By finding the maximum number of yards, then feet, then inches, if the input is 50, then the output is 1 yard, 4 feet, and 2 inches.
Conversion from inches to yard, and feetTo convert a length in inches to yards, feet, and inches
Note the followings:
There are 12 inches in a foot and 3 feet in a yard.
Divide the total length in inches by 36 (the number of inches in a yard) to find the number of yards, then take the remainder and divide it by 12 to find the number of feet, and finally take the remaining inches.
Given that, the input is 50 inches, the output will be
Maximum number of yards: 1 (since 36 inches is the largest multiple of 36 that is less than or equal to 50)
Maximum number of feet: 4 (since there are 12 inches in a foot, the remainder after dividing by 36 is 14, which is equivalent to 1 foot and 2 inches)
Remaining inches: 2 (since there are 12 inches in a foot, the remainder after dividing by 12 is 2)
Therefore, 50 inches is equivalent to 1 yard, 4 feet, and 2 inches.
Learn more on inches conversion on https://brainly.com/question/30400983
#SPJ4
In triangle ABC the angle bisectors drawn from vertices A and B intersect at point D. Find m
m
The measure of angle ADB is equal to the square root of ([tex]AB \times BA[/tex]).
In triangle ABC, let the angle bisectors drawn from vertices A and B intersect at point D. To find the measure of angle ADB, we can use the angle bisector theorem. According to this theorem, the angle bisector divides the opposite side in the ratio of the adjacent sides.
Let AD and BD intersect side BC at points E and F, respectively. Now, we have triangle ADE and triangle BDF.
Using the angle bisector theorem in triangle ADE, we can write:
AE/ED = AB/BD
Similarly, in triangle BDF, we have:
BF/FD = BA/AD
Since both angles ADB and ADF share the same side AD, we can combine the above equations to obtain:
(AE/ED) * (FD/BF) = (AB/BD) * (BA/AD)
By substituting the given angle bisector ratios and rearranging, we get:
(AD/BD) * (AD/BD) = (AB/BD) * (BA/AD)
AD^2 = AB * BA
Note: The solution provided assumes that points A, B, and C are non-collinear and that the triangle is non-degenerate.
For more such questions on angle
https://brainly.com/question/25770607
#SPJ8
My name is Gina Colon.I am 33 with 3 kids ages 11 girl, 10 boy, and 9 boy. I am studying for my bachelor's degree in Psychology. I am looking to work with children and youth or as a therapist. I also hope to own my own clothing line which is why I decided to take this course as an elective. I hope to gain insight on how to go about getting vendors, negotiating, marketing, and selling my merchandise.
Merchandise is a necessity in retail because without merch you will not be able to accumulate income. For merchandise we are expected to keep up with the trends and sell what our clientele needs. The buyer's responsibility is important because we expect them to keep the business running. To sell out of merchandise and keep them wanting to come back.
What is you point of view on the statement?
The statement highlights the importance of merchandise in retail as a means to generate income and maintain customer loyalty.
Merchandise plays a vital role in the success of any retail business. It serves as a key source of revenue, allowing businesses to generate income and sustain their operations. By offering a diverse range of products that align with current trends and cater to the needs of their clientele, businesses can attract customers and encourage repeat purchases.
One of the crucial aspects of managing merchandise is understanding the buyers' responsibility. Buyers are responsible for selecting the right products to stock in the store, ensuring they meet customer demands and preferences. By carefully curating a collection that appeals to the target market, businesses can enhance their chances of selling out of merchandise and maintaining a loyal customer base.
In addition to selecting merchandise, effective management also involves various other aspects. These include sourcing reliable vendors, negotiating favorable terms and pricing, implementing effective marketing strategies to create awareness and drive sales, and establishing efficient selling processes. These steps are necessary for a business owner, like Gina Colon, who aspires to own her own clothing line. By acquiring knowledge and insight into these areas, she can lay a solid foundation for her entrepreneurial venture.
In conclusion, merchandise holds significant importance in the retail industry. It serves as a primary source of revenue and plays a crucial role in attracting customers and fostering loyalty. By understanding the buyers' responsibility and employing effective strategies in vendor selection, negotiation, marketing, and selling, entrepreneurs can enhance their chances of success in the competitive retail market.
Learn more about merchandise
brainly.com/question/31977819
#SPJ11
Replace each _____ with >,< , or = to make a true statement.
32mm_______ 3.2cm
The original statement 32 mm _______ 3.2 cm can be completed with the equals sign (=) to make a true statement. This is because 32 mm is equal to 3.2 cm after converting the units.
To compare the measurements of 32 mm and 3.2 cm, we need to convert one of the measurements to the same unit as the other. Since 1 cm is equal to 10 mm, we can convert 3.2 cm to mm by multiplying it by 10.
3.2 cm * 10 = 32 mm
Now, we have both measurements in millimeters. Comparing 32 mm and 32 mm, we can say that they are equal (32 mm = 32 mm).
Therefore, the correct statement is:
32 mm = 3.2 cm
The original statement 32 mm _______ 3.2 cm can be completed with the equals sign (=) to make a true statement. This is because 32 mm is equal to 3.2 cm after converting the units.
Learn more about multiplying here:
https://brainly.com/question/30753365
#SPJ11
The length and breadth of a rectangular field are in the ratio 8:3. If the perimeter of the field is 99 m
, find the length of the field.
Answer:
36 m
Step-by-step explanation:
Perimeter = 2L + 2w = 99
2(L + w) = 99
L = length = 8x
w = width = 3x
2(8x + 3x) = 99
16x + 6x = 99
22x = 99
x = 99/22 = 4.5
L = 8x = 8(4.5) = 36
What is the value of n in the equation of 1/n=x^2-x+1
if the roots are unequal and real
n>0
Answer:
Hope this helps and have a nice day
Step-by-step explanation:
To find the value of n in the equation 1/n = x^2 - x + 1, given that the roots are unequal and real, and n > 0, we can analyze the properties of the equation.
The equation 1/n = x^2 - x + 1 can be rearranged to the quadratic form:
x^2 - x + (1 - 1/n) = 0
Comparing this equation to the standard quadratic equation form, ax^2 + bx + c = 0, we have:
a = 1, b = -1, and c = (1 - 1/n).
For the roots of a quadratic equation to be real and unequal, the discriminant (b^2 - 4ac) must be positive.
The discriminant is given by:
D = (-1)^2 - 4(1)(1 - 1/n)
= 1 - 4 + 4/n
= 4/n - 3
For the roots to be real and unequal, D > 0. Substituting the value of D, we have:
4/n - 3 > 0
Adding 3 to both sides:
4/n > 3
Multiplying both sides by n (since n > 0):
4 > 3n
Dividing both sides by 3:
4/3 > n
Therefore, for the roots of the equation to be unequal and real, and n > 0, we must have n < 4/3.
The variable c represents a whole number between 1 and 100. The values of the expressions c^1/2 and c^2/3 are both whole numbers for only one value of c. What whole number does c represent?
Answer:
[tex] {c}^{ \frac{1}{2} } = \sqrt{c} [/tex]
[tex] {c}^{ \frac{2}{3} } = \sqrt[3]{ {c}^{2} } [/tex]
[tex] c = {2}^{6} = 64[/tex]
Find the oblique asymptote for the function \[ f(x)=\frac{5 x-2 x^{2}}{x-2} . \] Select one: a. \( \mathrm{y}=\mathrm{x}+1 \) b. \( y=-2 x-2 \) c. \( y=-2 x+1 \) d. \( y=3 x+2 \)
The oblique asymptote for the function [tex]\( f(x) = \frac{5x - 2x^2}{x - 2} \)[/tex] is y = -2x + 1. The oblique asymptote occurs when the degree of the numerator is exactly one more than the degree of the denominator. Thus, option c is correct.
To find the oblique asymptote of a rational function, we need to examine the behavior of the function as x approaches positive or negative infinity.
In the given function [tex]\( f(x) = \frac{5x - 2x^2}{x - 2} \)[/tex], the degree of the numerator is 1 and the degree of the denominator is also 1. Therefore, we expect an oblique asymptote.
To find the equation of the oblique asymptote, we can perform long division or synthetic division to divide the numerator by the denominator. The result will be a linear function that represents the oblique asymptote.
Performing the long division or synthetic division, we obtain:
[tex]\( \frac{5x - 2x^2}{x - 2} = -2x + 1 + \frac{3}{x - 2} \)[/tex]
The term [tex]\( \frac{3}{x - 2} \)[/tex]represents a small remainder that tends to zero as x approaches infinity. Therefore, the oblique asymptote is given by the linear function y = -2x + 1.
This means that as x becomes large (positive or negative), the functionf(x) approaches the line y = -2x + 1. The oblique asymptote acts as a guide for the behavior of the function at extreme values of x.
Therefore, the correct option is c. y = -2x + 1, which represents the oblique asymptote for the given function.
To know more about oblique asymptote, refer here:
https://brainly.com/question/29046774#
#SPJ11
Complete Question:
Find the oblique asymptote for the function [tex]\[ f(x)=\frac{5 x-2 x^{2}}{x-2} . \][/tex]
Select one:
a. y = x + 1
b. y = -2x -2
c. y = -2x + 1
d. y = 3x +2
If f(x)=x²(1-x²)
f(1/2023)-f(2/2023)+f(3/2023)-f(4/2023)+. -f(2022/2023)
The alternating sum of the function f(x) at specific values ranging from 1/2023 to 2022/2023. It involves the function f(x) = x²(1 - x²). plugging in the given values into the function and performing the alternating summation.
The exact numerical value of the expression, each term f(x) is evaluated individually at the given values of x, and then the sum of these alternating terms is calculated. It involves subtracting the even-indexed terms and adding the odd-indexed terms.
The detailed calculation of the expression would require evaluating f(x) at each specific value from 1/2023 to 2022/2023 and performing the alternating summation.
Unfortunately, due to the complexity of the expression involving a large number of terms, it is not possible to provide an exact numerical value or a simplified form without carrying out the entire calculation.
In summary, the expression involves evaluating the alternating sum of the function f(x) at specific values ranging from 1/2023 to 2022/2023. However, without carrying out the detailed calculation, it is not possible to provide an exact numerical value or a simplified form of the expression.
Learn more about function:
https://brainly.com/question/30721594
#SPJ11
A certain drug decays following first order kinetics, ( dA/dt=−rA ), with a half-life of 5730 seconds. Q1: Find the rate constant r (Note: MATLAB recognized 'In' as 'log'. There is no 'In' in the syntax) Q2: Plot the concentration of the drug overtime (for 50,000 seconds) assuming initial drug concentration of 1000mM. (Note: use an interval of 10 seconds for easier and shorter computation times) Q3: If the minimum effective concentration of the drug is 20% of its original concentration, what is the time interval, in hours, at which another dosage should be administered to avoid falling below tha minimum effective concentration?
Q1: Find the rate constant (r) using the half-life (t_half).
The half-life (t_half) is related to the rate constant (r) by the formula:
t_half = (ln(2)) / r
Given t_half = 5730 seconds, we can rearrange the formula to solve for r:
r = (ln(2)) / t_half
Using MATLAB syntax, we can compute the rate constant (r) as follows:
t_half = 5730;
r = log(2) / t_half;
Q2: Plot the concentration of the drug over time assuming an initial concentration of 1000 mM for 50,000 seconds, with an interval of 10 seconds.
To plot the concentration over time, we can use the first-order decay equation:
A(t) = A0 * exp(-r * t)
Where:
A(t) is the concentration at time t,
A0 is the initial concentration,
r is the rate constant,
t is the time.
In this case, A0 = 1000 mM, and we need to plot the concentration over 50,000 seconds with a 10-second interval.
Using MATLAB syntax, we can create the time vector, compute the concentration at each time point, and plot the results:
A0 = 1000;
time = 0:10:50000;
concentration = A0 * exp(-r * time);
plot(time, concentration);
xlabel('Time (seconds)');
ylabel('Concentration (mM)');
title('Concentration of the Drug over Time');
Q3: Calculate the time interval, in hours, at which another dosage should be administered to avoid falling below the minimum effective concentration (20% of the original concentration).
To calculate the time interval, we need to find the time it takes for the concentration to reach 20% of the original concentration (0.2 * A0).
We can use the first-order decay equation and solve for time:
0.2 * A0 = A0 * exp(-r * time)
Simplifying the equation:
exp(-r * time) = 0.2
Taking the natural logarithm of both sides to solve for time:
-r * time = ln(0.2)
Solving for time:
time = ln(0.2) / -r
Since the time is in seconds, we can convert it to hours:
time_in_hours = time / 3600;
Using MATLAB syntax, we can compute the time interval in hours:
time_in_hours = log(0.2) / -r / 3600;
The variable `time_in_hours` will give you the time interval at which another dosage should be administered to avoid falling below the minimum effective concentration.
Please note that the provided solutions assume a continuous decay without considering factors like absorption or metabolism, which may affect the actual drug concentration profile.
Learn more about MATLAB from :
https://brainly.com/question/15071644
#SPJ11
LetC=[564]and D = -3 0 Find CD if it is defined. Otherwise, click on "Undefined".
The product CD is undefined
Because the number of columns in matrix C (1 column) does not match the number of rows in matrix D (2 rows). In matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix for the product to be defined.
However, in this case, the dimensions do not satisfy this condition. As a result, the product CD is undefined. Matrix multiplication requires compatible dimensions, and when the dimensions of the matrices do not align properly, the product cannot be calculated. Therefore, in this scenario, we conclude that the matrix product CD is undefined. Since this condition is not met in the given scenario, CD is undefined.
Learn more about matrix multiplication here
https://brainly.com/question/13591897
#SPJ11
A man standing in the sun finds that his shadow is equal to his height. Find that angle of elevation of
the sun at that time
The cost C (in dollars) of making a square window with a side length of n inches is represented by C= n2/5 +175. A window costs $355. What is the length (in feet) of the window?
The windows length is _ feet
Maggie and Mikayla want to go to the music store near Maggie's house after school. They can walk 3.5 miles per hour and ride their bikes 10 miles per hour.
a. Create a table to show how far Maggie and Mikayla can travel walking and riding their bikes. Include distances for 0,1,2,3 , and 4 hours.
The table below shows the distances Maggie and Mikayla can travel walking and riding their bikes for 0, 1, 2, 3, and 4 hours:
Concept of speed
| Time (hours) | Walking Distance (miles) | Biking Distance (miles) |
|--------------|-------------------------|------------------------|
| 0 | 0 | 0 |
| 1 | 3.5 | 10 |
| 2 | 7 | 20 |
| 3 | 10.5 | 30 |
| 4 | 14 | 40 |
The table displays the distances that Maggie and Mikayla can travel by walking and riding their bikes for different durations. Since they can walk at a speed of 3.5 miles per hour and ride their bikes at 10 miles per hour, the distances covered are proportional to the time spent.
For example, when no time has elapsed (0 hours), they haven't traveled any distance yet, so the walking distance and biking distance are both 0. After 1 hour, they would have walked 3.5 miles and biked 10 miles since the speeds are constant over time.
By multiplying the time by the respective speed, we can calculate the distances for each row in the table. For instance, after 2 hours, they would have walked 7 miles (2 hours * 3.5 miles/hour) and biked 20 miles (2 hours * 10 miles/hour).
As the duration increases, the distances covered also increase proportionally. After 3 hours, they would have walked 10.5 miles and biked 30 miles. After 4 hours, they would have walked 14 miles and biked 40 miles.
This table provides a clear representation of how the distances traveled by Maggie and Mikayla vary based on the time spent walking or riding their bikes.
Learn more about concepts of speed
brainly.com/question/30298721
#SPJ11
Use a graph to determine whether f is one-to-one. If it is one-to-one, enter " y " below. If not, enter " n " below. f(x)=x3−x
The function f(x) = x^3 - x is not one-to-one (n).
To determine if the function f(x) = x^3 - x is one-to-one, we can analyze its graph.
By plotting the graph of f(x), we can visually inspect if there are any horizontal lines that intersect the graph at more than one point. If we find any such intersections, it indicates that the function is not one-to-one.
Here is the graph of f(x) = x^3 - x:
markdown
Copy code
|
3 -| x
| x
2 -| x
| x
1 -| x
| x
0 -|__________
-2 -1 0 1 2
From the graph, we can observe that there are multiple values of x that correspond to the same y-value. For example, both x = -1 and x = 1 produce a y-value of 0. This means that there exist distinct values of x that map to the same y-value, which violates the definition of a one-to-one function.
Therefore, the function f(x) = x^3 - x is not one-to-one.
In conclusion, the function f(x) = x^3 - x is not one-to-one (n).
To know more about violates, visit
https://brainly.com/question/10282902
#SPJ11
Which of the following functions has an inverse? a. f: Z → Z, where f(n) = 8 b. f: R→ R, where f(x) = 3x² - 2 c. f: R→ R, where f(x) = x - 4 d. f: Z → Z, where f(n) = |2n| + 1
The function f: R → R, where f(x) = x - 4 has an inverse.
To determine if a function has an inverse, we need to check if the function is one-to-one or injective. A function is one-to-one if it satisfies the horizontal line test, which means that no two distinct inputs map to the same output.
Looking at the given options:
a. f: Z → Z, where f(n) = 8 is not one-to-one because all inputs in the set of integers (Z) map to the same output (8), so it does not have an inverse.
b. f: R → R, where f(x) = 3x² - 2 is not one-to-one because different inputs can produce the same output, violating the horizontal line test. Therefore, it does not have an inverse.
c. f: R → R, where f(x) = x - 4 is one-to-one because for any two distinct real numbers, their outputs will also be distinct. Thus, it has an inverse.
d. f: Z → Z, where f(n) = |2n| + 1 is not one-to-one because both n and -n can produce the same output, violating the horizontal line test. Therefore, it does not have an inverse.
In conclusion, only the function f: R → R, where f(x) = x - 4 has an inverse.
Learn more about: Function
brainly.com/question/28303908
#SPJ11
[–(3 + 2) + (–4)] – {–1 + [–(–4) + 1]}
Answer:
-13
Step-by-step explanation:
[–(3 + 2) + (–4)] – {–1 + [–(–4) + 1]}
[–(5) + (–4)] – {–1 + [–(–4) + 1]}
[–5 + (–4)] – {–1 + [–(–4) + 1]}
[–9] – {–1 + [–(–4) + 1]}
[–9] – {–1 + [4 + 1]}
[–9] – {–1 + 5}
[–9] – {4}
-13
Let A,B, and C be n×n invertible matrices. Then (4C^2B^TA^−1)^−1 is equal to ○None of the mentioned
○1/4A(B^T)−1^C^−2
○1/4C^−2(B^T)−1^A
Let A,B, and C be n×n invertible matrices. Then (4C^2B^TA^−1)^−1 is equal to 1/4A(B^T)−1^C^−2.
From the question above, A,B, and C are n×n invertible matrices. Then we need to find (4C²BᵀA⁻¹)⁻¹.
Using the property (AB)⁻¹ = B⁻¹A⁻¹, we get (4C²BᵀA⁻¹)⁻¹ = A(4BᵀC²)⁻¹.
Now let us evaluate (4BᵀC²)⁻¹.Let D = C²Bᵀ.
Now the matrix D is symmetric. So, D = Dᵀ.
Therefore, Dᵀ = BᵀC²
Now, we have D Dᵀ = C²BᵀBᵀC² = (CB)²
Since C and B are invertible, their product CB is also invertible. Hence, (CB)² is invertible and so is D Dᵀ.
Now let P = Dᵀ(D Dᵀ)⁻¹. Then, PP⁻¹ = I. Also, P⁻¹P = I. Hence, P is invertible.
Multiplying D⁻¹ on both sides of D = Dᵀ, we get D⁻¹D = D⁻¹Dᵀ. Hence, I = (D⁻¹D)ᵀ.
Let Q = DD⁻¹. Then, QQᵀ = I. Also, QᵀQ = I. Hence, Q is invertible.
Now, let us evaluate (4BᵀC²)⁻¹.
Let R = 4BᵀC².
Now, R = 4DDᵀ = 4Q⁻¹(D Dᵀ)Q⁻ᵀ.
Now let us evaluate R⁻¹.R⁻¹ = (4DDᵀ)⁻¹ = 1⁄4(D Dᵀ)⁻¹ = 1⁄4(QQᵀ)⁻¹.
Using the property (AB)⁻¹ = B⁻¹A⁻¹, we get R⁻¹ = 1⁄4(Q⁻ᵀQ⁻¹) = 1⁄4B⁻¹C⁻².
Substituting this in (4C²BᵀA⁻¹)⁻¹ = A(4BᵀC²)⁻¹, we get(4C²BᵀA⁻¹)⁻¹ = 1⁄4A(Bᵀ)⁻¹C⁻²
Hence, the answer is 1/4A(B^T)−1^C^−2.
Learn more about matrix at
https://brainly.com/question/30175009
#SPJ11
1/root 6 + root5 -root 11
Answer:
Step-by-step explanation:
To simplify the expression 1/√6 + √5 - √11, we can rationalize the denominators of the square roots.
Step 1: Rationalize the denominator of √6:
Multiply the numerator and denominator of 1/√6 by √6 to get (√6 * 1) / (√6 * √6) = √6 / 6.
Step 2: Rationalize the denominator of √11:
Multiply the numerator and denominator of √11 by √11 to get (√11 * √11) / (√11 * √11) = √11 / 11.
Now the expression becomes:
√6 / 6 + √5 - √11 / 11
There are no like terms that can be combined, so this is the simplified form of the expression.
A six-sided die has faces labeled {1,2,3,4,5,6}. What is the fewest number of rolls necessary to guarantee that at least 20 of the rolls result in the same number on the top face?
To guarantee that at least 20 rolls result in the same number on the top face of a six-sided die, one would need to roll the die at least 25 times. to solve the problem we need to consider the worst-case scenario. In this case, we want to find the fewest number of rolls necessary to ensure that at least 20 rolls result in the same number.
Let's consider the scenario where we roll the die and get a different number on each roll. In the worst-case scenario, each new roll will result in a different number until we have rolled all six possible numbers.
To guarantee that we have at least 20 rolls of the same number, we need to exhaust all possibilities for the other five numbers before repeating any number. This means we need to roll the die 6 times to ensure that we have covered all six numbers.
After these 6 rolls, we have exhausted all possibilities for one number. Now, we can start repeating that number. Since we want to have at least 20 rolls of the same number, we need to roll the die 19 more times to reach a total of 20 rolls of the same number.
Therefore, the fewest number of rolls necessary to guarantee that at least 20 rolls result in the same number on the top face of the die is 6 (to cover all possible numbers) + 19 (to reach 20 rolls of the same number) = 25 rolls.
In summary, to guarantee at least 20 rolls of the same number on the top face of a six-sided die, you would need to roll the die at least 25 times.
Learn more about the concept of possibilities:
https://brainly.com/question/32730510
#SPJ11
Write an expression for the slope of segment given the coordinates and endpoints.
(-x, 5 x),(0,6 x)
The slope of the line segment with endpoints (-x, 5x) and (0, 6x) is 1.
The expression for the slope of a line segment can be calculated using the coordinates of its endpoints. Given the coordinates (-x, 5x) and (0, 6x), we can determine the slope using the formula:
slope = (change in y-coordinates) / (change in x-coordinates)
Let's calculate the slope step by step:
Change in y-coordinates = (y2 - y1)
= (6x - 5x)
= x
Change in x-coordinates = (x2 - x1)
= (0 - (-x))
= x
slope = (change in y-coordinates) / (change in x-coordinates)
= x / x
= 1
Therefore, the slope of the line segment with endpoints (-x, 5x) and (0, 6x) is 1.
To know more about calculating the slope of a line segment, refer here:
https://brainly.com/question/30143875#
#SPJ11
An interest survey was taken at a summer camp to plan leisure activities. The results are given in the tree diagram.
The tree diagram shows campers branching off into two categories, prefer outdoor activities, which is labeled 80%, and prefer indoor activities, which is labeled 20%. Prefer outdoor activities branches off into two sub-categories, prefer hiking, which is labeled 70%, and prefer reading, which is labeled 30%. Prefer indoor activities branches off into two subcategories, prefer hiking, which is labeled 20%, and prefer reading, which is labeled 80%.
What percentage of the campers prefer indoor activities and reading?
Answer:
The percentage of campers who prefer indoor activities and reading can be found by multiplying the probabilities of each event occurring. Therefore, the percentage of campers who prefer indoor activities and reading is 20% x 80% = 16%.
Construct an angle of measure 320 degrees on paper. When done,
upload a picture of this angle and the tool used to make it.
You can upload a picture of the constructed angle of measure 320 degrees and the tool used to create it.
To construct an angle of measure 320 degrees on paper, follow these steps:
Step 1: Draw a straight line of arbitrary length using a ruler.
Step 2: Place the point of the protractor on one endpoint of the line. Align the base of the protractor with the line, ensuring that the zero mark of the protractor is at the endpoint of the line and the line of the protractor passes through the endpoint and the other end of the line.
Step 3: Locate and mark a point along the protractor's arc that corresponds to the measure of 320 degrees.
Step 4: Use the ruler to draw a line from the endpoint of the original line, passing through the marked point on the protractor's arc. This line will form an angle of 320 degrees with the original line.
Finally, you can upload a picture of the constructed angle of measure 320 degrees and the tool used to create it.
Learn more about angle
https://brainly.com/question/30147425
#SPJ11
Find the values of x, y, and z in the triangle to the right. X= 4 11 N (3x+4)0 K to ܕܘ (3x-4)°
The values of x, y, and z in the triangle are x = 4, y = 11, and z = 180 - (3x + 4) - (3x - 4).
In the given problem, we are asked to find the values of x, y, and z in a triangle. The information provided states that angle X is equal to 4 degrees and angle N is equal to 11 degrees. Additionally, we have two expressions involving x: (3x + 4) degrees and (3x - 4) degrees.
To find the value of y, we can use the fact that the sum of the interior angles in a triangle is always 180 degrees. In this case, we have x + y + z = 180. Plugging in the given values, we get 4 + 11 + z = 180. Solving for z, we find that z = 180 - 4 - 11 = 165 degrees.
To find the values of x and y, we can use the fact that the sum of the angles in a triangle is always 180 degrees. In this case, we have angle X + angle N + angle K = 180. Plugging in the given values, we get 4 + 11 + K = 180. Solving for K, we find that K = 180 - 4 - 11 = 165 degrees.
Therefore, the values of x, y, and z in the triangle are x = 4, y = 11, and z = 165 degrees.
Learn more about triangle
brainly.com/question/2773823
#SPJ11
2/3 x 3/4 x 4 x 3 x 100
Answer:
600
Step-by-step explanation:
2/3 x 3/4 =
1/2 x 12 =
6 x 100
Which would be: 600
(1 point) Solve the following initial value problem y" - 100y = e¹0x, y = y(0) = 10, y'(0) = 2 help (formulas)
The solution to the given initial value problem: y = 50.05e¹(10x) + 49.95e¹(-10x) - (1/100)e¹(0x)is obtained.
An initial value problem:
y" - 100y = e¹0x,
y = y(0) = 10,
y'(0) = 2,
Let us find the solution to the given differential equation using the formula as follows:
The solution to the differential equation: y" - 100y = e¹0x
can be obtained by finding the complementary function (CF) and particular integral (PI) of the given differential equation.
The complementary function (CF) can be obtained by assuming:
y = e¹(mx)
Substituting this value of y in the differential equation:
y" - 100y = e¹0xd²y/dx² - 100e
y = e¹0xd²y/dx² - 100my = 0(m² - 100)e
y = 0
So, the CF is given by:y = c₁e¹(10x) + c₂e¹(-10x)where c₁ and c₂ are constants.
To find the particular integral (PI), assume the PI to be of the form:
y = ae¹(0x)where 'a' is a constant.
Substituting this value of y in the differential equation:y" - 100y = e¹0x
2nd derivative of y w.r.t x = 0
Hence, y" = 0
Substituting these values in the given differential equation:
0 - 100ae¹(0x) = e¹0x
a = -1/100
So, the PI is given by: y = (-1/100)e¹(0x)
Putting the values of CF and PI, we get: y = c₁e¹(10x) + c₂e¹(-10x) - (1/100)e¹(0x)
y = y(0) = 10,
y'(0) = 2
At x = 0, we have : y = c₁e¹(10.0) + c₂e¹(-10.0) - (1/100)e¹(0.0)
y = c₁ + c₂ - (1/100)......(i)
Also, at x = 0:y' = c₁(10)e¹(10.0) - c₂(10)e¹(-10.0) - (1/100)(0)e¹(0.0)y'
= 10c₁ - 10c₂......(ii)
Given: y(0) = 10, y'(0) = 2
Putting the values of y(0) and y'(0) in equations (i) and (ii), we get:
10 = c₁ + c₂ - (1/100).......(iii)
2 = 10c₁ - 10c₂.......(iv)
Solving equations (iii) and (iv), we get:
c₁ = 50.05c₂ = 49.95
Hence, the solution to the given initial value problem: y = 50.05e¹(10x) + 49.95e¹(-10x) - (1/100)e¹(0x obtained )
Learn more about initial value problem :
brainly.com/question/31041139
#SPJ11
Let f(x)=x2+8x and g(x)=x+3. Evaluate the following: 1. (f∘g)(x)= 2. (g∘f)(x)= 3. (f∘f)(x)= 4. (g∘g)(x)=
The evaluation are:
1. (f∘g)(x) = x^2 + 14x + 33
2. (g∘f)(x) = x^2 + 8x + 3
3. (f∘f)(x) = x^4 + 16x^3 + 72x^2 + 64x
4. (g∘g)(x) = x + 6
To evaluate the compositions of functions, we substitute the inner function into the outer function and simplify the expression.
1. Evaluating (f∘g)(x):
(f∘g)(x) means we take the function g(x) and substitute it into f(x):
(f∘g)(x) = f(g(x)) = f(x+3)
Substituting x+3 into f(x):
(f∘g)(x) = (x+3)^2 + 8(x+3)
Expanding and simplifying:
(f∘g)(x) = x^2 + 6x + 9 + 8x + 24
Combining like terms:
(f∘g)(x) = x^2 + 14x + 33
2. Evaluating (g∘f)(x):
(g∘f)(x) means we take the function f(x) and substitute it into g(x):
(g∘f)(x) = g(f(x)) = g(x^2 + 8x)
Substituting x^2 + 8x into g(x):
(g∘f)(x) = x^2 + 8x + 3
3. Evaluating (f∘f)(x):
(f∘f)(x) means we take the function f(x) and substitute it into itself:
(f∘f)(x) = f(f(x)) = f(x^2 + 8x)
Substituting x^2 + 8x into f(x):
(f∘f)(x) = (x^2 + 8x)^2 + 8(x^2 + 8x)
Expanding and simplifying:
(f∘f)(x) = x^4 + 16x^3 + 64x^2 + 8x^2 + 64x
Combining like terms:
(f∘f)(x) = x^4 + 16x^3 + 72x^2 + 64x
4. Evaluating (g∘g)(x):
(g∘g)(x) means we take the function g(x) and substitute it into itself:
(g∘g)(x) = g(g(x)) = g(x+3)
Substituting x+3 into g(x):
(g∘g)(x) = (x+3) + 3
Simplifying:
(g∘g)(x) = x + 6
Therefore, the evaluations are:
1. (f∘g)(x) = x^2 + 14x + 33
2. (g∘f)(x) = x^2 + 8x + 3
3. (f∘f)(x) = x^4 + 16x^3 + 72x^2 + 64x
4. (g∘g)(x) = x + 6
Learn more about evaluation here
https://brainly.com/question/25907410
#SPJ11
Find the general solution of the differential equation. y^(5) −8y^(4) +16y′′′ −8y′′ +15y′ =0. NOTE: Use c1, c2. c3. c4, and c5 for the arbitrary constants. y(t)= ___
The general solution of the differential equation is: y(t) = c1e^t + c2te^t + c3t²e^t + c4e^(2t) + c5e^(3t)
Thus, c1, c2, c3, c4, and c5 are arbitrary constants.
To find the general solution of the differential equation y⁵ − 8y⁴ + 16y′′′ − 8y′′ + 15y′ = 0, we follow these steps:
Step 1: Substituting y = e^(rt) into the differential equation, we obtain the characteristic equation:
r⁵ − 8r⁴ + 16r³ − 8r² + 15r = 0
Step 2: Solving the characteristic equation, we factor it as follows:
r(r⁴ − 8r³ + 16r² − 8r + 15) = 0
Using the Rational Root Theorem, we find that the roots are:
r = 1 (with a multiplicity of 3)
r = 2
r = 3
Step 3: Finding the solution to the differential equation using the roots obtained in step 2 and the formula y = c1e^(r1t) + c2e^(r2t) + c3e^(r3t) + c4e^(r4t) + c5e^(r5t).
Therefore, the general solution of the differential equation is:
y(t) = c1e^t + c2te^t + c3t²e^t + c4e^(2t) + c5e^(3t)
Thus, c1, c2, c3, c4, and c5 are arbitrary constants.
Learn more about differential equation
https://brainly.com/question/32645495
#SPJ11
If f(c)=3x-5 and g(x)=x+3 find (f-g)(c)
The solution of the function, (f - g)(x) is 2x - 8.
How to solve function?A function relates input and output. Therefore, let's solve the composite function as follows;
A composite function is generally a function that is written inside another function.
Therefore,
f(x) = 3x - 5
g(x) = x + 3
(f - g)(x)
Therefore,
(f - g)(x) = f(x) - g(x)
Therefore,
f(x) - g(x) = 3x - 5 - (x + 3)
f(x) - g(x) = 3x - 5 - x - 3
f(x) - g(x) = 2x - 8
learn more on function here: https://brainly.com/question/25882894
#SPJ1
A boat traveling for 6 hours with the current goes 20 more miles than it travels in 10 hours against the current. What is the speed of the current if the speed of the boat in still water is 15mph ?
The speed of the current is 5 mph.
Let the speed of the current be x mph.Speed of the boat downstream = (Speed of the boat in still water) + (Speed of the current)= 15 + x.Speed of the boat upstream = (Speed of the boat in still water) - (Speed of the current)= 15 - x.
Let us assume the distance between two places be d .According to the question,20 = (15 + x) × 6 - d (1)
Distance covered upstream in 10 hours = d. Distance covered downstream in 6 hours = d + 20.
We know that time = Distance/Speed⇒ Distance = Time × Speed.
According to the question,d = 10 × (15 - x) (2)⇒ d = 150 - 10x (2)
Also,d + 20 = 6 × (15 + x)⇒ d + 20 = 90 + 6x⇒ d = 70 + 6x (3)
From equation (2) and equation (3),150 - 10x = 70 + 6x⇒ 16x = 80⇒ x = 5.
for such more question on speed
https://brainly.com/question/13943409
#SPJ8
Problem 2: Four sets are given below.
A= {1,2,3) B={rod, blue) C= {n:n is a positive odd number}
D= (Sally, blue, 2, 4)
(a) Write down the set Ax B.
(b) Write down the sets DNA and DB. Then write down the set (DA)u(DnB).
(e) From the four given sets, identify two which are disjoint.
(d) If S = {n: n is a positive whole number) is your universal set, describe the set C".
(e) Is A C? If no, what element(s) could you remove from A to make "ACC" a true statement?
To make "ACC" a true statement, we need to remove the elements 1, 2, and 3 from set A, leaving only the positive odd numbers.
(a) The set A x B is the set of all ordered pairs where the first element comes from set A and the second element comes from set B. Therefore, A x B = {(1, red), (1, blue), (2, red), (2, blue), (3, red), (3, blue)}.
(b) The set DNA represents the intersection of sets D and A, which means it includes elements that are common to both sets. DNA = {2}.
The set DB represents the intersection of sets D and B. DB = {blue}.
The set (DA)u(DnB) represents the union of sets DA and DB. (DA)u(DnB) = {2, blue}.
(c) The two disjoint sets from the given sets are A and C. There are no common elements between them.
(d) The set C' represents the complement of set C with respect to the universal set S. Since S is the set of all positive whole numbers, the complement of C includes all positive whole numbers that are not positive odd numbers.
Therefore, C' = {n: n is a positive whole number and n is not an odd number}.
(e) A C means that every element in set A is also an element in set C. In this case, A C is not true because set A contains elements 1, 2, and 3, which are not positive odd numbers. To make "ACC" a true statement, we need to remove the elements 1, 2, and 3 from set A, leaving only the positive odd numbers.
to learn more about DNA.
https://brainly.com/question/30006059
#SPJ11