

a₁₁x₁ + a₁₂x₂ ≤ b₁

a₂₁x₁ + a₂₂x₂ ≤ b₂

x₁, x₂ ≥ 0

We want to Maximize:

Z = 5x + 10y

Subject to:

8x + 8y ≤ 160

12x + 12y ≤ 180

x, y ≥ 0

Now, we can apply the simplex method to solve the problem. The simplex method involves iterating through a series of steps until an optimal solution is found.

The optimal solution for the given linear programming problem is:

Z = 900

x = 10

y = 10

The maximum value of Z is 900, and it occurs when x = 10 and y = 10.

Read more about Linear Programming Using Simplex Method at: https://brainly.com/question/32948314

#SPJ4

An air-standard dual cycle has a compression ratio of 9 . At the beginning of compression p1=100KPa. T1=300 K and V1= 14 L. The total amount of energy added by heat transfer is 227 kJ. The ratio of the constant-volume heat addition to total heat addition is one. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean eifective pressure, in kPa.

Answers

Given Data Compression ratio, r = 9Initial Pressure, P1 = 100 KPaInitial Temperature, T1 = 300 K Initial Volume, V1 = 14 L Heat added, Q = 227 kJ Constant-volume heat addition ratio, αv = 1Formula used.

The efficiency of Dual cycle is given by,

ηth = (1 - r^(1-γ))/(γ*(r^γ-1))

The mean effective pressure, Pm = Wnet/V1

The work done per unit mass of air,

Wnet = Q1 + Q2 - Q3 - Q4where, Q1 = cp(T3 - T2)Q2 = cp(T4 - T1)Q3 = cv(T4 - T3)Q4 = cv(T1 - T2)Process 1-2 (Isentropic Compression)

As the compression process is isentropic, so

Pv^(γ) = constant P2 = P1 * r^γP2 = 100 * 9^1.4 = 1958.54 KPa

As the expansion process is isentropic, so

Pv^(γ) = constantP4 = P3 * (1/r)^γP4 = 1958.54/(9)^1.4P4 = 100 KPa

(Constant Volume Heat Rejection)

Q3 = cv(T4 - T3)T4 = T3 - Q3/cvT4 = 830.87 K

The net work per unit of mass of air is

Wnet = 850.88 kJ/kg.

The percent thermal efficiency is 50.5%. The mean effective pressure is Pm = 60777.14 kPa.

To know more about Compression visit:

https://brainly.com/question/22170796

#SPJ11

1. Highlight the consideration factors and the challenges/problems in the entire process of
completing the 3D printed products.
2. Recommend any modifications that can be done to improve the 3D printing process
and the printed products.

Answers

Consideration factors and challenges/problems in the entire process of completing the 3D printed products The entire process of 3D printing of products, from design to printing, requires careful consideration of the following factors and challenges.

Thus, the designer must determine the material type that is suitable for the design. Consumable supplies:

1. Improve print settings :It's important to set the printer to the correct printing settings, such as speed, temperature, and layer thickness.
2. Proper maintenance: Regular maintenance of the printer, including cleaning and lubrication, can significantly improve its performance.
3. Upgrading the printer: Upgrading the printer with better components like hotends, extruders, and control boards can improve its speed, precision, and overall performance.
4. Using support materials: Support materials can be added to complex designs to improve the structure and quality of the print.
5. Using advanced software: Using advanced software to design and slice 3D models can help improve the quality of the print.
6. Using high-quality filaments: Using high-quality filaments can improve the quality and durability of the print.
7. Using post-processing techniques: Post-processing techniques like sanding, painting, and polishing can significantly improve the appearance of the final product.

To know more about Consideration visit:-

https://brainly.com/question/30759148

#SPJ11

A flat-panel domestic heater 1 m tall x 2 m long is used to maintain a room at 20 °C. An electrical element keeps the surfaces of the radiator at 65 °C. Approximating the heater as a vertical flat plate, calculate the heat transferred to the room by natural convection from both surfaces of the heater (front and back). Assuming that the surface of the heater is painted white, calculate the heat transferred from the radiator to the surrounding surfaces by radiation. Note: The emissivity value of white paint for longwave radiation is approximately 0.8.

Answers

The heat transferred from the radiator to the surrounding surfaces by radiation is 321.56 W.

Given that the flat-panel domestic heater is 1 m tall and 2 m long. The heater maintains the room temperature at 20°C. The electrical element keeps the surface temperature of the radiator at 65°C. The heater is approximated as a vertical flat plate. The heat transferred to the room by natural convection from both surfaces of the heater (front and back) can be calculated using the following formula;

Q = h × A × (ΔT)

Q = heat transferred

h = heat transfer coefficient

A = surface are (front and back)

ΔT = temperature difference = 65 - 20 = 45°C

For natural convection, the value of h is given by;

h = k × (ΔT)^1/4

Where k = 0.15 W/m2K

For the front side;

A = 1 × 2 = 2 m2

h = 0.15 × (45)^1/4 = 3.83 W/m2K

Q = h × A × (ΔT)Q = 3.83 × 2 × 45 = 344.7 W

For the back side, the temperature difference will be the same but the surface area will change.

Area of back side = 1 × 2 = 2 m2

h = 0.15 × (45)^1/4 = 3.83 W/m2K

Q = h × A × (ΔT)Q = 3.83 × 2 × 45 = 344.7 W

The total heat transferred by natural convection from the front and back surface is;

Qtotal = 344.7 + 344.7 = 689.4 W

The heat transferred from the radiator to the surrounding surfaces by radiation can be calculated using the following formula;

Q = σ × A × ε × (ΔT)^4

Where σ = 5.67 × 10-8 W/m2K

4A = 1 × 2 = 2 m2

ΔT = (65 + 273) - (20 + 273) = 45°C

Emissivity ε = 0.8Q = 5.67 × 10-8 × 2 × 0.8 × (45)^4Q = 321.56 W

Therefore, the heat transferred from the radiator to the surrounding surfaces by radiation is 321.56 W.

Learn more about natural convection visit:

brainly.com/question/29451753

#SPJ11

6. A glass capillary tube of diameter 0.3 mm and length 60 mm is dipped in a water
having surface tension 0.017 N/m. The contact angle between the liquid and the
tube wall is 40°. Will the water overflow through the tube? If not, comment on
the nature and radius of meniscus

Answers

The solution of the given problem has been done using the Young's equation. Young's equation is given bycosθ = (γSG – γSL) / γGL where cosθ is the contact angle, γSG is the interfacial tension between solid and gas, γSL is the interfacial tension between solid and liquid, and γ.

GL is the interfacial tension between gas and liquid.The problem can be solved by using the following steps:Given data,Diameter of the tube, d = 0.3 mmLength of the tube, L = 60 mmSurface tension of water, γ = 0.017 N/mContact angle between water and tube wall, θ = 40°Now, we can find the height of the water column inside the capillary using the relationh = 2T/ρgrHere,T = surface tensionρ = density of waterg = acceleration due to gravityr = radius of the capillaryWe know that, the diameter of the capillary, d = 0.3 mm.

This is the maximum height of the water column inside the capillary. Now, we need to check whether the water will overflow or not. To do that, we need to find the radius of the meniscus.The radius of the meniscus is given byrM = h / sinθPutting the values, we getrM = 0.76 / sin 40°rM = 1.22 mThis is greater than the radius of the capillary, hence the water will not overflow. Therefore, the nature of the meniscus will be concave, which means the meniscus will be depressed inside the capillary. The radius of the meniscus is greater than the radius of the capillary, which indicates that the curvature of the meniscus is more than the curvature of the capillary, hence it is concave.

To know more about solution visit:

https://brainly.com/question/31383100

#SPJ11

A 40 ft by 40 ft laboratory room with 9 ft high ceilings will have an ambient lighting target illuminance of 80 fc at a work plane that is 24 in above the floor. It is anticipated that the ceiling reflectance is 0.80 and the average wall reflectance is about 0.7. The space will be illuminated with recessed lay-in 2ft x 4ft open parabolic troffer luminaires with four lamps, as shown in Figure 20.16. The initial output of the fluorescent lamps is 2950 lumen. The light loss factor will be assumed to be 0.70.
A.) Draw the scenario showing the ceiling, floor, and room cavity together with the room dimensions
B.) Neglecting the spacing criteria, determine the minimum number of luminaires required to provide uniform illumination in the space
C.) Determine the maximum center-to-center spacing of the luminaires and arrange fixtures according to the spacing requirements if the spacing coefficients are 1.4/1.2.

Answers

The minimum number of luminaires required to provide uniform illumination in the space is 62.

Max Spacing = 4 ft x 1.4 = 5.6 ft (along the longer dimension)

Max Spacing = 2 ft x 1.2 = 2.4 ft (along the shorter dimension)

B.) To determine the minimum number of luminaires required, you need to calculate the total light output required to achieve the desired illuminance level and then divide it by the output of each individual luminaire.

First, convert the illuminance target from foot-candles (fc) to lumens per square foot (lm/ft²):

80 fc = 80 lm/ft²

The work plane area can be calculated as follows:

Area = Length x Width = 40 ft x 40 ft = 1600 ft²

Now, calculate the total light output required:

Total Light Output = Illuminance x Area = 80 lm/ft² x 1600 ft² = 128,000 lumens

Next, account for the light loss factor:

Light Loss Factor = 0.70

Adjusted Light Output = Total Light Output / Light Loss Factor = 128,000 lumens / 0.70 = 182,857 lumens

Since each luminaire has an initial output of 2950 lumens, divide the adjusted light output by the output of each luminaire to determine the minimum number of luminaires:

Minimum Number of Luminaires = Adjusted Light Output / Luminaire Output = 182,857 lumens / 2950 lumens = 62 luminaires

Therefore, the minimum number of luminaires required to provide uniform illumination in the space is 62.

C.) To determine the maximum center-to-center spacing of the luminaires, you need to consider the spacing coefficients provided (1.4/1.2).

Maximum Center-to-Center Spacing = Luminaire Length x Spacing Coefficient

Assuming the luminaires are 2 ft x 4 ft (Width x Length), the maximum center-to-center spacing would be:

Max Spacing = 4 ft x 1.4 = 5.6 ft (along the longer dimension)

Max Spacing = 2 ft x 1.2 = 2.4 ft (along the shorter dimension)

Learn more about Designing click;

https://brainly.com/question/17147499

#SPJ4

For corrosion to occur, there must be an anodic and cathodic reaction, oxygen must be available, and there must be both an electronically and fonically conductive path True O False

Answers

The given statement, "For corrosion to occur, there must be an anodic and cathodic reaction, oxygen must be available, and there must be both an electronically and fonically conductive path" is true.

The occurrence of corrosion is reliant on three necessary factors that must be present simultaneously. These three factors are:Anode and cathode reaction: When a metal comes into touch with an electrolyte, an oxidation reaction occurs at the anode, and an opposite reaction of reduction occurs at the cathode. The reaction at the anode causes the metal to dissolve into the electrolyte, and the reaction at the cathode protects the metal from corrosion.

Oxygen: For the cathodic reaction to take place, oxygen must be present. If there is no oxygen available, the reduction reaction at the cathode will not happen, and hence, no cathodic protection against corrosion.Electronically and Fonically Conductive Path: To make a closed circuit, the anode and cathode should be electrically connected. A connection can occur when the metal comes into touch with a different metal or an electrolyte that conducts electricity.

To know more about corrosion visit:

https://brainly.com/question/31313074

#SPJ11

A box with a mass of 17 kg is suspended from a spring that is stretched 150 mm. If the box is displaced 100 mm downward from its equilibrium position and given a downward velocity of 700 mm/s, determine the equation which describes the motion. What is the phase angle and amplitude of vibration? Assume that positive displacement is downward.

Answers

The box is in simple harmonic motion with the following parameters. Since the box is displaced from equilibrium and is given an initial velocity, it vibrates with amplitude and has a phase angle.

In simple harmonic motion,

x = A sin (ωt + φ).  

x = A sin (ωt + φ)

can be used to describe the equation of motion for the given problem.For this equation of motion, the amplitude (A) and phase angle (φ) must be calculated using the given conditions.ω, the angular frequency, can be found using the formula for a mass-spring system's angular frequency:

ω = sqrt(k/m)

where k is the spring constant and m is the mass of the box .

In this case, the box is displaced 100 mm downward from its equilibrium position, thus the amplitude of vibration is A = 100 mm. The phase angle can be determined using the following equation:

φ = arctan(-v0/ωx)

where v0 is the initial velocity (700 mm/s), ω is the angular frequency (9.05 rad/s), and x is the amplitude (mm).

φ=arctan(-700/(9.05*100))

φ =-43.33 degrees.

The equation of motion for the given problem is

x = 100 sin (9.05t - 43.33).

The amplitude of vibration is 100 mm and the phase angle is -43.33 degrees.

To know more about equation visit:

https://brainly.com/question/29538993

#SPJ11

In your understanding, differentiate between 3-aspect signalling and 4-aspect signalling.

Answers

3-aspect and 4-aspect signaling are two different methods of railway signalling that are used to ensure safety and provide information to train drivers. In this context, aspect refers to the number of lights used in the signal to convey information to the driver.3-aspect signalling uses three colours of light: red, yellow, and green.

The meanings of these colours in 3-aspect signalling are as follows:Red: This indicates that the driver must stop the train immediately. It is used when there is a danger ahead, such as a broken track or an obstruction.Yellow: This indicates that the driver should slow down and be prepared to stop at the next signal. It is used when there is a warning ahead, such as a slower train or construction work.Green: This indicates that the driver may proceed at the normal speed. It is used when the track ahead is clear.4-aspect signalling uses four colours of light: red, yellow, green, and double yellow.

The meanings of these colours in 4-aspect signalling are as follows:Red: This indicates that the driver must stop the train immediately. It is used when there is a danger ahead, such as a broken track or an obstruction.Yellow: This indicates that the driver should slow down and be prepared to stop at the next signal. It is used when there is a warning ahead, such as a slower train or construction work.Green: This indicates that the driver may proceed at the normal speed. It is used when the track ahead is clear.

To know more about construction visit:

https://brainly.com/question/791518

#SPJ11

200 1/min of N2 (ideal gas) is flowing in a diabatic conical nozzle with a inlet diameter of 3 cm and an outer diameter of 5 mm. The gas at the inlet has an equilibrium state of T₁ = 300K and P₁ = 5 bar, while the temperature at the discharging outlet is T2 = 270K. The nozzle is heated with 0.1kW heater. Calculate: 1) The mass flow rate in kg/s of the N2 2) How much is the gas velocity at the outlet?

Answers

The mass flow rate of N₂ is 0.067 kg/sThe gas velocity at the outlet is 536.74 m/s.

The question gives the following information: 200 1/min of N2 (ideal gas) is flowing in a diabatic conical nozzle with an inlet diameter of 3 cm and an outer diameter of 5 mm

. The gas at the inlet has an equilibrium state of T₁ = 300K and P₁ = 5 bar, while the temperature at the discharging outlet is T2 = 270K. The nozzle is heated with 0.1kW heater.

The answer to the given problem is:

1) Mass flow rate of N2 in kg/s is :Mass flow rate (m) = (ρ*A*V)

ρ₁ = P₁/(R*T₁) = (5*10⁵)/(8.314*300) = 200.9 kg/m³

ρ₂ = P₂/(R*T₂) = (5*10⁵)/(8.314*270) = 208.4 kg/m³

A₁ = π*(d/2)² = π*(0.03/2)² = 7.07*10⁻⁴ m²

A₂ = π*(D/2)² = π*(0.005/2)² = 1.96*10⁻⁵ m²

V = (Q/A) = (200/60)/(7.07*10⁻⁴) = 472.3 m/s

Mass flow rate = (ρ*A*V) = 200.9*7.07*10⁻⁴*472.3 = 0.067 kg/s

2) The velocity of gas at the outlet is given by,V₂ = (Q/A) = (200/60)/(π*(D/2)²) = 536.74 m/s

Therefore, the gas velocity at the outlet is 536.74 m/s.

Learn more about density at

https://brainly.com/question/12864420

#SPJ11

EXPOUND & ANSWER THE QUESTION BRIEFLY AND GIVE INSIGHTS AND
CITE SOURCES ABOUT THE TOPIC. THANK YOUU
Water management is an important aspect of electric power production. Identify at least two needs for water in a Rankine cycle-based power plant. Describe typical water management practices in such plants, and research at least two emerging technologies aimed at reducing water losses in plants or enhancing sustainable water management.

Answers

Rankine cycle-based power plant is a power plant that utilizes steam turbines to convert heat energy into electrical energy. This type of power plant is commonly used in thermal power plants for electricity generation. Water plays a crucial role in the Rankine cycle-based power plant process.

In this context, this article aims to identify the two basic needs for water in Rankine cycle-based power plants, the typical water management practices in such plants, and two emerging technologies aimed at reducing water losses and enhancing sustainable water management.The needs for water in Rankine cycle-based power plantThe two basic needs for water in Rankine cycle-based power plants are: Cooling, and Heating.Cooling: Water is used in Rankine cycle-based power plants to cool the exhaust steam coming out of the steam turbine before it can be pumped back into the boiler.

This steam is usually cooled by water from nearby water bodies, such as rivers, lakes, or oceans. The cooling of the steam condenses the exhaust steam into water, which can be fed back into the boiler for reuse. Heating: Water is used to heat the steam in the Rankine cycle-based power plant. The water is heated to produce steam, which drives the steam turbine and generates electricity. The steam is then cooled by water and recycled back to the boiler for reuse.Typical water management practices in Rankine cycle-based power plantsThere are three types of water management practices in Rankine cycle-based power plants:Closed-loop recirculation: The water is recirculated inside the system, and there is no discharge of wastewater.

The system uses cooling towers or evaporative condensers to discharge excess heat from the plant.Open-loop recirculation: The water is withdrawn from a nearby water body and recirculated through the plant. After being used for cooling, it is discharged back into the water body once again. This practice may have a negative impact on the ecosystem.Blowdown treatment: The system removes excess minerals and chemicals from the system and disposes of them properly.

Emerging technologies aimed at reducing water losses and enhancing sustainable water managementTwo emerging technologies aimed at reducing water losses and enhancing sustainable water management in Rankine cycle-based power plants are:Air cooling system: This system eliminates the need for water to cool the steam. Instead, it uses air to cool the steam. The air-cooling system is eco-friendly and uses less water than traditional water-cooling systems.Membrane distillation: This system removes salt and other impurities from seawater to make it usable for cooling water.

This process uses less energy and produces less waste than traditional desalination techniques.In conclusion, water is a vital resource in Rankine cycle-based power plant, used for cooling and heating. Closed-loop recirculation, open-loop recirculation, and blowdown treatment are typical water management practices.

Air cooling systems and membrane distillation are two emerging technologies aimed at reducing water losses and enhancing sustainable water management in Rankine cycle-based power plants.Sources:US EPA, "Reducing Water Use in Energy Production: Rankine Cycle-based Power Generation," December 2015.Edwards, B. D., S. B. Brown, and K. J. McLeod. "Membrane Distillation as a Low-energy Process for Seawater Desalination." Desalination 203, no. 1–3 (2007): 371–83.

To know about ecosystem visit:

https://brainly.com/question/31459119

#SPJ11

PROBLEM 3 (10 pts) Predict the dominant type of bonding for the following solid compound by considering electronegativity (a) K and Na :______ (b) Cr and O:_______
(c) Ca and CI:______ (d) B and N:_______ (e) Si and O:_______

Answers

The dominant type of bonding for the following solid compound by considering electronegativity is as follows:a. K and Na: metallic bondingb. Cr and O: ionic bondingc. Ca and Cl: ionic bondingd. B and N: covalent bondinge. Si and O: covalent bonding Explanation :Electronegativity refers to the power of an atom to draw a pair of electrons in a covalent bond.

The distinction between a nonpolar and polar covalent bond is determined by electronegativity values. An electronegativity difference of less than 0.5 between two atoms indicates that the bond is nonpolar covalent. An electronegativity difference of between 0.5 and 2 indicates a polar covalent bond. An electronegativity difference of over 2 indicates an ionic bond.1. K and Na: metallic bondingAs K and Na have nearly the same electronegativity value (0.8 and 0.9 respectively), the bond between them will be metallic.2. Cr and O: ionic bondingThe electronegativity of Cr is 1.66, whereas the electronegativity of O is 3.44.

As a result, the electronegativity difference is 1.78, which implies that the bond between Cr and O will be ionic.3. Ca and Cl: ionic bondingThe electronegativity of Ca is 1.00, whereas the electronegativity of Cl is 3.16. As a result, the electronegativity difference is 2.16, which indicates that the bond between Ca and Cl will be ionic.4. B and N: covalent bondingThe electronegativity of B is 2.04, whereas the electronegativity of N is 3.04. As a result, the electronegativity difference is 1.00, which implies that the bond between B and N will be covalent.5. Si and O: covalent bondingThe electronegativity of Si is 1.9, whereas the electronegativity of O is 3.44.

To know more about electronegativity visit :-

https://brainly.com/question/3393418

#SPJ11

Design of Slider-Crank Mechanisms For Problems 5-11 through 5-18, design a slider-crank mechanism with a time ratio of Q, stroke of AR Imax and time per cycle of t. Use either the graphical or analytical method. Specify the link lengths L2, L3, offset distance L (if any), and the crank speed. - 5–11. Q = 1; IAR4! max = 2 in.; t = 1.2 s. 5–12. Q = 1; IAR 4 max = 8 mm; t = 0.08 s. 5-13. Q = 1; IA R4 max 0.9 mm; t = 0.4s. 5–14. Q = 1.25; IAR4l max = 2.75 in.; t = 0.6s. 5-15. Q = 1.37;IARA max 46 mm; t = 3.4s. 5-16. Q = 1.15; IA R4! max 1.2 in.; t = 0.014 s. 5–17. Q = 1.20; IARA! max = 0.375 in.; t = 0.025 s. = . 5-18. Q = 1.10; IARĄ! max = 0.625 in.; t = 0.033s. = . = = =

Answers

Design a slider-crank mechanism by determining the link lengths, offset distance (if any), and crank speed to meet the specified time ratio, stroke, and time per cycle for each given scenario (5-11 to 5-18).

What are the key design parameters (link lengths, offset distance, and crank speed) required to meet the specified time ratio, stroke, and time per cycle for each given scenario of the slider-crank mechanism?

The given problem involves designing a slider-crank mechanism with specified time ratios, stroke, and time per cycle.

The goal is to determine the link lengths, offset distance (if any), and crank speed using either the graphical or analytical method.

The problem includes various scenarios (5-11 to 5-18) with different parameters. The solution requires applying the appropriate design techniques to meet the given requirements for each case.

Learn more about slider-crank

brainly.com/question/23835036

#SPJ11

A nozzle 0.06m in diameter emits a water jet at a velocity of 30 m/s, which strikes a stationary vertical plate at an angel of 35° to the vertical.
Calculate the force acting on the plate, in N in the horizontal direction
(Hint 8 in your formula is the angle to the horizontal)
If the plate is moving horizontally, at a velocity of of 2 m/s, away from the nozzle, calculate the force acting on the plate, in N
the work done per second in W, in the direction of movement

Answers

The force acting on the plate, in N in the horizontal direction is 41.82 N and the force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

What is a nozzle?

A nozzle is a simple mechanical device that controls the flow of a fluid.

Nozzles are used to convert pressure energy into kinetic energy.

Fluid, typically a gas or liquid, flows through the nozzle, and the pressure, velocity, and direction of the flow are changed as a result of the shape and size of the nozzle.

A fluid may be made to flow faster, slower, or in a particular direction by a nozzle, and the size and shape of the nozzle may be changed to control the flow.

The formula for calculating the force acting on the plate is given as:

F = m * (v-u)

Here, m = density of water * volume of water

= 1000 * A * x

Where

A = πd²/4,

d = 0.06m and

x = ABcosθ/vBcos8θv

B = Velocity of the jet

θ = 35°F

= 1000 * A * x * (v - u)N,

u = velocity of the plate

= 2m/s

= 2000mm/s,

v = velocity of the jet

= 30m/s

= 30000mm/s

θ = 35°,

8θ = 55°

On solving, we get

F = 41.82 N

Work done per second,

W = F × u

W = 41.82 × 2000

W = 83,640

W = 83.64 kW

The force acting on the plate, in N if the plate is moving horizontally, at a velocity of 2 m/s, away from the nozzle is 33.69 N.

To know more about velocity  visit:

https://brainly.com/question/30559316

#SPJ11

A pipe with an inner diameter of 13.5 inches and a wall thickness of 0.10 inches inch is pressured from 0 psi to 950 psi find the yield factor of safety (2 decimal places). Just use the tangential stress for the analysis.
Sut=80000 psi, Sy= 42000 psi, Se = 22000 psi

Answers

A yield factor of safety for a pipe with a diameter of 13.5 inches and a wall thickness of 0.10 inches that is pressured from 0 psi to 950 psi using the tangential stress is determined in this question.

The values for Sut, Sy, and Se are 80000 psi, 42000 psi, and 22000 psi, respectively.  

The yield factor of safety can be calculated using the formula:

Yield factor of safety = Sy / (Tangential stress) where

Tangential stress = (Pressure × Inner diameter) / (2 × Wall thickness)

Using the given values, the tangential stress is:

Tangential stress = (950 psi × 13.5 inches) / (2 × 0.10 inches) = 64125 psi

Therefore, the yield factor of safety is:

Yield factor of safety = 42000 psi / 64125 psi ≈ 0.655

To provide a conclusion, we can say that the yield factor of safety for the given pipe is less than 1, which means that the pipe is not completely safe.

This implies that the pipe is more likely to experience plastic deformation or yield under stress rather than remaining elastic.

Thus, any additional pressure beyond this point could result in the pipe becoming permanently damaged.

To know more about yield factor visit:

brainly.com/question/31857073

#SPJ11

Which definition of yield strength is correct: Stress at which plastic deformation can be clearly distinguished Stress at which plastic deformation replaces elastic deformation O Stress at proportional limit

Answers

The correct definition of yield strength is: Stress at which plastic deformation replaces elastic deformation.

Yield strength is the point at which a material transitions from elastic deformation (where it can return to its original shape after the stress is removed) to plastic deformation (where it undergoes permanent deformation even after the stress is removed).

It is the stress level at which the material starts to exhibit significant and permanent plastic deformation. The yield strength is typically determined through the offset method, where a small amount of plastic strain is allowed and the stress corresponding to that strain is measured.

To learn more about yield strength click here:

/brainly.com/question/13039704

#SPJ11

Your team is invited to join a micro-mouse contest at the national level. The maze is made up of a 16×16 grid of cells. Each cell area is measuring 180 mm square with walls 50 mm high. (i) Propose and justify a suitable type of motor for a small-size light-weight mobile robot for the contest.
(ii) In a simple sketch, design your circuit for driving the proposed type of motor using a PWM driver L293B motor driver. Show only the used pins of Arduino UNO in your sketch.
(iii) Briefly explain how to control the motor rotation speed and direction using the PWM driver L293B motor driver. (iv) Based on the proposed circuit in (ii), provide only the part of the Arduino UNO coding to control the motor to turn right at 50% of the full speed for 3 seconds. Then turn left at full speed for 5 seconds before stopping. (v) Briefly explain the sensor needed and its working mechanism in measuring the speed and direction of motor rotation

Answers

A coreless DC motor is suitable for a small-size light-weight mobile robot for a maze solving competition, and the Arduino UNO can be used to control the motor speed and direction using a PWM driver L293B motor driver. A quadrature encoder can be used to measure the speed and direction of motor rotation.

(i) For a micro-mouse contest at the national level with a maze made up of a 16×16 grid of cells, a suitable type of motor for a small-size light-weight mobile robot would be a coreless DC motor. It is because the coreless DC motors are brushless and have a higher power-to-weight ratio than the regular motors. They also have low inertia and can accelerate and decelerate rapidly, which is essential for a maze-solving robot. These motors are also widely used in small robotics due to their efficiency and durability. Therefore, it is the best option for this kind of maze solving competitions.

(ii) The circuit design for driving the proposed type of motor using a PWM driver L293B motor driver is given below:

(iii) To control the motor rotation speed and direction using the PWM driver L293B motor driver, we can use the Arduino UNO. The PWM driver provides two outputs per motor. Each output can drive a single motor winding. By changing the direction and speed of the motor, it can be controlled.

(iv) The part of the Arduino UNO coding to control the motor to turn right at 50% of the full speed for 3 seconds and then turn left at full speed for 5 seconds before stopping is given below:

int ENA = 3; //Set ENA to Pin 3
int IN1 = 4; //Set IN1 to Pin 4
int IN2 = 5; //Set IN2 to Pin 5
void setup() {
pinMode(ENA, OUTPUT); //Set ENA as OUTPUT
pinMode(IN1, OUTPUT); //Set IN1 as OUTPUT
pinMode(IN2, OUTPUT); //Set IN2 as OUTPUT
}
void loop() {
digitalWrite(IN1, HIGH); //Rotate Right
digitalWrite(IN2, LOW);
analogWrite(ENA, 128); //50% of full speed
delay(3000); //Wait for 3 seconds
digitalWrite(IN1, LOW); //Rotate Left
digitalWrite(IN2, HIGH);
analogWrite(ENA, 255); //Full Speed
delay(5000); //Wait for 5 seconds
digitalWrite(IN1, LOW); //Stop
digitalWrite(IN2, LOW);
analogWrite(ENA, 0);
}

(v) The sensor needed for measuring the speed and direction of motor rotation is a quadrature encoder. It is a sensor that provides feedback about the speed and direction of the motor. It has two output channels, one for each phase of the motor's rotation. These channels generate square waves that are out of phase with each other. By counting the number of pulses generated by the sensor, the speed and direction of the motor can be measured. The quadrature encoder can be easily integrated into the motor shaft and can be used to monitor the speed and direction of the motor rotation.

To know more about DC motor visit:

brainly.com/question/33222870

#SPJ11

Select the item listed that is NOT a type of electrical transducer. o Resistance Pressure Transducer o Mechanical Pressure Transducer o Inductance Pressure Transducer o Differential Pressure Transducer

Answers

The item listed that is NOT a type of electrical transducer is mechanical pressure transducer. Electrical transducers are devices that convert one form of energy into another.

The conversion process is often carried out by exploiting the principle of transduction. Mechanical pressure transducers are devices that convert mechanical force into an electrical signal, thus they are not electrical transducers. Explanation:

An electrical transducer is a device that transforms one type of energy into electrical energy.

In other words, it transforms a non-electrical quantity into an electrical quantity. Types of Electrical Transducers1. Resistive transducer. A resistive transducer changes the resistance in response to the variation in the physical quantity being calculated. A capacitive transducer changes the capacitance of a capacitor in response to a variation in the physical quantity being calculated.

To know more about electrical visit:

https://brainly.com/question/31173598

#SPJ11

The moment couple M acts in a vertical plane and is applied to a beam oriented as shown in Fig.
Figure 1. All measurements are in [in]. Determine: a. The angle that the neutral axis makes with the horizontal. b. The maximum tensile stress in the beam.

Answers

To determine the angle that the neutral axis makes with the horizontal and the maximum tensile stress in the beam, you would need to know the moment couple (M) and the dimensions of the beam, such as its length, width, and depth.

Once you have the values, you can use the principles of mechanics and beam theory to solve for the required quantities. The angle that the neutral axis makes with the horizontal can be determined by analyzing the equilibrium of forces and moments acting on the beam. The maximum tensile stress can be calculated using the bending moment and the section properties of the beam, such as the moment of inertia.

To know more about inertia visit :

https://brainly.com/question/3268780

#SPJ11

The weak form of the governing equation is: So v₂ E Au dx = fvqdx + [vEAux] - fEAv, up dx, where u is the displacement. Assuming a test function of the form v=v, discretisation using linear shape functions N₁, and a uniform element length, calculate the expression for the displacement ₁ of node 1 as a function of q, A, E and I assuming: q, A and E are constants, and boundary conditions u (0) = 0 and uz (L) = 0. Denote the element length by 1. Using this information, please answer questions 3-6. Evaluate the term fo v E Aude for this specific problem. Input only the solution below. Omit the hats to simplify inputting the solution. Evaluate the term fvqda for the specific example above. Input only the solution below. Omit the hats to simplify inputting the solution. Evaluate the term [vE Au for the specific example above. Input only the solution below. Omit the hats to simplify inputting the solution. Evaluate the term - SEAv, updx, for the specific example above (noting the minus sign). Input only the solution below. Omit the hats to simplify inputting the solution.

Answers

The expression for the displacement u₁ of node 1 as a function of q, A, E, and I can be calculated by solving the weak form of the governing equation with the given boundary conditions.

To calculate the expression for u₁, we can start by discretizing the domain into elements and using linear shape functions N₁.

Assuming a uniform element length, we can express the displacement u as a linear combination of shape functions and their corresponding nodal displacements.

Since we are interested in the displacement at node 1, the nodal displacement at node 1 (u₁) will be the unknown value we need to solve for.

By substituting the test function v=v₁ into the weak form of the governing equation and rearranging the terms, we can obtain an expression that relates u₁ to the given constants q, A, E, and I.

The specific details of this calculation depend on the specific form of the weak form equation and the shape functions used.

By solving the equation with the given boundary conditions, we can determine the expression for u₁ as a function of q, A, E, and I.

Learn more about governing equation

brainly.com/question/32178187

#SPJ11

Name at least two ways that a single phase AC motor can get
started. Why does the motor need help to start rotating?

Answers

There are two main ways to start a single phase AC motor, including capacitor start motors and split-phase motors.

In single phase AC motors, starting torque is created by a second phase or winding that is in the motor. This second winding is known as the starter winding and it is connected to the same power source as the main winding. The main winding is the primary source of power to the motor. It is used to create the rotating magnetic field that is necessary to make the motor work.

However, because it is a single phase motor, it is not able to produce enough torque on its own to start rotating. As a result, the starter winding is used to provide additional torque to get the motor started.

There are several ways that a single phase AC motor can get started. One way is to use a capacitor start motor. This type of motor uses a capacitor to create an artificial second phase in the starter winding.

The capacitor is used to create a phase shift between the voltage in the main winding and the voltage in the starter winding. This phase shift causes a rotating magnetic field to be created, which in turn creates the starting torque needed to get the motor moving.

Another way to start a single phase AC motor is to use a split-phase motor. This type of motor uses a special type of starter winding that is designed to provide a higher starting torque than a standard winding. The split-phase motor is able to provide this higher torque by using two separate windings in the starter. One winding is used to create the rotating magnetic field, while the other winding is used to provide additional torque to get the motor started.

The starting torque in single phase AC motors is created by the starter winding, which is used to provide additional torque to get the motor started.

To know more about magnetic field visit:

https://brainly.com/question/21040756

#SPJ11

A rod 12.5 mm in diameter is stretched 3.2 mm under a steady load of 10 kN. What stress would be produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed? The value of E may be taken as 2.1 x 10^5 N/mm².

Answers

The stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Explanation:

The given problem provides information about a rod with a diameter of 12.5 mm and a steady load of 10 kN. The steady load produces stress (σ) on the rod, which can be calculated using the formula σ = (4F/πD²) = 127.323 N/mm², where F is the load applied to the rod. The extension produced by the steady load (δ) can be calculated using the formula δ = (FL)/AE, where L is the length of the rod, A is the cross-sectional area of the rod, and E is the modulus of elasticity of the rod, which is given as 2.1 x 10⁵ N/mm².

After substituting the given values in the formula, the extension produced by the steady load is found to be 3.2 mm. Using the formula, we can determine the length of the rod, which is L = (3.2 x 122.717 x 2.1 x 10⁵)/10,000 = 852.65 mm.

The problem then asks us to calculate the potential energy gained by a weight of 700 N falling through a height of 75 mm. This potential energy is transformed into the strain energy of the rod when it starts to stretch.

Thus, strain energy = Potential energy of the falling weight = (700 x 75) N-mm

The strain energy of a bar is given by the formula, U = (F²L)/(2AE) ... (2), where F is the force applied, L is the length of the bar, A is the area of the cross-section of the bar, and E is the modulus of elasticity.

Substituting the given values in equation (2), we get

(700 x 75) = (F² x 852.65)/(2 x 122.717 x 2.1 x 10⁵)

Solving for F, we get F = 2666.7 N.

The additional stress induced by the falling weight is calculated by dividing the force by the cross-sectional area of the bar, which is F/A = 2666.7/122.717 = 21.73 N/mm².

The total stress induced in the bar is the sum of stress due to steady load and additional stress due to falling weight, which is 127.323 + 21.73 = 149.053 N/mm².

Therefore, the stress produced in the bar by a weight of 700 N, falling through 75 mm before commencing to stretch, the rod being initially unstressed, is 149.053 N/mm².

Know more about strain energy here:

https://brainly.com/question/32094420

#SPJ11

A diffuser operates at sea-level at M 0 =1.5 with π d,max =0.98 and where η r ={ 1 for M 0 ≤11−0.075(M 0 −1) 1.35 for 1 b. p t0
C. p t2​
d. T t2
e. T t2,s
(the value of T t2 for an isentropic compressor) f. η d = T t2​ −T 0T t2,s −T 0 [ Ans :η d =0.954] g. Sketch the T-s diagram for this case showing the points calculated in (a) through (e).

Answers

The diffuser operates at sea-level with a Mach number (M0) of 1.5, achieving a maximum pressure recovery (πd,max) of 0.98. The overall diffuser efficiency (ηd) is calculated to be 0.954.

The diffuser is a device used in fluid mechanics to slow down and increase the pressure of a fluid. In this case, the diffuser is operating at sea-level with a Mach number (M0) of 1.5, which indicates that the flow velocity is supersonic. The maximum pressure recovery (πd,max) is given as 0.98, meaning that the diffuser can recover up to 98% of the static pressure.

To calculate the diffuser efficiency (ηd), we need to consider the isentropic efficiency of the diffuser (ηr), the temperature at the diffuser inlet (T0), and the temperature at the diffuser outlet (Tt2). The isentropic efficiency of the diffuser (ηr) depends on the Mach number (M0) and can be calculated using the given formula. In this case, ηr is given as 1 for M0 ≤ 1, and 1.35 for 1 < M0 < 11 - 0.075(M0 - 1).

The temperature at the diffuser inlet (T0) is known, but the temperature at the diffuser outlet (Tt2) needs to be determined. The value of Tt2 for an isentropic compressor is given as 1. Hence, we need to calculate Tt2 using the given formula. By substituting the known values and solving the equation, we find the value of Tt2.

Finally, the diffuser efficiency (ηd) is calculated using the formula ηd = (Tt2 - T0) / (Tt2,s - T0), where Tt2,s is the temperature at the diffuser outlet for an isentropic process. By substituting the known values into the equation, we obtain the value of ηd as 0.954.

Learn more about Diffuser

brainly.com/question/14852229

#SPJ11

An air-standard cycle is executed in a closed system and is composed of the following four processes: 1-2: isentropic compression from 1.0 bar and 27°C to 1.0 MPa; 2-3: constant pressure heating of 2800 kJ/kg; 3-4: constant volume heat rejection to 1.0 bar; 4-1: constant pressure heat rejection to initial state. a). Illustrates the cycle on a T-s and p-v diagrams. Determine: b). the maximum temperature in the cycle. c). the changes in specific entropy of each process and the change in entropy of the cycle. c). the thermal efficiency.

Answers

The air-standard cycle described consists of four processes: 1-2 isentropic compression, 2-3 constant pressure heating, 3-4 constant volume heat rejection, and 4-1 constant pressure heat rejection.

On a T-s diagram, process 1-2 is a vertical line (isentropic compression), process 2-3 is a horizontal line (constant pressure heating), process 3-4 is a vertical line (constant volume heat rejection), and process 4-1 is a horizontal line (constant pressure heat rejection). On a p-v diagram, process 1-2 is a curve (isentropic compression), process 2-3 is a horizontal line (constant pressure heating), process 3-4 is a vertical line (constant volume heat rejection), and process 4-1 is a curve (constant pressure heat rejection).

To determine the maximum temperature in the cycle (Tmax), we need to find the temperature at state 3. Since process 2-3 is a constant pressure heating process, the temperature change can be calculated using the specific heat capacity at constant pressure (Cp). Thus, Tmax = T2 + Q/(m * Cp), where Q is the heat added during process 2-3.

To calculate the changes in specific entropy (Δs) for each process, we can use the equation Δs = Cp * ln(T2/T1) for process 1-2, Δs = Q/(T3) for process 2-3, Δs = Cv * ln(V3/V4) for process 3-4, and Δs = Q/(T1) for process 4-1, where Cp and Cv are the specific heat capacities at constant pressure and constant volume, respectively.

Learn more about thermodynamic cycles here:

https://brainly.com/question/33284038

#SPJ11

The work function of a metal surface is 4.5 eV. If the frequency of the light incident upon it is 1.45 × 1015 Hz, then what is the maximum kinetic energy (in eV) of the photo electrons emitted from the surface?

Answers

The maximum kinetic energy (in eV) of the photo electrons emitted from the surface is 6 ev.

To calculate the maximum kinetic energy of photoelectrons emitted from a metal surface, we can use the equation:

E max​=hν−φ

Where: E max ​ is the maximum kinetic energy of photoelectrons,

h is the Planck's constant (4.135667696 × 10⁻¹⁵ eV s),

ν is the frequency of the incident light (1.45 × 10¹⁵ Hz),

φ is the work function of the metal surface (4.5 eV).

Plugging in the values:

E max ​ =(4.135667696×10⁻¹⁵  eV s)×(1.45×10¹⁵  Hz)−4.5eV

Calculating the expression:

E max ​ =5.999eV

To learn more on Work click:

https://brainly.com/question/18094932

#SPJ4

Other Questions
ASAP plsIf the rotation of the wheel is defined by the relation: 0 = 3t3 - 5t + 7t - 2, where 0 is in radians and t in seconds. When t = 3 seconds, find the value of angular acceleration in radians/s 42 4 To design a simply supported RCC slab for a roof of a hall 4000x9000 mm inside dimension, with 250 mm wall all around, consider the following data: d= 150 mm, design load intensity=15 kN/m, M25, Fe415. a. Find the effective span and load per unit width of the slab. b. Find the ultimate moment per unit width of the slab. c. Find the maximum shear force per unit width of the slab. d. Find the effective depth required from ultimate moment capacity consideration and comment on the safety. e. Is it necessary to provide stirrups for such a section? A fan with 40% static efficiency has a capacity of 60,000 ft3/ hr at 60F and barometer of 30 in Hg and gives a static pressure of 2 in WG on full delivery. What size electric motor should be used to drive this fan?O 0.8 HP O 1.2 HP O 1.6 HP O 2 HP : Price A D B Supply 1 Supply 2 Demand 1 Demand 2 Quantity Initally the corn market supply was Supply 1 and demand was Demand 1. Then, suppose there was a decrease in wages paid to corn farm worker Arthropods have tagma and jointed appendages. Sketch and explain how a typical Hexapod differs from a Crustacean. List at least 5 differences and 2 shared traits along with the overall comparison to body plan organization and unique features. Numerical Integration The function f(x)=e* can be used to generate the following table of unequally spaced data = x O 0.1 0.3 0.5 0.7 0.95 1.2 f(x) 1 0.9048 0.7408 0.6065 0.4966 0.3867 0.3012 . = In Mendel's dihybrid crosses with pea plants, he simultaneously examined two different genes that controlled two different traits, instead of just one gene with two different alleles. In one experiment, he crossed a plant that was homozygous for both round seed shape and yellow seed color (RRYY) with another plant that was homozygous for both wrinkled seed shape and green seed color (rryy). Two genes on separate chromosomes will follow Mendel's law of segregation. a. Indicate the two different gametes each of these plants would produce. (Remember: seed shape and seed color are two separate genes on different chromosomes so each gamete should have one allele of each gene). b. Draw a Punnett Square to show this cross using the possible two possible gametes and give the genotype and phenotype ratios of the possible offspring. c. Mendel then crossed two of the F2 progeny plants with each other and he obtained an F2 generation with results that indicated that each gene was being inherited independently. Draw a Punnett square to show this cross (there should be 16 boxes total in your Punnett square) and the phenotypic ratios should be the product of the ratios of each gene individually (remember the product rule). 1. Familiarize yourself with the video before you start your simulation. - You will vary the radius level between 1 and \( 10 . \) - For each radius level, use the tape to measure accurately the dista You know that widely used plastic bottles of carbonated drinks are made from PET plastic. Considering that CO2 is permeable for PET plastic, what is the diffusion flux at 298 K? Note that permeability coefficient for carbon dioxide is 0.51013[cm2 sPa], pressure inside and outside the bottle are 1 MPa and 0.1 kPa, respectively. Lets consider that bottle is a hollow cylinder with diameter of 30 mm, height of 100 mm and thickness of 0.05 cm. What is expiration date of this bottle if it considers decarbonized when 500 cm3 of CO2 will diffuse? Assuming a condition of steady state diffusion, calculate diffusion flux at 350 K if activation energy is 50 kJ/mol. How fast will the bottle lose fizz in this case? Compare two cases. describe massively parallel computing and grid computing and discuss how they transform the economics of supercomputing. What are the differences between innate and adaptive immunity?Describe with examples An investment offers $5,717 per year for 6 years, with the firstpayment occurring 1 year from now. If the required return is 14percent, what is the value of the investment? A rigid (closed) tank contains 10 kg of water at 90C. If 8 kg of this water is in the liquid form and the rest is in the vapor form. Answer the following questions: a) Determine the steam quality in the rigid tank.b) Is the described system corresponding to a pure substance? Explain.c) Find the value of the pressure in the tank. [5 points] d) Calculate the volume (in m) occupied by the gas phase and that occupied by the liquid phase (in m). e) Deduce the total volume (m) of the tank.f) On a T-v diagram (assume constant pressure), draw the behavior of temperature with respect to specific volume showing all possible states involved in the passage of compressed liquid water into superheated vapor.g) Will the gas phase occupy a bigger volume if the volume occupied by liquid phase decreases? Explain your answer (without calculation).h) If liquid water is at atmospheric pressure, mention the value of its boiling temperature. Explain how boiling temperature varies with increasing elevation. if a 30 kilobase RNA is turned into a DNA molecule how many basepairs are there Kottinger's Kamp Supplies is considering an investment in new manufacturing equipment. The equipment costs $220,000 and will provide annual after-tax inflows of $50,000 at the end of each of the next seven years. The firm's market value debt/equity ratio is 25%, its cost of equity is 14%, and its pre-tax cost of debt is 7%. The flotation costs of debt and equity are 3% and 9%, respectively. The firm's combined marginal federal and provincial tax rate is 40%. Assume the project is of approximately the same risk as the firm's existing operations. (i) How is transcription terminated in prokaryotic cells? [3 marks] (ii) Transcription of the gene given below starts at the underlined base. What is the sequence of the mRNA transcript? Clearly labei ail sequences in your answer. Briefly explain your answer. [3 marks] 5' TACGGCGTTAGACAAGTGCGTGAG 3" Which of the following medication forms is a liquid thatcontains small particles of the drug that cannot be dissolved?ElixirSyrupSuspensionCaplet With respect to the sugar quota, the people who are harmed are and the people who benefit are A.rationally informed; irrationally ignorant B.rationally ignorant; irrationally informed C.rationally ignorant; rationally informedD.rationally informed; rationally ignorant 1. What is a firms fundamental goal and what happens if the firm doesnt pursue this goal?2. Explain how the marginal product of labor and the average product of labor change as the quantity of labor employed increases (a) initially and (b) eventually.3. What is the law of diminishing returns? Why does the marginal product of labor eventually diminish? Which of the following is not a type of G protein coupled receptor used in hormone signaling? adenylate cyclase phospholipase C integrin