Convert (x+1)^2 + y^2 = 1 to a polar equation that expresses r in terms of 'theta'. Do not enter anything here. Put all of your work and your solution on your scratch paper.

Answers

Answer 1

The amount of money in the account after 10 years is $33,201.60.We can use the compound interest formula to find the amount of money in the account after 10 years. The formula is: A = P(1 + r)^t

where:

A is the amount of money in the account after t yearsP is the principal amount investedr is the interest ratet is the number of years

In this case, we have:

P = $20,000

r = 0.04 (4%)

t = 10 years

So, we can calculate the amount of money in the account after 10 years as follows:

A = $20,000 (1 + 0.04)^10 = $33,201.60

The balance of the investment after 20 years is $525,547.29.

We can use the compound interest formula to find the balance of the investment after 20 years. The formula is the same as the one in Question 7.

In this case, we have:

P = $100,000

r = 0.0625 (6.25%)

t = 20 years

So, we can calculate the balance of the investment after 20 years as follows: A = $100,000 (1 + 0.0625)^20 = $525,547.29

To know more about formula click here

brainly.com/question/30098455

#SPJ11


Related Questions

can
somone help
Solve for all values of \( y \) in simplest form. \[ |y-12|=16 \]

Answers

The final solution is the union of all possible solutions. The solution of the given equation is [tex]\[y=28, -4\].[/tex]

Given the equation [tex]\[|y-12|=16\][/tex]

We need to solve for all values of y in the simplest form.

Given the equation [tex]\[|y-12|=16\][/tex]

We know that,If [tex]\[a>0\][/tex]then, [tex]\[|x|=a\][/tex] means[tex]\[x=a\] or \[x=-a\][/tex]

If [tex]\[a<0\][/tex] then,[tex]\[|x|=a\][/tex] means no solution.

Now, for the given equation, [tex]|y-12|=16[/tex] is of the form [tex]\[|x-a|=b\][/tex] where a=12 and b=16

Therefore, y-12=16 or y-12=-16

Now, solving for y,

y-12=16

y=16+12

y=28

y-12=-16

y=-16+12

y=-4

Therefore, the solution of the given equation is y=28, -4

We can solve the given equation |y-12|=16 by using the concept of modulus function. We write the modulus function in terms of positive or negative sign and solve the equation by taking two cases, one for positive and zero values of (y - 12), and the other for negative values of (y - 12). The final solution is the union of all possible solutions. The solution of the given equation is y=28, -4.

To know more about union visit:

brainly.com/question/31678862

#SPJ11



John simplified the expression as shown. Is his work correct? Explain.

Answers

The correct simplification of algebraic expression 3 + (-15) ÷ (3) + (-8)(2) is -18.

Simplifying an algebraic expression is when we use a variety of techniques to make algebraic expressions more efficient and compact – in their simplest form – without changing the value of the original expression.

John's simplification in incorrect as it does not follow the rules of DMAS. This means that while solving an algebraic expression, one should follow the precedence of division, then multiplication, then addition and subtraction.

The correct simplification is as follows:

= 3 + (-15) ÷ (3) + (-8)(2)

= 3 - 5 - 16

= 3 - 21

= -18

Learn more about algebraic expression here

https://brainly.com/question/28884894

#SPJ4

John simplified the expression below incorrectly. Shown below are the steps that John took. Identify and explain the error in John’s work.

=3 + (-15) ÷ (3) + (-8)(2)

= −12 ÷ (3) + (−8)(2)

= -4 + 16

= 12

Use transformations of the graph of f(x)=e^x to graph the given function. Be sure to the give equations of the asymptotes. Use the graphs to determine each function's domain and range. If applicable, use a graphing utility to confirm the hand-drawn graphs. g(x)=e^(x−5). Determine the transformations that are needed to go from f(x)=e^x to the given graph. Select all that apply. A. shrink vertically B. shift 5 units to the left C. shift 5 units downward D. shift 5 units upward E. reflect about the y-axis F. reflect about the x-axis G. shrink horizontally H. stretch horizontally I. stretch vertically

Answers

Use transformations of the graph of f(x)=e^x to graph the given function. Be sure to the give equations of the asymptotes. Thus, option C, A, H and I are the correct answers.

The given function is g(x) = e^(x - 5). To graph the function, we need to determine the transformations that are needed to go from f(x) = e^x to g(x) = e^(x - 5).

Transformations are described below:Since the x-axis value is increased by 5, the graph must shift 5 units to the right. Therefore, option B is incorrect. The graph shifts downwards by 5 units since the y-axis value of the graph is reduced by 5 units.

Therefore, the correct option is C.

The graph gets shrunk vertically since it becomes narrower. Therefore, option A is correct.Since there are no y-axis changes, the graph is not reflected about the y-axis. Therefore, the correct option is not E.Since there are no x-axis changes, the graph is not reflected about the x-axis. Therefore, the correct option is not F.

There is no horizontal compression because the horizontal distance between the points remains the same. Therefore, the correct option is not G.There is a horizontal expansion since the graph is stretched out. Therefore, the correct option is H.

There is a vertical expansion since the graph is stretched out. Therefore, the correct option is I.Using the transformations, the new graph will be as shown below:Asymptotes:

There are no horizontal asymptotes for the function. Range: (0, ∞)Domain: (-∞, ∞)The graph shows that the function is an increasing function. Therefore, the range of the function is (0, ∞) and the domain is (-∞, ∞). Thus, option C, A, H and I are the correct answers.

Learn more about Transformations  here:

https://brainly.com/question/11709244

#SPJ11

you are given the following random sample from a population that you believe to be approximately normally distributed. a. What is a 95% confidence interval for the population mean value? b. What is a 95% lower confidence bound for the population variance?

Answers

A. What is a 95% confidence interval for the population mean value?

(9.72, 11.73)

To calculate a 95% confidence interval for the population mean, we need to know the sample mean, the sample standard deviation, and the sample size.

The sample mean is 10.72.

The sample standard deviation is 0.73.

The sample size is 10.

Using these values, we can calculate the confidence interval using the following formula:

Confidence interval = sample mean ± t-statistic * standard error

where:

t-statistic = critical value from the t-distribution with n-1 degrees of freedom and a 0.05 significance level

standard error = standard deviation / sqrt(n)

The critical value from the t-distribution with 9 degrees of freedom and a 0.05 significance level is 2.262.

The standard error is 0.73 / sqrt(10) = 0.24.

Therefore, the confidence interval is:

Confidence interval = 10.72 ± 2.262 * 0.24 = (9.72, 11.73)

This means that we are 95% confident that the population mean lies within the interval (9.72, 11.73).

B. What is a 95% lower confidence bound for the population variance?

10.56

To calculate a 95% lower confidence bound for the population variance, we need to know the sample variance, the sample size, and the degrees of freedom.

The sample variance is 5.6.

The sample size is 10.

The degrees of freedom are 9.

Using these values, we can calculate the lower confidence bound using the following formula:

Lower confidence bound = sample variance / t-statistic^2

where:

t-statistic = critical value from the t-distribution with n-1 degrees of freedom and a 0.05 significance level

The critical value from the t-distribution with 9 degrees of freedom and a 0.05 significance level is 2.262.

Therefore, the lower confidence bound is:

Lower confidence bound = 5.6 / 2.262^2 = 10.56

This means that we are 95% confident that the population variance is greater than or equal to 10.56.

Learn more about Confidence Interval.

https://brainly.com/question/33318373

#SPJ11

8. If one of the roots of \( x^{3}+2 x^{2}-11 x-12=0 \) is \( -4 \), the remaining solutions are (a) \( -3 \) and 1 (b) \( -3 \) and \( -1 \) (c) 3 and \( -1 \) (d) 3 and 1

Answers

The remaining solutions of the cubic equation x^3 + 2x^2 - 11x - 12 = 0 with one root -4 is x= 3 and x=-1 (Option c)

To find the roots of the cubic equation x^3 + 2x^2 - 11x - 12 = 0 other than -4 ,

Perform polynomial division or synthetic division using -4 as the divisor,

        -4 |  1   2   -11   -12

            |     -4      8      12

        -------------------------------

           1  -2   -3      0

The quotient is x^2 - 2x - 3.

By setting the quotient equal to zero and solve for x,

x^2 - 2x - 3 = 0.

Factorizing the quadratic equation using the quadratic formula to find the remaining solutions, we get,

(x - 3)(x + 1) = 0.

Set each factor equal to zero and solve for x,

x - 3 = 0 gives x = 3.

x + 1 = 0 gives x = -1.

Therefore, the remaining solutions are x = 3 and x = -1.

To learn more about quadratic formula visit:

https://brainly.com/question/29077328

#SPJ11



Solve the following equation.

37+w=5 w-27

Answers

The value of the equation is 16.

To solve the equation 37 + w = 5w - 27, we'll start by isolating the variable w on one side of the equation. Let's go step by step:

We begin with the equation 37 + w = 5w - 27.

First, let's get rid of the parentheses by removing them.

37 + w = 5w - 27

Next, we can simplify the equation by combining like terms.

w - 5w = -27 - 37

-4w = -64

Now, we want to isolate the variable w. To do so, we divide both sides of the equation by -4.

(-4w)/(-4) = (-64)/(-4)

w = 16

After simplifying and solving the equation, we find that the value of w is 16.

To check our solution, we substitute w = 16 back into the original equation:

37 + w = 5w - 27

37 + 16 = 5(16) - 27

53 = 80 - 27

53 = 53

The equation holds true, confirming that our solution of w = 16 is correct.

To know more about equation:

https://brainly.com/question/29538993


#SPJ4



Goldbach's conjecture states that every even number greater than 2 can be written as the sum of two primes. For example, 4=2+2,6=3+3 , and 8=3+5 .

b. Given the conjecture All odd numbers greater than 2 can be written as the sum of two primes, is the conjecture true or false? Give a counterexample if the conjecture is false.

Answers

According to the given question ,the conjecture is false.The given conjecture, "All odd numbers greater than 2 can be written as the sum of two primes," is false.


1. Start with the given conjecture: All odd numbers greater than 2 can be written as the sum of two primes.
2. Take the counterexample of the number 9.
3. Try to find two primes that add up to 9. However, upon investigation, we find that there are no two primes that add up to 9.
4. Therefore, the conjecture is false.

To learn more about odd numbers

https://brainly.com/question/16898529

#SPJ11

Find dy/dx for the equation below. 8x 4 +6 squ. root of xy​ =8y 2

Answers

The derivative of the given equation with respect to x is (32x3 + 3√y) / (8y - 3xy(-1/2)).

The given equation is:8x4 + 6√xy = 8y2We are to find dy/dx.To solve this, we need to use implicit differentiation on both sides of the equation.

Using the chain rule, we have: (d/dx)(8x4) + (d/dx)(6√xy) = (d/dx)(8y2).

Simplifying the left-hand side by using the power rule and the chain rule, we get: 32x3 + 3√y + 6x(1/2) * y(-1/2) * (dy/dx) = 16y(dy/dx).

Simplifying the right-hand side, we get: (d/dx)(8y2) = 16y(dy/dx).

Simplifying both sides of the equation, we have:32x3 + 3√y + 3xy(-1/2) * (dy/dx) = 8y(dy/dx)32x3 + 3√y = (8y - 3xy(-1/2))(dy/dx)dy/dx = (32x3 + 3√y) / (8y - 3xy(-1/2))This is the main answer.

we can provide a brief explanation on the topic of implicit differentiation and provide a step-by-step solution. Implicit differentiation is a method used to find the derivative of a function that is not explicitly defined.

This is done by differentiating both sides of an equation with respect to x and then solving for the derivative. In this case, we used implicit differentiation to find dy/dx for the given equation.

We used the power rule and the chain rule to differentiate both sides and then simplified the equation to solve for dy/dx.

Finally, the conclusion is that the derivative of the given equation with respect to x is (32x3 + 3√y) / (8y - 3xy(-1/2)).

T know more about chain rule visit:

brainly.com/question/31585086

#SPJ11

Writing Equations Parallel & Perpendicular Lines.
1. Write the slope-intercept form of the equation of the line described. Through: (2,2), parallel y= x+4
2. Through: (4,3), Parallel to x=0.
3.Through: (1,-5), Perpendicular to Y=1/8x + 2

Answers

Equation of the line described: y = x + 4

Slope of given line y = x + 4 is 1

Therefore, slope of parallel line is also 1

Using the point-slope form of the equation of a line,

we have y - y1 = m(x - x1),

where (x1, y1) = (2, 2)

Substituting the values, we get

y - 2 = 1(x - 2)

Simplifying the equation, we get

y = x - 1

Therefore, slope-intercept form of the equation of the line is

y = x - 12.

Equation of the line described:

x = 0

Since line is parallel to the y-axis, slope of the line is undefined

Therefore, the equation of the line is x = 4.3.

Equation of the line described:

y = (1/8)x + 2

Slope of given line y = (1/8)x + 2 is 1/8

Therefore, slope of perpendicular line is -8

Using the point-slope form of the equation of a line,

we have y - y1 = m(x - x1),

where (x1, y1) = (1, -5)

Substituting the values, we get

y - (-5) = -8(x - 1)

Simplifying the equation, we get y = -8x - 3

Therefore, slope-intercept form of the equation of the line is y = -8x - 3.

To know more about parallel visit :

https://brainly.com/question/16853486

#SPJ11

Write a real - world problem that involves equal share. find the equal share of your data set

Answers

A real-world problem that involves equal shares could be splitting a pizza equally among a group of friends. In this example, the equal share is approximately 1.5 slices per person.

Let's say there are 8 friends and they want to share a pizza.

Each friend wants an equal share of the pizza.

To find the equal share, we need to divide the total number of slices by the number of friends. If the pizza has 12 slices, each friend would get 12 divided by 8, which is 1.5 slices.

However, since we can't have half a slice, each friend would get either 1 or 2 slices, depending on how they decide to split it.

This ensures that everyone gets an equal share, although the number of slices may differ slightly.

In this example, the equal share is approximately 1.5 slices per person.

To know more about shares visit:

https://brainly.com/question/13931207

#SPJ11

How are the graphs of y=2x and y=2x+2 related? The graph of y=2x+2 is the graph of y=2x translated two units down. The graph of y=2x+2 is the graph of y=2x translated two units right. The graph of y=2x+2 is the graph of y=2x translated two units up. The graph of y=2x+2 is the graph of y=2x translated two units left. The speedometer in Henry's car is broken. The function y=∣x−8∣ represents the difference y between the car's actual speed x and the displayed speed. a) Describe the translation. Then graph the function. b) Interpret the function and the translation in terms of the context of the situation

Answers

(a) The function y = |x - 8| represents the absolute difference y between the car's actual speed x and the displayed speed.

In terms of translation, the function y = |x - 8| is a translation of the absolute value function y = |x| horizontally by 8 units to the right. This means that the graph of y = |x - 8| is obtained by shifting the graph of y = |x| to the right by 8 units.

(b) The translation of the function y = |x - 8| has a specific interpretation in the context of the situation with Henry's car's broken speedometer. The value x represents the car's actual speed, and y represents the difference between the actual speed and the displayed speed.

By subtracting 8 from x in the function, we are effectively shifting the reference point from zero (which represents the displayed speed) to 8 (which represents the actual speed). Taking the absolute value ensures that the difference is always positive.

The graph of y = |x - 8| will have a "V" shape, centered at x = 8. The vertex of the "V" represents the point of equality, where the displayed speed matches the actual speed. As x moves away from 8 in either direction, y increases, indicating a greater discrepancy between the displayed and actual speed.

Overall, the function and its translation provide a way to visualize and quantify the difference between the displayed speed and the actual speed, helping to identify when the speedometer is malfunctioning.

LEARN MORE ABOUT speed here: brainly.com/question/32673092

#SPJ11

Find the area of region bounded by f(x)=8−7x 2
,g(x)=x, from x=0 and x−1. Show all work, doing, all integration by hand. Give your final answer in friction form (not a decimal),

Answers

The area of the region bounded by the curves is 15/2 - 7/3, which is a fractional form. To find the area of the region bounded by the curves f(x) = 8 - 7x^2 and g(x) = x from x = 0 to x = 1, we can calculate the definite integral of the difference between the two functions over the interval [0, 1].

First, let's set up the integral for the area:

Area = ∫[0 to 1] (f(x) - g(x)) dx

     = ∫[0 to 1] ((8 - 7x^2) - x) dx

Now, we can simplify the integrand:

Area = ∫[0 to 1] (8 - 7x^2 - x) dx

     = ∫[0 to 1] (8 - 7x^2 - x) dx

     = ∫[0 to 1] (8 - 7x^2 - x) dx

Integrating term by term, we have:

Area = [8x - (7/3)x^3 - (1/2)x^2] evaluated from 0 to 1

     = [8(1) - (7/3)(1)^3 - (1/2)(1)^2] - [8(0) - (7/3)(0)^3 - (1/2)(0)^2]

     = 8 - (7/3) - (1/2)

Simplifying the expression, we get:

Area = 8 - (7/3) - (1/2) = 15/2 - 7/3

Learn more about Integrand here:

brainly.com/question/32775113

#SPJ11

The lengths of the legs of a right triangle are given below. Find the length of the hypotenuse. a=55,b=132 The length of the hypotenuse is units.

Answers

The length of the hypotenuse of a right triangle can be found using the Pythagorean theorem. In this case, with the lengths of the legs being a = 55 and b = 132, the length of the hypotenuse is calculated as c = √(a^2 + b^2). Therefore, the length of the hypotenuse is approximately 143.12 units.

The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (c) is equal to the sum of the squares of the lengths of the other two sides (a and b). Mathematically, it can be expressed as c^2 = a^2 + b^2.

In this case, the lengths of the legs are given as a = 55 and b = 132. Plugging these values into the formula, we have c^2 = 55^2 + 132^2. Evaluating this expression, we find c^2 = 3025 + 17424 = 20449.

To find the length of the hypotenuse, we take the square root of both sides of the equation, yielding c = √20449 ≈ 143.12. Therefore, the length of the hypotenuse is approximately 143.12 units.

Learn more about Pythagorean theorem

brainly.com/question/14930619

#SPJ11

A regular truncated pyramid has a square bottom base of 6 feet on each side and a top base of 2 feet on each side. The pyramid has a height of 4 feet.
Use the method of parallel plane sections to find the volume of the pyramid.

Answers

The volume of the regular truncated pyramid can be found using the method of parallel plane sections. The volume is 12 cubic feet.

To calculate the volume of the regular truncated pyramid, we can divide it into multiple parallel plane sections and then sum up the volumes of these sections.

The pyramid has a square bottom base with sides of 6 feet and a top base with sides of 2 feet. The height of the pyramid is 4 feet. We can imagine slicing the pyramid into thin horizontal sections, each with a certain thickness. Each section is a smaller pyramid with a square base and a smaller height.

As we move from the bottom base to the top base, the area of each section decreases proportionally. The height of each section also decreases proportionally. Thus, the volume of each section can be calculated by multiplying the area of its base by its height.

Since the bases of the sections are squares, their areas can be determined by squaring the length of the side. The height of each section can be found by multiplying the proportion of the section's height to the total height of the pyramid.

By summing up the volumes of all the sections, we obtain the volume of the truncated pyramid. In this case, the calculation gives us a volume of 12 cubic feet.

Therefore, using the method of parallel plane sections, we find that the volume of the regular truncated pyramid is 12 cubic feet.

Learn more about method of parallel plane sections here:

https://brainly.com/question/3299828

#SPJ11

Science
10 Consider the following statement.
A student measured the pulse rates
(beats per minute) of five classmates
before and after running. Before they
ran, the average rate was 70 beats
per minute, and after they ran,
the average was 150 beats per minute.
The underlined portion of this statement
is best described as
Ja prediction.
Ka hypothesis.
L an assumption.
M an observation.

Answers

It is an observation rather than a prediction, hypothesis, or assumption.

The underlined portion of the statement, "Before they ran, the average rate was 70 beats per minute, and after they ran, the average was 150 beats per minute," is best described as an observation.

An observation is a factual statement made based on the direct gathering of data or information. In this case, the student measured the pulse rates of five classmates before and after running, and the statement reports the average rates observed before and after the activity.

It does not propose a cause-and-effect relationship or make any assumptions or predictions. Instead, it presents the actual measured values and provides information about the observed change in pulse rates. Therefore, it is an observation rather than a prediction, hypothesis, or assumption.

for such more question on prediction

https://brainly.com/question/25796102

#SPJ8

Question

A student measured the pulse rates

(beats per minute) of five classmates

before and after running. Before they

ran, the average rate was 70 beats

per minute, and after they ran,

the average was 150 beats per minute.

The underlined portion of this statement

is best described as

Ja prediction.

Ka hypothesis.

L an assumption.

M an observation.

Wally has a $ 500 gift card that he want to spend at the store where he works. he get 25% employee discount , and the sales tax rate is 6.45% how much can wally spend before the discount and tax using only his gift card?

Answers

Wally has a gift card worth $500. Wally plans to spend the gift card at the store where he is employed. In the process, Wally can enjoy a 25% employee discount. Wally can spend up to $625 before applying the discount and tax when using only his gift card.

Let's find out the solution below.Let us assume that the amount spent before the discount and tax = x dollars. As Wally gets a 25% discount on this, he will have to pay 75% of this, which is 0.75x dollars.

This 0.75x dollars will include the sales tax amount too. We know that the sales tax rate is 6.45%.

Hence, the sales tax amount on this purchase of 0.75x dollars will be 6.45/100 × 0.75x dollars = 0.0645 × 0.75x dollars.

We can write an equation to represent the situation as follows:

Amount spent before the discount and tax + Sales Tax = Amount spent after the discount

0.75x + 0.0645 × 0.75x = 500

This can be simplified as 0.75x(1 + 0.0645) = 500. 1.0645 is the total rate with tax.0.75x × 1.0645 = 500.

Therefore, 0.798375x = 500.x = $625.

The amount Wally can spend before the discount and tax using only his gift card is $625.

To know more about discount visit:

https://brainly.com/question/32394582

#SPJ11

after you find the confidence interval, how do you compare it to a worldwide result

Answers

To compare a confidence interval obtained from a sample to a worldwide result, you would typically check if the worldwide result falls within the confidence interval.

A confidence interval is an estimate of the range within which a population parameter, such as a mean or proportion, is likely to fall. It is computed based on the data from a sample. The confidence interval provides a range of plausible values for the population parameter, taking into account the uncertainty associated with sampling variability.

To compare the confidence interval to a worldwide result, you would first determine the population parameter value that represents the worldwide result. For example, if you are comparing means, you would identify the mean value from the worldwide data.

Next, you check if the population parameter value falls within the confidence interval. If the population parameter value is within the confidence interval, it suggests that the sample result is consistent with the worldwide result. If the population parameter value is outside the confidence interval, it suggests that there may be a difference between the sample and the worldwide result.

It's important to note that the comparison between the confidence interval and the worldwide result is an inference based on probability. The confidence interval provides a range of values within which the population parameter is likely to fall, but it does not provide an absolute statement about whether the sample result is significantly different from the worldwide result. For a more conclusive comparison, further statistical tests may be required.

learn more about "interval ":- https://brainly.com/question/479532

#SPJ11

the joint density function of y1 and y2 is given by f(y1, y2) = 30y1y22, y1 − 1 ≤ y2 ≤ 1 − y1, 0 ≤ y1 ≤ 1, 0, elsewhere. (a) find f 1 2 , 1 2 .

Answers

Hence, the joint density function of [tex]f(\frac{1}{2},\frac{1}{2} )= 3.75.[/tex]

We must evaluate the function at the specific position [tex](\frac{1}{2}, \frac{1}{2} )[/tex] to get the value of the joint density function, [tex]f(\frac{1}{2}, \frac{1}{2} ).[/tex]

Given that the joint density function is defined as:

[tex]f(y_{1}, y_{2}) = 30 y_{1}y_{2}^2, y_{1} - 1 \leq y_{2} \leq 1 - y_{1}, 0 \leq y_{1} \leq 1, 0[/tex]

elsewhere

We can substitute [tex]y_{1 }= \frac{1}{2}[/tex] and [tex]y_{2 }= \frac{1}{2}[/tex] into the function:

[tex]f(\frac{1}{2} , \frac{1}{2} ) = 30(\frac{1}{2} )(\frac{1}{2} )^2\\= 30 * \frac{1}{2} * \frac{1}{4} \\= \frac{15}{4} \\= 3.75[/tex]

Therefore, [tex]f(\frac{1}{2} , \frac{1}{2} ) = 3.75.[/tex]

Learn more about Joint density function:

https://brainly.com/question/31266281

#SPJ11

a radiography program graduate has 4 attempts over a three-year period to pass the arrt exam. question 16 options: true false

Answers

The statement regarding a radiography program graduate having four attempts over a three-year period to pass the ARRT exam is insufficiently defined, and as a result, cannot be determined as either true or false.

The requirements and policies for the ARRT exam, including the number of attempts allowed and the time period for reattempting the exam, may vary depending on the specific rules set by the ARRT or the organization administering the exam.

Without specific information on the ARRT (American Registry of Radiologic Technologists) exam policy in this scenario, it is impossible to confirm the accuracy of the statement.

To determine the validity of the statement, one would need to refer to the official guidelines and regulations set forth by the ARRT or the radiography program in question.

These guidelines would provide clear information on the number of attempts allowed and the time frame for reattempting the exam.

Learn more about Radiography here:

brainly.com/question/31656474

#SPJ11

9) Find the inverse of the function. f(x)=3x+2 f −1
(x)= 3
1

x− 3
2

f −1
(x)=5x+6
f −1
(x)=−3x−2
f −1
(x)=2x−3

10) Find the solution to the system of equations. (4,−2)
(−4,2)
(2,−4)
(−2,4)

11) Which is the standard form equation of the ellipse? 8x 2
+5y 2
−32x−20y=28 10
(x−2) 2

+ 16
(y−2) 2

=1 10
(x+2) 2

+ 16
(y+2) 2

=1
16
(x−2) 2

+ 10
(y−2) 2

=1

16
(x+2) 2

+ 10
(y+2) 2

=1

Answers

9) Finding the inverse of a function is quite simple, and it involves swapping the input with the output in the function equation. Here's how the process is carried out;f(x)=3x+2Replace f(x) with y y=3x+2 Swap x and y x=3y+2 Isolate y 3y=x−2 Divide by 3 y=x−23 Solve for y y=13(x−3)Therefore  f −1(x)= 3
1

x− 3
2

The inverse of a function is a new function that maps the output of the original function to its input. The inverse function is a reflection of the original function across the line y = x.

The graph of a function and its inverse are reflections of each other over the line y = x. To find the inverse of a function, swap the x and y variables, then solve for y in terms of x.10) The system of equations given is(4, −2)(−4, 2)We have to find the solution to the given system of equations. The solution to a system of two equations in two variables is an ordered pair (x, y) that satisfies both equations.

One of the methods of solving a system of equations is to plot the equations on a graph and find the point of intersection of the two lines. This is where both lines cross each other. The intersection point is the solution of the system of equations. From the given system of equations, it is clear that the two equations represent perpendicular lines. This is because the product of their slopes is -1.

The lines have opposite slopes which are reciprocals of each other. Thus, the only solution to the given system of equations is (4, −2).11) The equation of an ellipse is generally given as;((x - h)2/a2) + ((y - k)2/b2) = 1The ellipse has its center at (h, k), and the major axis lies along the x-axis, and the minor axis lies along the y-axis.

The standard form equation of an ellipse is given as;(x2/a2) + (y2/b2) = 1where a and b are the length of major and minor axis respectively.8x2 + 5y2 − 32x − 20y = 28This equation can be rewritten as;8(x2 - 4x) + 5(y2 - 4y) = -4Now we complete the square in x and y to get the equation in standard form.8(x2 - 4x + 4) + 5(y2 - 4y + 4) = -4 + 32 + 20This can be simplified as follows;8(x - 2)2 + 5(y - 2)2 = 48Divide by 48 on both sides, we have;(x - 2)2/6 + (y - 2)2/9.6 = 1Thus, the standard form equation of the ellipse is 16(x - 2)2 + 10(y - 2)2 = 96.

To know more about intersection point :

brainly.com/question/14217061

#SPJ11

Fractional part of a Circle with 1/3 & 1/2.
How do you Solve that Problem?
Thank you!

Answers

The fractional part of a circle with 1/2 is 1.571 π/2

A circle is a two-dimensional geometric figure that has no corners and consists of points that are all equidistant from a central point.

The circumference of a circle is the distance around the circle's border or perimeter, while the diameter is the distance from one side of the circle to the other.

The radius is the distance from the center to the perimeter.

A fractional part is a portion of an integer or a decimal fraction.

It is a fraction whose numerator is less than its denominator, such as 1/3 or 1/2.

Let's compute the fractional part of a circle with 1/3 and 1/2.

We will utilize formulas to compute the fractional part of the circle.

Area of a Circle Formula:

A = πr²Where, A = Area, r = Radius, π = 3.1416 r = d/2 Where, r = Radius, d = Diameter Circumference of a Circle Formula: C = 2πr Where, C = Circumference, r = Radius, π = 3.1416 Fractional part of a Circle with 1/3 The fractional part of a circle with 1/3 can be computed using the formula below:

F = (1/3) * A Here, A is the area of the circle.

First, let's compute the area of the circle using the formula below:

A = πr²Let's put in the value for r = 1/3 (the radius of the circle).

A = 3.1416 * (1/3)²

A = 3.1416 * 1/9

A = 0.349 π

We can now substitute this value of A into the equation of F to find the fractional part of the circle with 1/3.

F = (1/3) * A

= (1/3) * 0.349 π

= 0.116 π

Final Answer: The fractional part of a circle with 1/3 is 0.116 π

Fractional part of a Circle with 1/2 The fractional part of a circle with 1/2 can be computed using the formula below:

F = (1/2) * C

Here, C is the circumference of the circle.

First, let's compute the circumference of the circle using the formula below:

C = 2πr Let's put in the value for r = 1/2 (the radius of the circle).

C = 2 * 3.1416 * 1/2

C = 3.1416 π

We can now substitute this value of C into the equation of F to find the fractional part of the circle with 1/2.

F = (1/2) * C

= (1/2) * 3.1416 π

= 1.571 π/2

To know mr about circumference, visit:

https://brainly.in/question/20380861

#SPJ11

The fractional part of a circle with 1/2 is 1/2.

To find the fractional part of a circle with 1/3 and 1/2, you need to first understand what the fractional part of a circle is. The fractional part of a circle is simply the ratio of the arc length to the circumference of the circle.

To find the arc length of a circle, you can use the formula:

arc length = (angle/360) x (2πr)

where angle is the central angle of the arc,

r is the radius of the circle, and π is approximately 3.14.

To find the circumference of a circle, you can use the formula:

C = 2πr

where r is the radius of the circle and π is approximately 3.14.

So, let's find the fractional part of a circle with 1/3:

Fractional part of circle with 1/3 = arc length / circumference

We know that the central angle of 1/3 of a circle is 120 degrees (since 360/3 = 120),

so we can find the arc length using the formula:

arc length = (angle/360) x (2πr)

= (120/360) x (2πr)

= (1/3) x (2πr)

Next, we can find the circumference of the circle using the formula:

C = 2πr

Now we can substitute our values into the formula for the fractional part of a circle:

Fractional part of circle with 1/3 = arc length / circumference

= (1/3) x (2πr) / 2πr

= 1/3

So the fractional part of a circle with 1/3 is 1/3.

Now, let's find the fractional part of a circle with 1/2:

Fractional part of circle with 1/2 = arc length / circumference

We know that the central angle of 1/2 of a circle is 180 degrees (since 360/2 = 180),

so we can find the arc length using the formula:

arc length = (angle/360) x (2πr)

= (180/360) x (2πr)

= (1/2) x (2πr)

Next, we can find the circumference of the circle using the formula:

C = 2πrNow we can substitute our values into the formula for the fractional part of a circle:

Fractional part of circle with 1/2 = arc length / circumference

= (1/2) x (2πr) / 2πr

= 1/2

So the fractional part of a circle with 1/2 is 1/2.

To know more about circumference, visit:

https://brainly.com/question/28757341

#SPJ11

Equations are given whose graphs enclose a region. Find the area of the region. (Give an exact answer. Do not round.)
f(x) = x^2; g(x) = − 1/13 (13 + x); x = 0; x = 3

Answers

To find the area of the region enclosed by the graphs of the given equations, f(x) = x^2 and g(x) = -1/13(13 + x), within the interval x = 0 to x = 3, we need to calculate the definite integral of the difference between the two functions over that interval.

The region is bounded by the x-axis (y = 0) and the two given functions, f(x) = x^2 and g(x) = -1/13(13 + x). To find the area of the region, we integrate the difference between the upper and lower functions over the interval [0, 3].

To set up the integral, we subtract the lower function from the upper function:

A = ∫[0,3] (f(x) - g(x)) dx

Substituting the given functions:

A = ∫[0,3] (x^2 - (-1/13)(13 + x)) dx

Simplifying the expression:

A = ∫[0,3] (x^2 + (1/13)(13 + x)) dx

Now, we can evaluate the integral to find the exact area of the region enclosed by the graphs of the two functions over the interval [0, 3].

Learn more about integrate here:

https://brainly.com/question/31744185

#SPJ11

suppose you sampled 14 working students and obtained the following data representing, number of hours worked per week {35, 20, 20, 60, 20, 13, 12, 35, 25, 15, 20, 35, 20, 15}. how many students would be in the 3rd class if the width is 15 and the first class ends at 15 hours per week? select one: 6 5 3 4

Answers

To determine the number of students in the third class, we need to first calculate the boundaries of each class interval based on the given width and starting point.

Given that the first class ends at 15 hours per week, we can construct the class intervals as follows:

Class 1: 0 - 15

Class 2: 16 - 30

Class 3: 31 - 45

Class 4: 46 - 60

Now we can examine the data and count how many values fall into each class interval:

Class 1: 13, 12, 15 --> 3 students

Class 2: 20, 20, 20, 25, 15, 20, 15 --> 7 students

Class 3: 35, 35, 35, 60, 35 --> 5 students

Class 4: 20 --> 1 student

Therefore, there are 5 students in the third class.

In summary, based on the given data and the class intervals with a width of 15 starting at 0-15, there are 5 students in the third class.

Learn more about interval here

https://brainly.com/question/30460486

#SPJ11

Three component work in series. the component fail with probabilities p1=0.09, p2=0.11, and p3=0.28. what is the probability that the system will fail?

Answers

the probability that the system will fail is approximately 0.421096 or 42.11%.

To find the probability that the system will fail, we need to consider the components working in series. In this case, for the system to fail, at least one of the components must fail.

The probability of the system failing is equal to 1 minus the probability of all three components working together. Let's calculate it step by step:

1. Find the probability of all three components working together:

  P(all components working) = (1 - p1) * (1 - p2) * (1 - p3)

                            = (1 - 0.09) * (1 - 0.11) * (1 - 0.28)

                            = 0.91 * 0.89 * 0.72

                            ≈ 0.578904

2. Calculate the probability of the system failing:

  P(system failing) = 1 - P(all components working)

                    = 1 - 0.578904

                    ≈ 0.421096

Therefore, the probability that the system will fail is approximately 0.421096 or 42.11%.

Learn more about probability here

https://brainly.com/question/32117953

#SPJ4

Question 5 (20 points ) (a) in a sample of 12 men the quantity of hemoglobin in the blood stream had a mean of 15 / and a standard deviation of 3 g/ dlfind the 99% confidence interval for the population mean blood hemoglobin . (round your final answers to the nearest hundredth ) the 99% confidence interval is. dot x pm t( s sqrt n )15 pm1

Answers

The 99% confidence interval for the population mean blood hemoglobin is 12.31 < μ < 17. 69.

Given that,

Hemoglobin concentration in a sample of 12 men had a mean of 15 g/dl and a standard deviation of 3 g/dl.

We have to find the 99% confidence interval for the population mean blood hemoglobin.

We know that,

Let n = 12

Mean X = 15 g/dl

Standard deviation s = 3 g/dl

The critical value α = 0.01

Degree of freedom (df) = n - 1 = 12 - 1 = 11

[tex]t_c[/tex] = [tex]z_{1-\frac{\alpha }{2}, n-1}[/tex] = 3.106

Then the formula of confidential interval is

= (X - [tex]t_c\times \frac{s}{\sqrt{n} }[/tex] ,  X + [tex]t_c\times \frac{s}{\sqrt{n} }[/tex] )

= (15- 3.106 × [tex]\frac{3}{\sqrt{12} }[/tex], 15 + 3.106 × [tex]\frac{3}{\sqrt{12} }[/tex] )

= (12.31, 17.69)

Therefore, The 99% confidence interval for the population mean blood hemoglobin is 12.31 < μ < 17. 69.

To know more about interval visit:

https://brainly.com/question/32670572

#SPJ4

Consider the following quadratic function. f(x)=−2x^2 − 4x+1 (a) Write the equation in the form f(x)=a(x−h)^2 +k. Then give the vertex of its graph. (b) Graph the function. To do this, plot five points on the graph of the function: the vertex, two points to the left of the vertex, and two points to the right of the vertex. Then click on the graph-a-function button.

Answers

(a) In order to write the equation in the form f(x) = a(x - h)^2 + k, we need to complete the square and convert the given quadratic function into vertex form, where h and k are the coordinates of the vertex of the graph, and a is the vertical stretch or compression coefficient. f(x) = -2x² - 4x + 1

= -2(x² + 2x) + 1

= -2(x² + 2x + 1 - 1) + 1

= -2(x + 1)² + 3Therefore, the vertex of the graph is (-1, 3).

Thus, f(x) = -2(x + 1)² + 3. The vertex of its graph is (-1, 3). (b) To graph the function, we can first list the x-coordinates of the points we need to plot, which are the vertex (-1, 3), two points to the left of the vertex, and two points to the right of the vertex.

Let's choose x = -3, -2, -1, 0, and 1.Then, we can substitute each x value into the equation we derived in part

(a) When we plot these points on the coordinate plane and connect them with a smooth curve, we obtain the graph of the quadratic function. f(-3) = -2(-3 + 1)² + 3

= -2(4) + 3 = -5f(-2)

= -2(-2 + 1)² + 3

= -2(1) + 3 = 1f(-1)

= -2(-1 + 1)² + 3 = 3f(0)

= -2(0 + 1)² + 3 = 1f(1)

= -2(1 + 1)² + 3

= -13 Plotting these points and connecting them with a smooth curve, we get the graph of the quadratic function as shown below.

To know more about equation, visit:

https://brainly.com/question/29657983

#SPJ11

for the solid, each cross section perpendicular to the x-axis is a rectangle whose height is three times its width in the xy-plane. what is the volume of the solid?

Answers

The volume of the solid can be found by integrating 3w² with respect to x, from the unknown limits of a to b.

To find the volume of the solid, we can use the concept of integration.

Let's assume the width of each rectangle is "w". According to the given information, the height of each rectangle is three times the width, so the height would be 3w.

Now, we need to find the limits of integration. Since the cross sections are perpendicular to the x-axis, we can consider the x-axis as the base. Let's assume the solid lies between x = a and x = b.

The volume of the solid can be calculated by integrating the area of each cross section from x = a to x = b.

The area of each cross section is given by:

Area = width * height

= w * 3w

= 3w²

Now, integrating the area from x = a to x = b gives us the volume of the solid:

Volume = [tex]\int\limits^a_b {3w^2} \, dx[/tex]

To find the limits of integration, we need to know the values of a and b.

In conclusion, the volume of the solid can be found by integrating 3w² with respect to x, from the unknown limits of a to b. Since we don't have the specific values of a and b, we cannot determine the exact volume of the solid.

To know more about limits of integration visit:

brainly.com/question/31994684

#SPJ11



Multiply and simplify.

-³√2 x² y² . 2 ³√15x⁵y

Answers

After simplifying the given expression [tex]-³√2 x² y² . 2 ³√15x⁵y[/tex], we know that the resultant answer is [tex]30x⁷y³.[/tex]

To multiply and simplify the expression [tex]-³√2 x² y² . 2 ³√15x⁵y[/tex], we can use the rules of exponents and radicals.

First, let's simplify the radicals separately.

-³√2 can be written as 2^(1/3).

[tex]2³√15x⁵y[/tex] can be written as [tex](15x⁵y)^(1/3).[/tex]

Next, we can multiply the coefficients together: [tex]2 * 15 = 30.[/tex]

For the variables, we add the exponents together:[tex]x² * x⁵ = x^(2+5) = x⁷[/tex], and [tex]y² * y = y^(2+1) = y³.[/tex]

Combining everything, the final answer is: [tex]30x⁷y³.[/tex]

Know more about expression here:

https://brainly.com/question/1859113

#SPJ11

The simplified expression after multiplying is expression =[tex]-6x^(11/3) y^(11/3).[/tex]

To multiply and simplify the expression -³√2 x² y² . 2 ³√15x⁵y, we need to apply the laws of exponents and radicals.

Let's break it down step by step:

1. Simplify the radical expressions:
  -³√2 can be written as 1/³√(2).
  ³√15 can be simplified to ³√(5 × 3), which is ³√5 × ³√3.

2. Multiply the coefficients:
  1/³√(2) × 2 = 2/³√(2).

3. Multiply the variables with the same base, x and y:
  x² × x⁵ = x²+⁵ = x⁷.
  y² × y = y²+¹ = y³.

4. Multiply the radical expressions:
  ³√5 × ³√3 = ³√(5 × 3) = ³√15.

5. Combining all the results:
  2/³√(2) × ³√15 × x⁷ × y³ = 2³√15/³√2 × x⁷ × y³.

This is the simplified form of the expression. The numerical part is 2³√15/³√2, and the variable part is x⁷y³.

Please note that this is the simplified form of the expression, but if you have any additional instructions or requirements, please let me know and I will be happy to assist you further.

Learn more about expression:

brainly.com/question/34132400

#SPJ11

find the volume of the solid obtained by rotating the region
bounded by y=x and y= sqrt(x) about the line x=2
Find the volume of the solid oblained by rotating the region bounded by \( y=x \) and \( y=\sqrt{x} \) about the line \( x=2 \). Volume =

Answers

The volume of the solid obtained by rotating the region bounded by \[tex](y=x\) and \(y=\sqrt{x}\)[/tex] about the line [tex]\(x=2\) is \(\frac{-2}{3}\pi\) or \(\frac{2}{3}\pi\)[/tex] in absolute value.

To find the volume of the solid obtained by rotating the region bounded by \(y=x\) and \(y=\sqrt{x}\) about the line \(x=2\), we can use the method of cylindrical shells.

The cylindrical shells are formed by taking thin horizontal strips of the region and rotating them around the axis of rotation. The height of each shell is the difference between the \(x\) values of the curves, which is \(x-\sqrt{x}\). The radius of each shell is the distance from the axis of rotation, which is \(2-x\). The thickness of each shell is denoted by \(dx\).

The volume of each cylindrical shell is given by[tex]\(2\pi \cdot (2-x) \cdot (x-\sqrt{x}) \cdot dx\)[/tex].

To find the total volume, we integrate this expression over the interval where the two curves intersect, which is from \(x=0\) to \(x=1\). Therefore, the volume can be calculated as follows:

\[V = \int_{0}^{1} 2\pi \cdot (2-x) \cdot (x-\sqrt{x}) \, dx\]

We can simplify the integrand by expanding it:

\[V = \int_{0}^{1} 2\pi \cdot (2x-x^2-2\sqrt{x}+x\sqrt{x}) \, dx\]

Simplifying further:

\[V = \int_{0}^{1} 2\pi \cdot (x^2+x\sqrt{x}-2x-2\sqrt{x}) \, dx\]

Integrating term by term:

\[V = \pi \cdot \left(\frac{x^3}{3}+\frac{2x^{\frac{3}{2}}}{3}-x^2-2x\sqrt{x}\right) \Bigg|_{0}^{1}\]

Evaluating the definite integral:

\[V = \pi \cdot \left(\frac{1}{3}+\frac{2}{3}-1-2\right)\]

Simplifying:

\[V = \pi \cdot \left(\frac{1}{3}-1\right)\]

\[V = \pi \cdot \left(\frac{-2}{3}\right)\]

Therefore, the volume of the solid obtained by rotating the region bounded by \(y=x\) and \(y=\sqrt{x}\) about the line \(x=2\) is \(\frac{-2}{3}\pi\) or \(\frac{2}{3}\pi\) in absolute value.

Learn more about volume here

https://brainly.com/question/463363

#SPJ11

2. Let Ψ(t) be a fundamental matrix for a system of differential equations where Ψ(t)=[ −2cos(3t)
cos(3t)+3sin(3t)

−2sin(3t)
sin(3t)−3cos(3t)

]. Find the coefficient matrix, A(t), of a system for which this a fundamental matrix. - Show all your work.

Answers

The coefficient matrix A(t) for which Ψ(t) is a fundamental matrix is:

A(t) = [ -3cos(3t) + 9sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

This matrix represents the coefficients of the system of differential equations associated with the given fundamental matrix Ψ(t).

To find the coefficient matrix A(t) for which Ψ(t) is a fundamental matrix, we can use the formula:

A(t) = Ψ'(t) * Ψ(t)^(-1)

where Ψ'(t) is the derivative of Ψ(t) with respect to t and Ψ(t)^(-1) is the inverse of Ψ(t).

We have Ψ(t) = [ -2cos(3t)   cos(3t) + 3sin(3t)

             -2sin(3t)   sin(3t) - 3cos(3t) ],

we need to compute Ψ'(t) and Ψ(t)^(-1).

First, let's find Ψ'(t) by taking the derivative of each element in Ψ(t):

Ψ'(t) = [ 6sin(3t)    -3sin(3t) + 9cos(3t)

         -6cos(3t)   -3cos(3t) - 9sin(3t) ].

Next, let's find Ψ(t)^(-1) by calculating the inverse of Ψ(t):

Ψ(t)^(-1) = (1 / det(Ψ(t))) * adj(Ψ(t)),

where det(Ψ(t)) is the determinant of Ψ(t) and adj(Ψ(t)) is the adjugate of Ψ(t).

The determinant of Ψ(t) is given by:

det(Ψ(t)) = (-2cos(3t)) * (sin(3t) - 3cos(3t)) - (-2sin(3t)) * (cos(3t) + 3sin(3t))

         = 2cos(3t)sin(3t) - 6cos^2(3t) - 2sin(3t)cos(3t) - 6sin^2(3t)

         = -8cos^2(3t) - 8sin^2(3t)

         = -8.

The adjugate of Ψ(t) can be obtained by swapping the elements on the main diagonal and changing the signs of the elements on the off-diagonal:

adj(Ψ(t)) = [ sin(3t) -3sin(3t)

            cos(3t) + 3cos(3t) ].

Finally, we can calculate Ψ(t)^(-1) using the determined values:

Ψ(t)^(-1) = (1 / -8) * [ sin(3t) -3sin(3t)

                        cos(3t) + 3cos(3t) ]

         = [ -sin(3t) / 8   3sin(3t) / 8

             -cos(3t) / 8  -3cos(3t) / 8 ].

Now, we can compute A(t) using the formula:

A(t) = Ψ'(t) * Ψ(t)^(-1)

    = [ 6sin(3t)    -3sin(3t) + 9cos(3t) ]

      [ -6cos(3t)   -3cos(3t) - 9sin(3t) ]

      * [ -sin(3t) / 8   3sin(3t) / 8 ]

         [ -cos(3t) / 8  -3cos(3t) / 8 ].

Multiplying the matrices, we obtain:

A(t) = [ -3cos(3t) + 9

sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

Therefore, the coefficient matrix A(t) for which Ψ(t) is a fundamental matrix is given by:

A(t) = [ -3cos(3t) + 9sin(3t)   -9cos(3t) + 3sin(3t) ]

      [ -3sin(3t) - 9cos(3t)   9sin(3t) + 3cos(3t) ].

To know more about coefficient matrix refer here:
https://brainly.com/question/17815790#

#SPJ11

Other Questions
in the sea otter example, sea otters prey on sea urchin. how did this effect the kelp population? a radiography program graduate has 4 attempts over a three-year period to pass the arrt exam. question 16 options: true false Write a real - world problem that involves equal share. find the equal share of your data set 1.Tell me all you know about the hormonal regulation of ECF osmolality by ADH and aldosterone. Include an explanation of our thirst mechanism. 2. Tell me all you know about glucose as a fuel source for various tissues/organs. Include normal and abnormal fasting blood glucose values. Explain how blood glucose levels are regulated with hormones. Why should I be concerned about hyperglycemia and hypoglycemia? 3. Tell me all you know about Type I Diabetes Mellitus; causes, S\&S, treatment, etc. 4. Tell me all you know about Type II Diabetes Mellitus; causes, S\&S, treatment, etc. 5. Tell me all you know about ketoacidosis and diabetic coma; causes, S\&S, treatment, true or false both the appetite and the satiety center are found in the hypothalamus. Which method used to study the human brain can show a live picture of brain activation? Wally has a $ 500 gift card that he want to spend at the store where he works. he get 25% employee discount , and the sales tax rate is 6.45% how much can wally spend before the discount and tax using only his gift card? A 2.5 g latex balloon is filled with 2.4 g of helium. When filled, the balloon is a 30-cm-diameter sphere. When released, the balloon accelerates upward until it reaches a terminal speed. What is this speed State the difference between SOP and POS. A. SOP uses maxterms POS uses minterms B. POS uses maxterms SOP uses maxterms C. POSusesminterms SOPusesminterms D. POS uses maxterms SOP uses minterms Fractional part of a Circle with 1/3 & 1/2.How do you Solve that Problem?Thank you! What must be on board and available for inspection by a law enforcement officer whenever a vessel is being operated?. whaler who was swallowed by a whale. A day or 2 later his crew got a whale. By pure chance it was the same whale. When they cut it open they found the man alive the joint density function of y1 and y2 is given by f(y1, y2) = 30y1y22, y1 1 y2 1 y1, 0 y1 1, 0, elsewhere. (a) find f 1 2 , 1 2 . find the volume of the solid obtained by rotating the regionbounded by y=x and y= sqrt(x) about the line x=2Find the volume of the solid oblained by rotating the region bounded by \( y=x \) and \( y=\sqrt{x} \) about the line \( x=2 \). Volume = According to the Clausius' theorem, the cyclic integral of for a reversible cycle is zero. OdW/dT OdH/dT O dE/dT OdQ/dT Find the points on the curve given below, where the tangent is horizontal. (Round the answers to three decimal places.)y = 9 x 3 + 4 x 2 - 5 x + 7P1(_____,_____) smaller x-valueP2(_____,_____)larger x-value Which of the following is not a buffer system? carbonic acid-bicarbonate buffer system phosphate buffer system hydrovide buffer system protein buiffer system For each of the following forbidden decays, determine what conservation laws are violated.(e) Xi n + find the value of x for which the line tangent to the graph of f(x)=72x25x 1 is parallel to the line y=3x4. write your answer as a fraction. When a firm increased its output by one unit, its AC rose from $45 to $50. This implies that its MC is$5.between $45 and $50.greater than $50.Cannot be determined from the above information