cual es la derivada de ()=√x sin

Answers

Answer 1

Answer:

[tex] f(x) =\sqrt{x} sin (x)[/tex]

And on this case we can use the product rule for a derivate given by:

[tex] \frac{d}{dx} (f(x)* g(x)) = f'(x) g(x) +f(x) g'(x)[/tex]

Where [tex] f(x) =\sqrt{x}[/tex] and [tex] g(x) =sin (x)[/tex]

And replacing we have this:

[tex] f'(x)= \frac{1}{2\sqrt{x}} sin (x) + \sqrt{x}cos(x)[/tex]

Step-by-step explanation:

We assume that the function of interest is:

[tex] f(x) =\sqrt{x} sin (x)[/tex]

And on this case we can use the product rule for a derivate given by:

[tex] \frac{d}{dx} (f(x)* g(x)) = f'(x) g(x) +f(x) g'(x)[/tex]

Where [tex] f(x) =\sqrt{x}[/tex] and [tex] g(x) =sin (x)[/tex]

And replacing we have this:

[tex] f'(x)= \frac{1}{2\sqrt{x}} sin (x) + \sqrt{x}cos(x)[/tex]


Related Questions

What is the simplified expression for 3 y squared minus 6 y z minus 7 + 4 y squared minus 4 y z + 2 minus y squared z?
WILL MARK BRAINLEST

Answers

Answer:

7y⁴- 10yz - y²z - 5

Step-by-step explanation:

First collect like terms

3y²+ 4y²- 6yz - 4yz - y²z - 7+2

7y⁴-10yz - y²z - 5

Answer:

Its C

Step-by-step explanation:

¿Cuál es la fórmula para calcular el área de cualquier triangulo?

Answers

¡Hola! ¡Ojalá esto ayude!

--------------------------------------------------------------------------------------------------------

La fórmula para calcular el área de cualquier triángulo es:

base multiplicada por la altura y dividida por dos.

||

||

||

\/

Bh / 2.

The marked price of a mobile set is Rs3500 and the shopkeeper allows of 10%discount? (I) find the amount of discount. (ii)How much should a customer pay for it after discount.

Answers

Step-by-step explanation:

3500 × 10/100

rs. 350 is the discount

and to find the amnt the customer should pay subtract 350 from 3500

which is,

3150 Rupees

2| x-3| - 5 = 7 Helpp

Answers

Answer:

x = {9, -3}

Step-by-step explanation:

2| x-3| - 5 = 72| x-3|  = 12| x-3| = 6x - 3 = ± 6 ⇒ x= 3+ 6= 9⇒ x= 3 - 6= -3

Or it can be shown as:

x= {9, -3}

6th grade math, help pleasee:)

Answers

Answer:

1/5 cup

Step-by-step explanation:

Sugar: water

1             5

We want 1 cup water, so divide each side by 5

1/5 :  5/5

1/5 : 1

There is 1/5 cup sugar to 1 cup water

Total length of a pole is 21.3 m. If 0.2m of the length of the pole is inside the ground. Find how much of its length is outside the ground

Answers

Answer:

21.1 m

Step by step explanation

Total length of pole = 21.3 m

Length of pole inside the ground = 0.2 m

Let length of pole outside the ground be X,

So, according to the Question,

[tex]x + 0.2 = 21.3[/tex]

Move constant to R.H.S and change its sign

[tex]x = 21.3 - 0.2[/tex]

Calculate the difference

[tex]x = 21.1 \: m[/tex]

Hope this helps...

Good luck on your assignment...

What is the value of x?

Answers

Answer:

  54

Step-by-step explanation:

x is half the difference of the two arcs:

  x = (136 -28)/2 = 54

The value of x is 54.

In an isolated environment, a disease spreads at a rate proportional to the product of the infected and non-infected populations. Let I(t) denote the number of infected individuals. Suppose that the total population is 2000, the proportionality constant is 0.0001, and that 1% of the population is infected at time t-0, write down the intial value problem and the solution I(t).
dI/dt =
1(0) =
I(t) =
symbolic formatting help

Answers

Answer:

dI/dt = 0.0001(2000 - I)I

I(0) = 20

[tex]I(t)=\frac{2000}{1+99e^{-0.2t}}[/tex]

Step-by-step explanation:

It is given in the question that the rate of spread of the disease is proportional to the product of the non infected and the infected population.

Also given I(t) is the number of the infected individual at a time t.

[tex]\frac{dI}{dt}\propto \textup{ the product of the infected and the non infected populations}[/tex]

Given total population is 2000. So the non infected population = 2000 - I.

[tex]\frac{dI}{dt}\propto (2000-I)I\\\frac{dI}{dt}=k (2000-I)I, \ \textup{ k is proportionality constant.}\\\textup{Since}\ k = 0.0001\\ \therefore \frac{dI}{dt}=0.0001 (2000-I)I[/tex]

Now, I(0) is the number of infected persons at time t = 0.

So, I(0) = 1% of 2000

            = 20

Now, we have dI/dt = 0.0001(2000 - I)I  and  I(0) = 20

[tex]\frac{dI}{dt}=0.0001(2000-I)I\\\frac{dI}{(2000-I)I}=0.0001 dt\\\left ( \frac{1}{2000I}-\frac{1}{2000(I-2000)} \right )dI=0.0001dt\\\frac{dI}{2000I}-\frac{dI}{2000(I-2000)}=0.0001dt\\\textup{Integrating we get},\\\frac{lnI}{2000}-\frac{ln(I-2000)}{2000}=0.0001t+k \ \ \ (k \text{ is constant})\\ln\left ( \frac{I}{I-222} \right )=0.2t+2000k[/tex]

[tex]\frac{I}{I-2000}=Ae^{0.2t}\\\frac{I-2000}{I}=Be^{-0.2t}\\\frac{2000}{I}=1-Be^{-0.2t}\\I(t)=\frac{2000}{1-Be^{-0.2t}}\textup{Now we have}, I(0)=20\\\frac{2000}{1-B}=20\\\frac{100}{1-B}=1\\B=-99\\ \therefore I(t)=\frac{2000}{1+99e^{-0.2t}}[/tex]

The required expressions are presented below:

Differential equation

[tex]\frac{dI}{dt} = 0.0001\cdot I\cdot (2000-I)[/tex] [tex]\blacksquare[/tex]

Initial value

[tex]I(0) = \frac{1}{100}[/tex] [tex]\blacksquare[/tex]

Solution of the differential equation

[tex]I(t) = \frac{20\cdot e^{\frac{t}{5} }}{1+20\cdot e^{\frac{t}{5} }}[/tex] [tex]\blacksquare[/tex]

Analysis of an ordinary differential equation for the spread of a disease in an isolated population

After reading the statement, we obtain the following differential equation:

[tex]\frac{dI}{dt} = k\cdot I\cdot (n-I)[/tex] (1)

Where:

[tex]k[/tex] - Proportionality constant[tex]I[/tex] - Number of infected individuals[tex]n[/tex] - Total population[tex]\frac{dI}{dt}[/tex] - Rate of change of the infected population.

Then, we solve the expression by variable separation and partial fraction integration:

[tex]\frac{1}{k} \int {\frac{dI}{I\cdot (n-I)} } = \int {dt}[/tex]

[tex]\frac{1}{k\cdot n} \int {\frac{dl}{l} } + \frac{1}{kn}\int {\frac{dI}{n-I} } = \int {dt}[/tex]

[tex]\frac{1}{k\cdot n} \cdot \ln |I| -\frac{1}{k\cdot n}\cdot \ln|n-I| = t + C[/tex]

[tex]\frac{1}{k\cdot n}\cdot \ln \left|\frac{I}{n-I} \right| = C\cdot e^{k\cdot n \cdot t}[/tex]

[tex]I(t) = \frac{n\cdot C\cdot e^{k\cdot n\cdot t}}{1+C\cdot e^{k\cdot n \cdot t}}[/tex], where [tex]C = \frac{I_{o}}{n}[/tex] (2, 3)

Note - Please notice that [tex]I_{o}[/tex] is the initial infected population.

If we know that [tex]n = 2000[/tex], [tex]k = 0.0001[/tex] and [tex]I_{o} = 20[/tex], then we have the following set of expressions:

Differential equation

[tex]\frac{dI}{dt} = 0.0001\cdot I\cdot (2000-I)[/tex] [tex]\blacksquare[/tex]

Initial value

[tex]I(0) = \frac{1}{100}[/tex] [tex]\blacksquare[/tex]

Solution of the differential equation

[tex]I(t) = \frac{20\cdot e^{\frac{t}{5} }}{1+20\cdot e^{\frac{t}{5} }}[/tex] [tex]\blacksquare[/tex]

To learn more on differential equations, we kindly invite to check this verified question: https://brainly.com/question/1164377

Solving exponential functions

Answers

Answer:

Option B

an increasing exponential graph

what is the answer to 100×338 ​

Answers

Answer:

33800

Step-by-step explanation:

100 x 338 = 33800

Answer:

33800

Step-by-step explanation:

338x10=3380 then 3380x10=33800

-------------------------------------------------------

Good luck with your assignment...

In​ 2005, there were 14,100 students at college​ A, with a projected enrollment increase of 750 students per year. In the same​ year, there were 42,100 students at college​ B, with a projected enrollment decline of 1250 students per year. According to these​ projections, when will the colleges have the same​ enrollment? What will be the enrollment in each college at that​ time?

Answers

Set up two equations and set equal to each other. Let number of years = x:

College A = 14100+750x

College B = 42100-1250x

Set equal:

14100 + 750x = 42100 - 1250x

Subtract 750x from both sides:

14100 = 42100 - 2000x

Subtract 42100 from both sides:

-28000 = -2000x

Divide both sides by -2000:

x = -28000 / -2000

x = 14

It will take 14 years for the schools to have the same enrollment.

Enrollment will be:

14100 + 750(14) = 14100 + 10500 = 24,600

Answer:

(a)2019 (14 years after)

(b)24,600

Step-by-step explanation:

Let the number of years =n

College A

Initial Population in 2005 = 14,100

Increase per year = 750

Therefore, the population after n years = 14,100+750n

College B

Initial Population in 2005 = 42,100

Decline per year = 1250

Therefore, the population after n years = 42,100-1250n

When the enrollments are the same

14,100+750n=42,100-1250n

1250n+750n=42100-14100

2000n=28000

n=14

Therefore, in 2019 (14 years after), the colleges will have the same​ enrollment.

Enrollment in 2019 =42,100-1250(14)

=24,600

Scores made on a certain aptitude test by nursing students are approximately normally distributed with a mean of 500 and a variance of 10,000. If a person is about to take the test what is the probability that he or she will make a score of 650 or more?

Answers

Answer:

0.0668 or 6.68%

Step-by-step explanation:

Variance (V) = 10,000

Standard deviation (σ) = √V= 100

Mean score (μ) = 500

The z-score for any test score X is:

[tex]z=\frac{X-\mu}{\sigma}[/tex]

For X = 650:

[tex]z=\frac{650-500}{100}\\z=1.5[/tex]

A z-score of 1.5 is equivalent to the 93.32nd percentile of a normal distribution. Therefore, the probability that he or she will make a score of 650 or more is:

[tex]P(X\geq 650)=1-P(X\leq 650)\\P(X\geq 650)=1-0.9332\\P(X\geq 650)=0.0668=6.68\%[/tex]

The probability is 0.0668 or 6.68%

The probability that he or she will make a score of 650 or more is 0.0668.

Let X = Scores made on a certain aptitude test by nursing students

X follows normal distribution with mean = 500 and variance of 10,000.

So, standard deviation = [tex]\sqrt{10000}=100[/tex].

z score of 650 is = [tex]\frac{\left(650-500\right)}{100}=1.5[/tex].

The probability that he or she will make a score of 650 or more is:

[tex]P(X\geq 650)\\=P(z\geq 1.5)\\=1-P(z<1.5)\\=1-0.9332\\=0.0668[/tex]

Learn more: https://brainly.com/question/14109853

Circle the numbers divisible by 2.

320;5,763; 9,308; 5,857;3,219; 5,656; 83,001;53,634​

Answers

The number divisible by 2 are:
330,
308,
656,
634

g The average salary in this city is $45,600. Is the average different for single people? 53 randomly selected single people who were surveyed had an average salary of $46,356 and a standard deviation of $15,930. What can be concluded at the α α = 0.05 level of significance?

Answers

Answer:

Step-by-step explanation:

The average salary in this city is $45,600.

Using the formula

z score = x - u /(sd/√n)

Where x is 46,356, u is 45,600 sd is 15,930 and n is 53.

z = 46,356 - 45600 / (15930/√53)

z = 756/(15930/7.2801)

z = 756/(2188.1568)

z = 0.3455

To draw a conclusion, we have to determine the p value, at 0.05 level of significance for a two tailed test, the p value is 0.7297. The p value is higher than the significance level, thus we will fail to reject the null and can conclude that there is not enough statistical evidence to prove that the average is any different for single people.

Write the following numbers in increasing order: −1.4; 2; −3 1 2 ; −1; − 1 2 ; 0.25; −10; 5.2

Answers

Answer:

-12,-10,-3,-1.4,-1,0.25,2,5.2,12

Step-by-step explanation:

The following number −1.4; 2; −3 1 2 ; −1; − 1 2 ; 0.25; −10; 5.2 in increasing order

-12,-10,-3,-1.4,-1,0.25,2,5.2,12

It's arranged this way starting from the negative sign because positive it's greater than negative and if the negative gets to approach zero it's get smaller

Answer:

-10 ; -3 1/2 ; -1.4 ; -1 ; -1/2 ; 0.25 ; 2 ; 5.2

What does it mean to say​ "correlation does not imply​ causation"? Choose the correct answer below. A. Two variables can only be strongly correlated if there existed a​ cause-and-effect relationship between the variables. B. The fact that two variables are strongly correlated does not in itself imply a​ cause-and-effect relationship between the variables. C. The fact that two variables are strongly correlated implies a​ cause-and-effect relationship between the variables. D. Two variables that have a​ cause-and-effect relationship are never correlated.

Answers

Answer:

B. The fact that two variables are strongly correlated does not in itself imply a​ cause-and-effect relationship between the variables.

Step-by-step explanation:

The term "correlation does not imply causation", simply means that because we can deduce a link between two factors or sets of data, it does not necessarily prove that there is a cause-and-effect relationship between the two variables. In some cases, there could indeed be a cause-and-effect relationship but it cannot be said for certain that this would always be the case.

While correlation shows the linear relationship between two things, causation implies that an event occurs because of another event. So the phrase is actually saying that because two factors are related, it does not mean that it is as a result of a causal factor. It could simply be a coincidence. This occurs because of our effort to seek an explanation for the occurrence of certain events.

Answer: B. The fact that two variables are strongly correlated does not in itself imply a​ cause-and-effect relationship between the variables.

Step-by-step explanation:

A gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else. A random sample of 600 18-29 year-olds is obtained today. What is the probability that no more than 70% would prefer to start their own business?

Answers

Answer:

The probability that no more than 70% would prefer to start their own business is 0.1423.

Step-by-step explanation:

We are given that a Gallup survey indicated that 72% of 18- to 29-year-olds, if given choice, would prefer to start their own business rather than work for someone else.

Let [tex]\hat p[/tex] = sample proportion of people who prefer to start their own business

The z-score probability distribution for the sample proportion is given by;

                               Z  =  [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]  ~ N(0,1)

where, p = population proportion who would prefer to start their own business = 72%

            n = sample of 18-29 year-olds = 600

Now, the probability that no more than 70% would prefer to start their own business is given by = P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%)

       P( [tex]\hat p[/tex] [tex]\leq[/tex] 70%) = P( [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{0.70-0.72}{\sqrt{\frac{0.70(1-0.70)}{600} } }[/tex] ) = P(Z [tex]\leq[/tex] -1.07) = 1 - P(Z < 1.07)

                                                                       = 1 - 0.8577 = 0.1423

The above probability is calculated by looking at the value of x = 1.07 in the z table which has an area of 0.8577.

a(b + c) = a × b + a × c where a, b, and c are real numbers

use the distributive property to simplify the expression

8(3 + 4) = 24 + ?

Answers

Answer:

32

Step-by-step explanation:

8(3 + 4) = 24 + ?

8(3)+8(4)= 24 + ?

24+32= 24 + ?

24-24+32=?

32=?

Answer:

? = 32

Step-by-step explanation:

Let's assume a = 8 , b = 3 , c = 4

[tex] \sf \: So :- \: \: a(b + c) = 8(3 + 4)[/tex]

[tex]8 \times 3 + 8 \times 4[/tex]

[tex]24 + 32[/tex]

Hence, The required value of ? = 32 .

PLEASE HELP I DO NOT UNDERSTAND AT ALL ITS PRECALC PLEASE SERIOUS ANSWERS

Answers

You want to end up with [tex]A\sin(\omega t+\phi)[/tex]. Expand this using the angle sum identity for sine:

[tex]A\sin(\omega t+\phi)=A\sin(\omega t)\cos\phi+A\cos(\omega t)\sin\phi[/tex]

We want this to line up with [tex]2\sin(4\pi t)+5\cos(4\pi t)[/tex]. Right away, we know [tex]\omega=4\pi[/tex].

We also need to have

[tex]\begin{cases}A\cos\phi=2\\A\sin\phi=5\end{cases}[/tex]

Recall that [tex]\sin^2x+\cos^2x=1[/tex] for all [tex]x[/tex]; this means

[tex](A\cos\phi)^2+(A\sin\phi)^2=2^2+5^2\implies A^2=29\implies A=\sqrt{29}[/tex]

Then

[tex]\begin{cases}\cos\phi=\frac2{\sqrt{29}}\\\sin\phi=\frac5{\sqrt{29}}\end{cases}\implies\tan\phi=\dfrac{\sin\phi}{\cos\phi}=\dfrac52\implies\phi=\tan^{-1}\left(\dfrac52\right)[/tex]

So we end up with

[tex]2\sin(4\pi t)+5\cos(4\pi t)=\sqrt{29}\sin\left(4\pi t+\tan^{-1}\left(\dfrac52\right)\right)[/tex]

Answer:

y(t) = √29·sin(4πt +1.1903)amplitude: √29angular frequency: 4πphase shift: 1.1903 radians

Step-by-step explanation:

In the form ...

  y(t) = Asin(ωt +φ)

you have ...

Amplitude = Aangular frequency = ωphase shift = φ

The translation from ...

  y(t) = 2sin(4πt) +5cos(4πt)

is ...

  A = √(2² +5²) = √29 . . . . the amplitude

  ω = 4π . . . . the angular frequency in radians per second

  φ = arctan(5/2) ≈ 1.1903 . . . . radians phase shift

Then, ...

  y(t) = √29·sin(4πt +1.1903)

_____

Comment on the conversion

You will notice we used "2" and "5" to find the amplitude and phase shift. In the generic case, these are "coefficient of sin( )" and "coefficient of cos( )". When determining phase shift, pay attention to whether your calculator is giving you degrees or radians. (Set the mode to what you want.)

If you have a negative coefficient for sin( ), you will need to add 180° (π radians) to the phase shift value given by the arctan( ) function.

If w'(t) is the rate of growth of a child in pounds per year, what does 7 w'(t)dt 4 represent? The change in the child's weight (in pounds) between the ages of 4 and 7. The change in the child's age (in years) between the ages of 4 and 7. The child's weight at age 7. The child's weight at age 4. The child's initial weight at birth.

Answers

Complete Question

If w'(t) is the rate of growth of a child in pounds per year, what does

[tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex]  represent?

a) The change in the child's weight (in pounds) between the ages of 4 and 7.

b) The change in the child's age (in years) between the ages of 4 and 7.

c) The child's weight at age 7.

d) The child's weight at age 4. The child's initial weight at birth.

Answer:

The correct option is  option a

Step-by-step explanation:

From the question we are told that

       [tex]w'(t)[/tex] represents the rate of growth of a child in   [tex]\frac{pounds}{year}[/tex]

So      [tex]{w'(t)} \, dt[/tex]  will be in  [tex]pounds[/tex]

Which then mean that this  [tex]\int\limits^{7}_{4} {w'(t)} \, dt[/tex]  the change in the weight of the child between the ages of  [tex]4 \to 7[/tex] years

   

A coin is thrown at random into the rectangle below.

A rectangle is about 90 percent white and 10 percent green.

What is the likelihood that the coin will land in the green region?
It is certain.
It is impossible.
It is likely.
It is unlikely.

Answers

Answer:

It is unlikely.

Step-by-step explanation:

Certain = 100%

Impossible = 0%

Likely = more than 50%

Unlikely = less than 50%

It is less than 50%, so it is unlikely.

Answer:

(A) it is likely

Step-by-step explanation:

i took the test on edge

Which of the following algebraic expressions represents the statement given below?
A number is increased by five and squared.
A. x+5²
В.
x²+5
c. ° +5
D. (x+5)

Answers

Answer:

Let the number be x

The statement

A number is increased by five is written as

x + 5

Then it's squared

So we the final answer as

(x + 5)²

Hope this helps

Which of the following statements is correct about quadratic number patterns? A. The third difference is greater than zero. B. The first difference is constant. C. The difference between terms is always positive. D. The second difference is constant.

Answers

Answer:  D.) The second difference is constant.

Step-by-step explanation:

The rate of change of a quadratic function is a linear function. The rate of change of that is constant, so second differences of a quadratic number pattern are constant.

Answer:

D.

Step-by-step explanation:

1000 randomly selected Americans were asked if they believed the minimum wage should be raised. 600 said yes. Construct a 95% confidence interval for the proportion of Americans who believe that the minimum wage should be raised.
a. Write down the formula you intend to use with variable notation).
b. Write down the above formula with numeric values replacing the symbols.
c. Write down the confidence interval in interval notation.

Answers

Answer:

a. p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]  

b.0.6 ±  1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]  

c. { -1.96 ≤  p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]     ≥ 1.96} = 0.95  

Step-by-step explanation:

Here the total number of trials is n= 1000

The number of successes is p` = 600/1000 = 0.6. The q` is 1 - p`= 1- 0.6 = 0.4

The degree of confidence is 95 %  therefore z₀.₀₂₅ = 1.96 ( α/2 = 0.025)

a.  The formula used will be

p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]       ( z with the base alpha by 2 (α/2 = 0.025))

b. Putting the values

0.6 ±  1.96 [tex]\sqrt \frac{0.6* 0.4}{1000}[/tex]  

c. Confidence Interval in Interval Notation.

{ -1.96 ≤  p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]     ≥ 1.96} = 0.95  

{ -z( base alpha by 2) ≤  p`± z₀.₀₂₅[tex]\sqrt{ \frac{p`q`}{n}[/tex]     ≥ z( base alpha by 2)  } = 1- α

please help!!!!!!!!!!!!

Answers

Answer:

csc B = 13/12

Step-by-step explanation:

csc B = 1 / sin B

The sin B is

sin B = opp/ hyp  so

csc B = hyp /opp

csc B = 26 / 24

csc B = 13/12

Answer:

13/12

Step-by-step explanation:

sin θ = opposite/ hypotenuse

csc θ = 1/sinθ

csc θ  = hypotenuse/opposite

csc (B)  = 26/24

csc (B)  = 13/12

What is the cube of the square of the second smallest prime number?

Answers

Answer:8

Step-by-step explanation:

The smallest prime is 2

cube of 2 is equal to 8

2*2*2=8

Answer:

729

Step-by-step explanation:

The second smallest prime number is 3 (preceded by 2). We have (3^2)^3=3^6=729.

Hope this helped! :)

Suppose the weather forecast calls for a 60% chance of rain each day for the next 3 days. What is the probability that it will NOT rain during the next 3 days

Answers

Answer:

Probability that it'll not rain during the next three days = 0.064

Step-by-step explanation:

Given

Let:

P(R) represent the probability that it'll rain each day

P(R') represent the probability that it'll not

[tex]P(R) = 60\%[/tex]

Required

Probability that it'll not rain during the next three days

From concept of probability;

[tex]P(R) + P(R') = 1[/tex]

Substitute 60% for P(R)

[tex]60\% + P(R') = 1[/tex]

Subtract 60% from both sides

[tex]60\% - 60\% + P(R') = 1 - 60\%[/tex]

[tex]P(R') = 1 - 60\%[/tex]

Convert % to decimal

[tex]P(R') = 1 - 0.6[/tex]

[tex]P(R') = 0.4[/tex]

The probability that it'll not rain during the next 3 days is:

[tex]P(R') * P(R') * P(R')[/tex]

[tex]P(R') * P(R') * P(R') =0.4 * 0.4 * 0.4[/tex]

[tex]P(R') * P(R') * P(R') = 0.064[/tex]

WILL GIVE BRAINLIEST IF CORRECT!! Please help ! -50 POINTS -

Answers

Answer:

i think (d) one i think it will help you

The correct answer is c. 180 , 202

All the step by step is below

Hopefully this help you :)

The function f is defined as follows.
f(x) =4x²+6
If the graph of f is translated vertically upward by 4 units, It becomes the graph of a function g.
Find the expression for g(x).


G(x)=

Answers

Answer:

[tex]g(x)=4x^{2} +10[/tex]

Step-by-step explanation:

If we perform a vertical translation of a function, the graph will move from one point to another certain point in the direction of the y-axis, in another words: up or down.

Let:

[tex]a>0,\hspace{10}a\in R[/tex]

For:

y = f (x) + a: The graph shifts a units up.y = f (x)  - a, The graph shifts a units down.

If:

[tex]f(x)=4x^{2} +6[/tex]

and is translated vertically upward by 4 units, this means:

[tex]a=4[/tex]

and:

[tex]g(x)=f(x)+a=(4x^{2} +6)+4=4x^{2} +10[/tex]

Therefore:

[tex]g(x)=4x^{2} +10[/tex]

I attached you the graphs, so you can verify the result easily.

At a museum cafe you can get a pre-made boxed lunch with a sandwich, fruit, and drink for only $3 . The sandwiches are made with either turkey or ham. The fruit is either an apple or an orange. The drink is either bottled water or juice. The number of boxes they make for every possible combination is the same. If you randomly choose one of the boxed lunches without knowing the contents, what is the probability you will get an orange and not get juice in your box?

Answers

Answer:

Step-by-step explanation:

Given that sandwiches are made with either turkey or ham.

Prob for turkey or ham = 1/2

The fruit can be either apple or orange. Hence p(apple) = p(orange) =12

Drinks can be either bottled water or juice

P(water) = P(juice) = 1/2

We find that sandwiches, fruits, and drinks are mutually independent of each other.

Hence the probability you will get an orange and not get juice in your box

Prob (you get an orange and bottled water)

= Prob (orange) *Prob (bottled water) (since the two are independent

= 1/2 (1/2)= 1/4

Hence answer is 0.25

Other Questions
Match these items. Match the items in the left column to the items in the right column. 1. collusion agreement between two or more people to limit competition and earn higher profits 2. competition degree of excellence for something, such as a product 3. customer service money left after all expenses are paid 4. profit contest between rivals 5. quality service provided to consumers during and after the buying process The ability to see the connection between the larger world and your personal life is what sociologist Most states categorize possession of cocaine charges by weight. Possessing less than a gram will result in the lowest level of felony. From there, the weight categories are broken into degrees. The higher the weight, the higher degree of felony charged. New York State uses the measures given in the table below to charge a suspect.AmountChargeOver oz.Class C felonyOver oz.Class B felonyOver 2 oz.Class A-II felonyOver 4 oz.Class A-I felonyIf a suspect is in possession of .06 kilograms of cocaine how many ounces does he possess? What will be the charge? A company purchased property for $100,000. The property included a building, a parking lot, and land. The building was appraised at $54,000; the land at $51,400, and the parking lot at $19,600. Land should be recorded in the accounting records with an allocated cost of: Multiple Choice $0. $51,400. $100,000. $47,120. $41,120. 3. The area of a rectangular deck, in square meters, is given by the polynomial 40p2 + 24p.The deck is 8p meters wide. a) Find the polynomial that represents the length of the deck.b) Find the polynomial that represents the perimeter of the deck. On January 1, 2014, Pert Company purchased 85% of the outstanding common stock of Sales Company for $350,000. On that date. Sales Company's stockholders' equity consisted of common stock, $100,000; other contributed capital, $40,000; and retained earnings, $140,000. Pert Company paid more than the book value of net assets acquired because the recorded cost of Sales Company's land was significantly less than its fair value. During 2014 Sales Company earned $148,000 and declared and paid a $50,000 dividend. Pert Company used the partial equity method to record its investment in Sales Company. Required: 1. Prepare the investment-related entries on Pert Company's books for 2014. 2. Prepare the working paper eliminating entries for a working paper on December 31, 2014. Write the function in standard form.Y=(3x-2)(3x+6) WILL MARK BRAINLIEST Give a real world example of an equation which the constant of proportionality is 15. What would the graph look like? Which explains whether AFGH is congruent to AFJH? Germany has a populationof 82,217,800. If there are636,854 births, 827,155deaths, 684,862immigrants, and 680,766emigrants, what is thepopulation change?A. 186,205B. 98,381C. -186,205D. -98,381 Tuberculosis responses well to long-term treatment with a combination of three or more antitubercular drugs. Which is true regarding the duration of treatment for clients with tuberculosis? Page No.:Date:Find the roots the quadratioequation 3 x - 2 16 x + 2 =0. rural residential development company and suburban real estate corporation form a joint stock company. the longest duration a joint stock company can be formed for is Use the given information to find the p-value. Also, use a 0.05 significance level and state the conclusion about the null hypothesis (reject the null hypothesis or fail to reject the null hypothesis). With Upper H1: p0.377, the test statistic is z=3.06.a. 0.0022; fail to reject the null hypothesis b. 0.0011; reject the null hypothesis c. 0.0022; reject the null hypothesis d. 0.0011; fail to reject the null hypothesis Choose the true statement regarding the National Flood Insurance Program. A Flood policies are available only from the National Flood Insurance Program B Coverage includes trees, shrubs, and plants C Agents may bind flood insurance for up to 15 days prior to submitting the final application D The federal government oversees and reinsures all flood insurance What is the name of this molecule? Scientists propose placing seismic stations on the floor of the Pacific Ocean to warn threatened coastal communities on the northwestern coast of the United States of approaching tidal waves caused by earthquakes. Since forewarned communities could take steps to evacuate, many of the injuries and deaths that would otherwise occur could be avoided if the government would implement this proposal. The answer to which of the following questions would be most important in determining whether implementing the proposal would be likely to achieve the desired result? (A) When was the last time that the coastal communities were threatened by an approaching tidal wave? (B) How far below sea level would the stations be located? (C) Would there be enough time after receiving warning of an approaching tidal wave for communities to evacuate safely? (D) How soon after a tidal wave hits land is it safe for evacuees to return to their communities? (E) Can the stations be equipped to collect and relay information about phenomena other than tidal waves caused by earthquakes? The square pyramid shown below has a slant height of 171717 units and a vertical height of 151515 units. What is the length of one of the pyrmaids base? Please help me... I will mark brainliest if you do ;) An explanation would be appreciated as well! 01:14:29 The Schwartz family spent a total of $111.75 for Internet service for 3 months. Each month they received $5.50 as a credit on the bill. Which equation and solution shows the cost of their monthly Internet service before the credit? 3 (x + 5.50) = 111.75; the monthly Internet service is $31.75 3 (x minus 5.50) = 111.75; the monthly Internet service is $42.75 One-third (x minus 5.50) = 111.75; the monthly Internet service is $42.75 One-third (x + 5.50) = 111.75; the monthly Internet service is $31.75