Construction Industry-All Employees (Millions), 2000-2009 Construction Industry - Average Hourly Earnings (Dollars), 2000-2009 A line graph titled construction industry, average hourly earnings (dollars), 2000 to 2009, where the x-axis shows years and the y-axis shows average hourly earnings of production workers. Line starts at 17. 2 on January 2000, slowly increases to 19. 7 on January 2006, then increases more quickly to 20. 5 on January 2007 and 22. 4 on January 2009. Based on trends displayed in the graphs above, which answer choice represents a likely situation for 2010? a. There will be more than 6. 5 million construction employees in 2010, and those employees will have average hourly earnings of $24. 0. B. There will be over 6 million construction employees in 2010, and the average hourly earnings will be less than twenty dollars. C. There will be roughly 6 million employees in 2010, and those employees will have average hourly earnings of $22. 75. D. There will be over 7. 5 million employees in 2010, and those employees will earn, on average, $23. 00 per hour. Please select the best answer from the choices provided A B C D.

Answers

Answer 1

Based on the trends displayed in the given line graph, the answer choice that represents a likely situation for 2010 is Option B: There will be over 6 million construction employees in 2010, and the average hourly earnings will be less than twenty dollars.

Analyzing the line graph, we observe that the average hourly earnings of production workers in the construction industry gradually increase over the years. Starting at 17.2 in January 2000, it slowly rises to 19.7 by January 2006. Then, there is a steeper increase to 20.5 in January 2007, followed by a further increase to 22.4 in January 2009.

Considering this trend, it is reasonable to expect that the average hourly earnings in 2010 would be less than twenty dollars. Option B states that there will be over 6 million construction employees in 2010, aligning with the increasing trend in employment. Additionally, it mentions that the average hourly earnings will be less than twenty dollars, which is consistent with the graph's pattern of a gradual increase rather than a sudden jump.

Therefore, based on the trends displayed in the graph, Option B is the most likely situation for 2010, indicating over 6 million construction employees and average hourly earnings less than twenty dollars.

Learn more about average hourly earnings  here :

https://brainly.com/question/15171686

#SPJ11


Related Questions

Let y=f(x) be the particular solution to the differential equation dydx=ex−1ey with the initial condition f(1)=0. what is the value of f(−2) ? 0.217 0.217 0.349 0.349 0.540 0.540 0.759

Answers

the value of f(-2) is approximately 0.540.

To solve the differential equation dy/dx = e^x - e^y, we can use separation of variables:

dy / (e^y - e^x) = e^x dx

Integrating both sides, we get:

ln|e^y - e^x| = e^x + C

where C is the constant of integration. Since y = f(x) is a particular solution, we can use the initial condition f(1) = 0 to find C:

ln|e^0 - e^1| = 1 + C

ln(1 - e) = 1 + C

C = ln(1 - e) - 1

Substituting this value of C back into the general solution, we get:

ln|e^y - e^x| = e^x + ln(1 - e) - 1

Taking the exponential of both sides, we get:

|e^y - e^x| = e^(e^x) * e^(ln(1 - e) - 1)

Simplifying the right-hand side, we get:

|e^y - e^x| = e^(e^x - 1) * (1 - e)

Since f(1) = 0, we know that e^y - e^1 = 0, or equivalently, e^y = e. Therefore, we have:

|e - e^x| = e^(e^x - 1) * (1 - e)

Solving for y in terms of x, we get:

e - e^x = e^(e^x - 1) * (1 - e) or e^x - e = e^(e^y - 1) * (e - 1)

We can now use the initial condition f(1) = 0 to find the value of f(-2):

f(-2) = y when x = -2

Substituting x = -2 into the equation above, we get:

e^(-2) - e = e^(e^y - 1) * (e - 1)

Solving for e^y, we get:

e^y = ln((e^(-2) - e)/(e - 1)) + 1

e^y = ln(1 - e^(2))/(e - 1) + 1

Substituting this value of e^y into the expression for f(-2), we get:

f(-2) = ln(ln(1 - e^(2))/(e - 1) + 1)

Using a calculator, we get:

f(-2) ≈ 0.540

To learn more about variables visit:

brainly.com/question/17344045

#SPJ11

how many ways are there to select a set of 8 donuts from 3 varieties in which at most 2 chocolate donuts are selected?

Answers

There are 3 possible scenarios for selecting a set of 8 donuts: no chocolate donuts are selected, 1 chocolate donut is selected, or 2 chocolate donuts are selected. For the first scenario, we choose 8 donuts from the 2 non-chocolate varieties, which can be done in (2+1)^8 ways (using the stars and bars method). For the second scenario, we choose 1 chocolate donut and 7 non-chocolate donuts, which can be done in 2^1 * (2+1)^7 ways. For the third scenario, we choose 2 chocolate donuts and 6 non-chocolate donuts, which can be done in 2^2 * (2+1)^6 ways. Therefore, the total number of ways to select a set of 8 donuts from 3 varieties in which at most 2 chocolate donuts are selected is (2+1)^8 + 2^1 * (2+1)^7 + 2^2 * (2+1)^6 = 3876.

To solve this problem, we need to consider the possible scenarios for selecting a set of 8 donuts. Since we want to select at most 2 chocolate donuts, we can have 0, 1, or 2 chocolate donuts in the set. We can then use the stars and bars method to count the number of ways to select 8 donuts from the remaining varieties.

The total number of ways to select a set of 8 donuts from 3 varieties in which at most 2 chocolate donuts are selected is 3876. This was calculated by considering the possible scenarios for selecting a set of 8 donuts and using the stars and bars method to count the number of ways to select donuts from the remaining varieties.

To know more about permutations visit:

https://brainly.com/question/30649574

#SPJ11

A 1.4-cm-tall object is 23 cm in front of a concave mirror that has a 55 cm focal length.
a. Calculate the position of the image.
b. Calculate the height of the image.
c.
State whether the image is in front of or behind the mirror, and whether the image is upright or inverted.
State whether the image is in front of or behind the mirror, and whether the image is upright or inverted.
The image is inverted and placed behind the mirror.
The image is upright and placed in front of the mirror.
The image is inverted and placed in front of the mirror.
The image is upright and placed behind the mirror.

Answers

A 1.4-cm-tall object is placed 23 cm in front of a concave mirror with a 55 cm focal length. We need to determine the position and height of the resulting image and whether it is upright or inverted, and in front of or behind the mirror.

a. Using the mirror equation 1/f = 1/do + 1/di where f is the focal length, do is the object distance, and di is the image distance, we can solve for di. Plugging in the values, we get 1/55 = 1/23 + 1/di, which gives di = -19.25 cm. The negative sign indicates that the image is formed behind the mirror.

b. To determine the height of the image, we can use the magnification equation m = -di/do, where m is the magnification. Plugging in the values, we get m = -(-19.25)/23 = 0.837. The negative sign indicates that the image is inverted. The height of the image can be calculated by multiplying the magnification by the height of the object, so hi = mho = 0.8371.4 = 1.17 cm.

c. The image is inverted and formed behind the mirror, so it is located between the focal point and the center of curvature. Since the magnification is greater than 1, the image is larger than the object. Therefore, the image is inverted and magnified and located behind the mirror.

Learn more about magnification here:

https://brainly.com/question/28957672

#SPJ11

Give a parametric description of the form r(u, v) = x(u, v),y(u, v),z(u, v) for the following surface. The cap of the sphere x^2 +y^2 + z^2 = 16, for 2 squareroot 3 lessthanorequalto z lessthanorequalto 4 Select the correct choice below and fill in the answer boxes to complete your choice.

Answers

A possible parametric representation of the cap is:

r(u, v) = (4 sin(u) cos(v), 4 sin(u) sin(v), 4 cos(u))

We can use spherical coordinates to parameterize the cap of the sphere:

x = r sinθ cosφ = 4 sinθ cosφ

y = r sinθ sinφ = 4 sinθ sinφ

z = r cosθ = 4 cosθ

where 2√3 ≤ z ≤ 4, 0 ≤ θ ≤ π/3, and 0 ≤ φ ≤ 2π.

Thus, a possible parametric representation of the cap is:

r(u, v) = (4 sin(u) cos(v), 4 sin(u) sin(v), 4 cos(u))

where 2√3 ≤ z ≤ 4, 0 ≤ u ≤ π/3, and 0 ≤ v ≤ 2π.

To know more about spherical coordinates refer here:

https://brainly.com/question/4465072

#SPJ11

Select all the expressions that are equivalent to 312 • 79. 33 • 34 • 49

(33)9 • (73)6

73 • (3–4)–3 • 76

(33 + 39) • (76 + 73)

320 • (73)3 • (34)–2


please help asap

Answers

The expressions that are equivalent to 312 • 79 are (33)9 • (73)6 and 320 • (73)3 • (34)–2.

To determine which expressions are equivalent to 312 • 79, we need to evaluate each option and compare the results.  

First, let's consider (33)9 • (73)6. Here, (33)9 means raising 33 to the power of 9, and (73)6 means raising 73 to the power of 6. By evaluating these powers and multiplying the results, we obtain the product.

Next, let's examine 320 • (73)3 • (34)–2. Here, (73)3 means raising 73 to the power of 3, and (34)–2 means taking the reciprocal of 34 squared. By evaluating these values and multiplying them with 320, we obtain the product.

Expressions yield the same result as 312 • 79, confirming their equivalence. The other options listed do not produce the same value when evaluated, and thus are not equivalent to 312 • 79.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

A binomial experiment consists of flipping a fair coin for 6 trials where getting tails is considered a success. Calculate all the theoretical probabilities. Then draw a histogram of the probability distribution, observe its shape, and use it to find the theoretical probability of getting 4 or more tails

Answers

The theoretical probability of getting 4 or more tails: 0.3438

Histogram and Probability of Getting 4 or More Tails

To visualize the probability distribution, we can create a histogram where the x-axis represents the number of tails (X) and the y-axis represents the corresponding probabilities. The histogram will have bars for each possible value of X (0 to 6) with heights proportional to their probabilities.

Let's denote "T" as a success (getting tails) and "H" as a failure (getting heads) in each coin flip.

Probability of getting 0 tails (all heads):

P(X = 0) = (1/2)^6 = 1/64 ≈ 0.0156

Probability of getting 1 tail:

P(X = 1) = 6C1 * (1/2)^1 * (1/2)^5 = 6/64 ≈ 0.0938

Probability of getting 2 tails:

P(X = 2) = 6C2 * (1/2)^2 * (1/2)^4 = 15/64 ≈ 0.2344

Probability of getting 3 tails:

P(X = 3) = 6C3 * (1/2)^3 * (1/2)^3 = 20/64 ≈ 0.3125

Probability of getting 4 tails:

P(X = 4) = 6C4 * (1/2)^4 * (1/2)^2 = 15/64 ≈ 0.2344

Probability of getting 5 tails:

P(X = 5) = 6C5 * (1/2)^5 * (1/2)^1 = 6/64 ≈ 0.0938

Probability of getting 6 tails:

P(X = 6) = (1/2)^6 = 1/64 ≈ 0.0156

Observing the histogram, we can see that the probability of getting 4 or more tails is the sum of the probabilities for X = 4, 5, and 6:

P(X ≥ 4) = P(X = 4) + P(X = 5) + P(X = 6)

≈ 0.2344 + 0.0938 + 0.0156

≈ 0.3438

Therefore, the theoretical probability of getting 4 or more tails in the binomial experiment is approximately 0.3438.

Visit here to learn more about theoretical probability:

brainly.com/question/30604977

#SPJ11

Pls answer asap!!!!

(7)(6) (7)(6) (3)(14) (3)(14) 3 - 14 = = 6 = 7 14 3 7 6
compare these equations to the equation showing the product of the means equal to the product of the extremes. how was the balance of the equation maintained in each?

Answers

In the equation showing the product of the means equal to the product of the extremes, the balance is maintained by the property known as the "Multiplication Property of Proportions." According to this property, in a proportion of the form "a/b = c/d," the product of the means (b * c) is equal to the product of the extremes (a * d).

Let's compare the given equations:

Equation 1: (7)(6) = (3)(14)

Equation 2: (7)(6) = (3)(14)

Equation 3: 3 - 14 = 6 - 7

Equation 4: 14 / 3 = 7 / 6

In each equation, the balance of the equation is maintained by ensuring that the product of the means is equal to the product of the extremes or that the difference of the values on both sides of the equation is equal.

In Equation 1 and Equation 2, the product of the means (6 * 3) is equal to the product of the extremes (7 * 14), satisfying the multiplication property of proportions.

In Equation 3, the difference of the values on both sides (3 - 14) is equal to the difference of the values on the other side (6 - 7), maintaining the balance of the equation.

In Equation 4, the division of the values on both sides (14 / 3) is equal to the division of the values on the other side (7 / 6), again satisfying the multiplication property of proportions.

Learn more about Multiplication Property of Proportions here:

https://brainly.com/question/15485488

#SPJ11

There are FOUR (4) questions to answer. What is the term used to describe an association or interdependence between two sets of data or variables? Enter your answer here Correlation Analysis What is the name of the graphic tool used to illustrate the relationship between two variables? Enter your answer here Scatter Diagram What is the term represented by the symbol r in correlation and regression analysis? Enter your answer here Select] Which one of the following is a true statement? Enter your answer here [Select

Answers

1. The term used to describe an association or interdependence between two sets of data or variables is "Correlation Analysis."

Correlation Analysis is a statistical method used to determine the strength and direction of the relationship between two variables.

2. The graphic tool used to illustrate the relationship between two variables is called a "Scatter Diagram."

Explanation: A Scatter Diagram is a graphical representation of data points that shows the relationship between two variables, often using dots or other symbols to represent each observation.

3. The term represented by the symbol 'r' in correlation and regression analysis is "Pearson Correlation Coefficient."

The Pearson Correlation Coefficient measures the linear relationship between two variables, with values ranging from -1 to 1.

4. True statement: Correlation does not imply causation.

Understanding correlation analysis, scatter diagrams, and the Pearson Correlation Coefficient is crucial for interpreting relationships between variables in various fields, such as business, social sciences, and natural sciences.

To know more about Correlation visit:

https://brainly.com/question/31588111

#SPJ11

Find the unit tangent vector for each of the following vector-valued functions:r⇀(t)=costi^+sintj^u⇀(t)=(3t2+2t)i^+(2−4t3)j^+(6t+5)k^

Answers

The unit tangent vector is:

T⇀(t) = u'(t) / | u'(t) | = (3t + 1)/sqrt(9t^4 + 18t^2 + 10)i^ - 6t^2/sqrt(9t^4 + 18t^2 + 10)j^ + 3/sqrt(9t^4 + 18t^2 + 10)k^

We need to find the unit tangent vector for the given vector-valued functions.

For r⇀(t)=costi^+sintj^, we have:

r'(t) = -sin(t)i^ + cos(t)j^

| r'(t) | = sqrt(sint^2 + cost^2) = 1

So, the unit tangent vector is:

T⇀(t) = r'(t) / | r'(t) | = -sin(t)i^ + cos(t)j^

For u⇀(t) = (3t^2 + 2t)i^ + (2 - 4t^3)j^ + (6t + 5)k^, we have:

u'(t) = (6t + 2)i^ - 12t^2j^ + 6k^

| u'(t) | = sqrt((6t + 2)^2 + (12t^2)^2 + 6^2) = sqrt(36t^4 + 72t^2 + 40) = 2sqrt(9t^4 + 18t^2 + 10)

So, the unit tangent vector is:

T⇀(t) = u'(t) / | u'(t) | = (3t + 1)/sqrt(9t^4 + 18t^2 + 10)i^ - 6t^2/sqrt(9t^4 + 18t^2 + 10)j^ + 3/sqrt(9t^4 + 18t^2 + 10)k^

To know more aboutunit tangent vector refer here:

https://brainly.com/question/1560823

#SPJ11

Find the actual length of each side of the hall using the original drawing. Then find the actual length of each side of the hall using the your new drawing and the new scale. How do you know your answers are correct?

Answers

To find the actual length of each side of the hall using the original drawing, we can measure the distance between the two parallel lines that represent the length of each side. This distance is approximately 21.24 meters, as we calculated earlier.

To find the actual length of each side of the hall using the new drawing and the new scale, we can measure the distance between the two parallel lines that represent the length of each side on the new drawing. This distance is approximately 21.24 meters, as the scale factor we used was 1:1.

To verify that our answers are correct, we can compare the actual lengths of each side of the hall to the lengths we calculated. In this case, the actual length of each side of the hall is the same as the length we calculated using either the original drawing or the new drawing, so our answers are correct. This is because we made no errors in our calculations, and used the correct scaling factor.

Learn more about sides visit: brainly.in/question/50719601

#SPJ11

n ℙ2, find the change-of-coordinates matrix from the basis b=1−3t t2,2−5t 3t2,2−3t 6t2 to the standard basis c=1,t,t2. then find the b-coordinate vector for 2−5t 4t2.

Answers

The b-coordinate vector for 2 − 5t 4t^2 is:

[−11 34 −12]

To find the change-of-coordinates matrix from basis b to the standard basis c, we need to express each vector in b in terms of the vectors in c, and then use those coefficients to form the matrix.

Let's first express b in terms of c. We want to find constants a, b, and c such that:

1 − 3t t^2 = a(1) + b(t) + c(t^2)

2 − 5t 3t^2 = a(0) + b(1) + c(t^2)

2 − 3t 6t^2 = a(0) + b(0) + c(1)

From the third equation, we can see that c = 6t^2. Substituting into the first equation and solving for a and b, we get:

1 − 3t t^2 = a(1) + b(t) + 6t^2(t^2)

1 − 3t t^2 = a + (b + 6)t^2

a = 1

b = −3

Substituting c = 6t^2, a = 1, and b = −3 into the second equation, we get:

2 − 5t 3t^2 = −3t + 6t^2(t^2)

2 − 5t 3t^2 = 6t^4 − 3t

change-of-coordinates matrix from b to c is:

[1 −3 0]

[0 6 −3]

[0 0 6]

To find the b-coordinate vector for 2 − 5t 4t^2, we need to express this vector in terms of the basis vectors in b:

2 − 5t 4t^2 = a(1 − 3t t^2) + b(2 − 5t 3t^2) + c(2 − 3t 6t^2)

Substituting the values we found for a, b, and c, we get:

2 − 5t 4t^2 = 1(1 − 3t t^2) − 2(2 − 5t 3t^2) + 4(2 − 3t 6t^2)

Simplifying, we get:

2 − 5t 4t^2 = −12t^2 + 34t − 11

So the b-coordinate vector for 2 − 5t 4t^2 is:

[−11 34 −12]

To know more about  change-of-coordinates refer here:

https://brainly.com/question/12661885

#SPJ11

Parker is planning to build a playhouse for his sister. The scaled model below gives the reduced measures for width and height. The width of the playhouse is 22 centimeters and the height is 10 centimeters. Not drawn to scale The yard space is large enough to have a playhouse that has a width of 3. 5 meters. If Parker wants to keep the playhouse in proportion to the model, what cross multiplication of the proportion should he use to find the height? (3. 5) (10) = 3. 5 x (3. 5) (22) = 3. 5 x (10) (3. 5) = 22 x (1) (22) = 3. 5 x.

Answers

Parker should build the playhouse with a height of 1.59 meters, which is equivalent to 159 centimeters.

Parker is planning to build a playhouse for his sister. The scaled model below gives the reduced measures for width and height. The width of the playhouse is 22 centimeters and the height is 10 centimeters. Not drawn to scale The yard space is large enough to have a playhouse that has a width of 3.5 meters.

If Parker wants to keep the playhouse in proportion to the model, he should use the following cross multiplication of the proportion to find the height: `3.5/22 = 3.5x/h`.

First, the given proportions should be simplified. We will cross-multiply the given proportions:`22h = 3.5 × 10``22h = 35

`Divide both sides by 22 to solve for h:`h = 35/22

`The final answer is `h = 1.59 meters`. Parker should build the playhouse with a height of 1.59 meters, which is equivalent to 159 centimeters.

Know more about height  here,

https://brainly.com/question/29131380

#SPJ11

The estimated value of the slope is given by: A. β1 B. b1 C. b0 D. z1

Answers

The estimated value of the slope is given by B. b1.

In a simple linear regression model with one predictor variable x, the slope coefficient is denoted as β1 in the population and estimated as b1 from the sample data. The slope represents the change in the response variable y for a unit increase in the predictor variable x. Therefore, b1 is the estimated value of the slope coefficient based on the sample data, and it can be used to make predictions for new values of x.

what is slope?

In mathematics and statistics, the slope is a measure of how steep a line is. It is also known as the gradient or the rate of change.

In the context of linear regression, the slope refers to the coefficient that measures the effect of an independent variable (often denoted as x) on a dependent variable (often denoted as y).

To learn more about slope visit:

brainly.com/question/3605446

#SPJ11

find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 4 ln(t), y = t 2 5, (4, 6)

Answers

Using the point-slope form of the equation of a line, the equation of the tangent line to the curve at the point (4, 6) is: y - 6 = (1/2)e^(-8/5) * (x - 4)

We have the parametric equations:

x = 4ln(t) and [tex]y = t^{(2/5)[/tex]

To eliminate the parameter, we can solve for t in terms of x and substitute into the equation for y:

[tex]t = e^{(x/4)y = e^{(2x/5)[/tex]

Taking the derivative of y with respect to x, we get:

[tex]y' = (2/5)e^{(2x/5)[/tex]

At the point (4, 6), we have:

[tex]t = e^{(4/4) = e\\y = e^{(2(4)/5)} = e^{(8/5)}\\y' = (2/5)e^{(2(4)/5)} = (2/5)e^{(8/5)[/tex]

Using the point-slope form of the equation of a line, the equation of the tangent line to the curve at the point (4, 6) is:

[tex]y - 6 = (2/5)e^{(8/5)} * (x - 4)[/tex]

Without eliminating the parameter, we can find the equation of the tangent line using the formula:

dy/dt / dx/dt

At the point (4, 6), we have:

[tex]x = 4ln(e) = 4\\y = e^{(2/5)dx/dt = d/dt (4ln(t)) = 4/tdy/dt = d/dt (t^{(2/5))} = (2/5)t^{(-3/5)dy/dx = (dy/dt) / (dx/dt) = [(2/5)t^{(-3/5)}] / (4/t) = (1/2)t^{(-8/5)[/tex]

Substituting t = e, we get:

[tex]dy/dx = (1/2)e^{(-8/5)[/tex]

Using the point-slope form of the equation of a line, the equation of the tangent line to the curve at the point (4, 6) is:

[tex]y - 6 = (1/2)e^{(-8/5)} * (x - 4)[/tex]

To know more about tangent line refer here:

https://brainly.com/question/31326507

#SPJ11

1. in each of the following, factor the matrix a into a product xdx−1, where d is diagonal: 5 6 -2 -2

Answers

We have factored the matrix A as A = XDX^(-1), where D is the diagonal matrix and X is the invertible matrix.

To factor the matrix A = [[5, 6], [-2, -2]] into a product XDX^(-1), where D is diagonal, we need to find the diagonal matrix D and the invertible matrix X.

First, we find the eigenvalues of A by solving the characteristic equation:

|A - λI| = 0

|5-λ 6 |

|-2 -2-λ| = 0

Expanding the determinant, we get:

(5-λ)(-2-λ) - (6)(-2) = 0

(λ-3)(λ+4) = 0

Solving for λ, we find two eigenvalues: λ = 3 and λ = -4.

Next, we find the corresponding eigenvectors for each eigenvalue:

For λ = 3:

(A - 3I)v = 0

|5-3 6 |

|-2 -2-3| v = 0

|2 6 |

|-2 -5| v = 0

Row-reducing the augmented matrix, we get:

|1 3 | v = 0

|0 0 |

Solving the system of equations, we find that the eigenvector v1 = [3, -1].

For λ = -4:

(A + 4I)v = 0

|5+4 6 |

|-2 -2+4| v = 0

|9 6 |

|-2 2 | v = 0

Row-reducing the augmented matrix, we get:

|1 2 | v = 0

|0 0 |

Solving the system of equations, we find that the eigenvector v2 = [-2, 1].

Now, we can construct the diagonal matrix D using the eigenvalues:

D = |λ1 0 |

|0 λ2|

D = |3 0 |

|0 -4|

Finally, we can construct the matrix X using the eigenvectors:

X = [v1, v2]

X = |3 -2 |

|-1 1 |

To factor the matrix A, we have:

A = XDX^(-1)

A = |5 6 | = |3 -2 | |3 0 | |-2 2 |^(-1)

|-2 -2 | |-1 1 | |0 -4 |

Calculating the matrix product, we get:

A = |5 6 | = |3(3) + (-2)(0) 3(-2) + (-2)(0) | |-2(3) + 2(0) -2(-2) + 2(0) |

|-2 -2 | |-1(3) + 1(0) (-1)(-2) + 1(0) | |(-1)(3) + 1(-2) (-1)(-2) + 1(0) |

A = |5 6 | = |9 -6 | | -2 0 |

|-2 -2 | |-3 2 | | 2 -2 |

Know more about matrix here;

https://brainly.com/question/29132693

#SPJ11

How many times larger is 3. 6 x 106 than 7. 2 x 105?

Answers

So, 3.6 x 10^6 is 5 times larger than 7.2 x 10^5.

To determine how many times larger 3.6 x 10^6 is than 7.2 x 10^5, we can divide the first number by the second number:

(3.6 x 10^6) / (7.2 x 10^5)

To simplify this division, we can divide the numerical parts and subtract the exponents:

3.6 / 7.2 = 0.5

10^6 / 10^5 = 10^(6-5) = 10^1 = 10

Therefore, 3.6 x 10^6 is 0.5 times 10 times larger than 7.2 x 10^5. Simplifying further:

0.5 x 10 = 5

To know more about number visit:

brainly.com/question/3589540

#SPJ11

The table below shows the number of boys and girls who passed or failed a recent test in history class. Passed Failed Boys 10 5 Girls 8 2 One person is chosen at random and is a boy. If passing the test is independent of gender, what is the probability that he passed the test? A) 0.32 B) 0.60 C) 0.67 D) 0.72

Answers

Answer:

D) 0.72

Step-by-step explanation:

              Passed          Failed

Boys           10                   5

Girls             8                   2

Passing the test is independent of gender, so the fact that he is a boy does not influence the answer. All that matters is the total number of students (boys and girls) who took the test, and the total number of students (boys and girls) who passed the test.

Total: 10 + 5 + 8 + 2 = 25

Passed: 10 + 8 = 18

p(passed) = 18/25 = 0.72

Answer: D) 0.72

suppose the population of bears in a national park grows according to the logistic differentialdp/dt = 5P - 0.002P^2where P is the number of bears at time r in years. If P(O)-100, find lim Po)

Answers

The carrying capacity of the national park is 2500 bears, and the population will approach this value as time goes on.

The given logistic differential equation for the population of bears (P) in the national park is:

dp/dt = 5P - 0.002P²

Since we're asked to find the limit of P(t) as t approaches infinity, we need to identify the carrying capacity, which represents the maximum sustainable population. In this case, we can set the differential equation equal to zero and solve for P:

0 = 5P - 0.002P²

Rearrange the equation to find P:

P(5 - 0.002P) = 0

This gives us two solutions: P = 0 and P = 2500. Since P(0) = 100, the initial population is nonzero. Therefore, as time goes on, the bear population will approach its carrying capacity, and the limit of P(t) as t approaches infinity will be:

lim (t→∞) P(t) = 2500 bears

You can learn more about the population at: brainly.com/question/27991860

#SPJ11

The unit has you writing a script that ends each level when a sprite gets to the right edge of the screen. Propose another "level completed" solution where the levels ends when the player hits a certain part of the screen WITHOUT relying on coordinates. Describe your solution, including the code blocks you would use instead of coordinates. (Hint: think about landing on a target or crossing a finish line!)

Answers

To complete a level of a game when the player reaches a particular part of the screen without relying on coordinates, it is necessary to use the position of sprites in the code blocks. This can be done by setting up a target sprite, which the player can reach by jumping or running to that position.

Here is a possible solution for completing a level in a game when the player reaches a target sprite:First, create a target sprite in the center of the screen or any other position where you want the level to end. You can use an image of a flag, a finish line, or any other visual cue to indicate that the player has completed the level.Next, use the "if touching" code block to detect when the player sprite touches the target sprite.

Here's an example of the code blocks you could use: When the green flag is clicked:Repeat until the level is complete:If the player sprite touches the target sprite:Play a sound to indicate success.End the level.The above code blocks use a "repeat until" loop to keep checking if the player sprite touches the target sprite. If they do, the level is complete, and a sound is played to indicate success. You could replace the sound with any other actions you want to happen when the level is complete.To summarize, to complete a level in a game when the player reaches a particular part of the screen without relying on coordinates, you need to use a target sprite and check when the player sprite touches it. The "if touching" code block can be used for this purpose, and you can add any actions you want to happen when the level is complete.

To know more about coordinates visit:-

https://brainly.com/question/31828911

#SPJ11

The concept of rhythmic regularity suggests a. Meters that frequently change within a piece or movement. B. The regular use of syncopated rhythms. C. Strong rhythms moving at a steady tempo. D. Irregular rhythms

Answers

The concept of rhythmic regularity suggests strong rhythms moving at a steady tempo.

What is Rhythm?

Rhythm is a recurring sequence of sound that has a beat, which can be calculated and felt. The rhythm is made up of beats, which can be organized into measures or bars in Western music.

The word "rhythm" comes from the Greek word "rhythmos," which means "any regular recurring motion, symmetry."Rhythmic regularity, as the name implies, refers to the steady beat and consistent rhythm that is present throughout a piece of music.

The beats are emphasized and move at a regular tempo, giving the music a sense of predictability and stability.Syncopated rhythms, on the other hand, are those in which the beat is shifted or emphasized in unexpected ways. They are used to create tension and interest in music by breaking up the regularity of the rhythm.

Therefore, option B "The regular use of syncopated rhythms" is incorrect.

Regularity, on the other hand, suggests a consistent, predictable pattern of beats and rhythms moving at a steady tempo.

Therefore, option C "Strong rhythms moving at a steady tempo" is correct.

Irregular rhythms (option D) are not related to rhythmic regularity, and meters that frequently change within a piece or movement (option A) are examples of irregular rhythms.

To know more about tempo, visit

https://brainly.com/question/31418233

#SPJ11

Let v1= [1,2,-1], v2=[-2,-1,1], and y=[4,-1,h]. For what value of h is y in the plane spanned by v1 and v2?

Answers

The value of h that makes y lie in the plane spanned by v1 and v2 is 7.5.

How to determine plane spanned?

To find the value of h that makes y lie in the plane spanned by v1 and v2, we need to check if y can be written as a linear combination of v1 and v2. We can do this by setting up a system of equations and solving for h.

The plane spanned by v1 and v2 can be represented by the equation ax + by + cz = d, where a, b, and c are the components of the normal vector to the plane, and d is a constant. To find the normal vector, we can take the cross product of v1 and v2:

v1 x v2 = (-1)(-1) - (2)(1)i + (1)(-2)j + (1)(2)(-2)k = 0i - 4j - 4k

So, the normal vector is N = <0,-4,-4>. Using v1 as a point on the plane, we can find d by substituting its components into the plane equation:

0(1) - 4(2) - 4(-1) = -8 + 4 = -4

So, the equation of the plane is 0x - 4y - 4z = -4, or y + z/2 = 1.

To check if y is in the plane, we can substitute its components into the plane equation:

4 - h/2 + 1/2 = 1

Solving for h, we get:

h/2 = 4 - 1/2

h = 7.5

Therefore, the value of h that makes y lie in the plane spanned by v1 and v2 is 7.5.

Learn more about plane spanned

brainly.com/question/13381746

#SPJ11

using thin airfoil theory, calculate αl =0. (round the final answer to two decimal places. you must provide an answer before moving on to the next part.)

Answers

The angle of attack α at zero lift is equal to the zero-lift angle of attack α₀. To provide a specific value, we would need more information about the airfoil being used, such as its camber or profile.

Using thin airfoil theory, we can calculate the angle of attack α when the lift coefficient (Cl) is equal to zero. In thin airfoil theory, the lift coefficient is given by the formula:

Cl = 2π(α - α₀)

Where α₀ is the zero-lift angle of attack. To find α when Cl = 0, we can rearrange the formula:

0 = 2π(α - α₀)

Now, divide both sides by 2π:

0 = α - α₀

Finally, add α₀ to both sides:

α = α₀

So, the angle of attack α at zero lift is equal to the zero-lift angle of attack α₀. To provide a specific value, we would need more information about the airfoil being used, such as its camber or profile.

learn more about airfoil theory

https://brainly.com/question/31482349

#SPJ11

He expression 1 ÷ (4 × −4 × 4 × −4 × 4) is equivalent to (14
× −14
× 14
× −14 ×
14
)

Answers

The expression 1 ÷ (4 × -4 × 4 × -4 × 4) is not equivalent to (14 × -14 × 14 × -14 × 14). The simplified value of the given expression is 1/1024, whereas the value of the second expression is 537,824.

To evaluate the given expression, we can simplify the factors in the denominator first:

4 × -4 = -16

-16 × 4 = -64

-64 × -4 = 256

256 × 4 = 1024

Now we can substitute these values into the original expression:

1 ÷ (1024) = 1/1024

We can simplify the expression on the right-hand side by factoring out 14 and -14:

14 × -14 × 14 × -14 × 14 = (14 × -14) × (14 × -14) × 14

= (-196) × (-196) × 14

= 38416 × 14

= 537,824

Learn more about denominator at: brainly.com/question/15007690

#SPJ11

A farmer had 4/5 as many chickens as ducks. After she sold 46 ducks, another 14 ducks swam away, leaving her with 5/8 as many ducks as chickens. How many ducks did she have left?

Answers

Let's assume the number of ducks the farmer initially had as 'd' and the number of chickens as 'c'.

Given:

The farmer had 4/5 as many chickens as ducks, so c = (4/5)d.

After selling 46 ducks, the number of ducks becomes d - 46.

After 14 ducks swam away, the number of ducks becomes (d - 46) - 14.

The farmer was left with 5/8 as many ducks as chickens, so (d - 46 - 14) = (5/8)c.

Now we can substitute the value of c from the first equation into the second equation:

(d - 46 - 14) = (5/8)(4/5)d.

Simplifying the equation:

(d - 60) = (4/8)d,

d - 60 = 1/2d.

Bringing like terms to one side:

d - 1/2d = 60,

1/2d = 60.

Multiplying both sides by 2 to solve for d:

d = 120.

Therefore, the farmer initially had 120 ducks.

After selling 46 ducks, the number of ducks left is 120 - 46 = 74.

After 14 more ducks swam away, the final number of ducks left is 74 - 14 = 60.

So, the farmer is left with 60 ducks.

Learn more about linear equation here:

https://brainly.com/question/2030026

#SPJ11

Gauri spends 0. 75 of her salary every month. If she earns ₹ 12000 per month, in how many months will she save ₹ 39000?

Answers

Gauri will save ₹39,000 in 30 months.

To calculate the number of months it will take Gauri to save ₹39,000, we need to consider that she spends 0.75 of her salary every month and earns ₹12,000 per month.

Let's calculate how much Gauri saves each month. Since she spends 0.75 of her salary, she saves 1 - 0.75 = 0.25 of her salary each month.

The amount Gauri saves each month is 0.25 * ₹12,000 = ₹3,000.

To determine how many months it will take her to save ₹39,000, we divide ₹39,000 by ₹3,000:

₹39,000 / ₹3,000 = 13.

Therefore, Gauri will save ₹39,000 in 13 months.

Gauri spends 0.75 of her salary every month, meaning she uses 75% of her salary for expenses. This leaves her with 25% of her salary, which she saves. Since she earns ₹12,000 per month, she saves 25% of ₹12,000, which is ₹3,000 per month.

To determine the number of months it will take her to save ₹39,000, we divide ₹39,000 by ₹3,000, resulting in 13. This means it will take Gauri 13 months to accumulate savings of ₹39,000

Visit here to learn more about accumulate savings :

brainly.com/question/31445327

#SPJ11

find the pmf of (y1|u = u), where u is a nonnegative integer. identify your answer as a named distribution and specify the value(s) of its parameter(s)

Answers

To find the pmf of (y1|u = u), where u is a nonnegative integer, we need to use the Poisson distribution. The Poisson distribution describes the probability of a given number of events occurring in a fixed interval of time or space, given that these events occur independently and at a constant average rate. The pmf of (y1|u = u) can be expressed as: P(y1=k|u=u) = (e^-u * u^k) / k! where k is the number of events that occur in the fixed interval, u is the average rate at which events occur, e is Euler's number (approximately equal to 2.71828), and k! is the factorial of k. Therefore, the named distribution for the pmf of (y1|u = u) is the Poisson distribution, with parameter u representing the average rate of events occurring in the fixed interval.

About Poisson Distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of the number of events occurring in a given time period if the average of these events is known and in independent time since the last event.

Learn more about poisson distribution at https://brainly.com/question/30388228

#SPJ11

Find the radius of convergence, R, of the series. (-1)n(x- 6)n 3n 1 n=0 R= Find the interval, I, of convergence of the series. (Enter your answer using interval notation.) -1 points Find the radius of convergence, R, of the series. n=1 R= Find the interval, I, of convergence of the series. (Enter your answer using interval notation.)

Answers

To find the radius of convergence, we can use the ratio test:

lim |(-1)^(n+1)(x-6)^(n+1) 3^(n+1) / ((n+1) x^n 3^n)|

= |(x-6)/3| lim |(-1)^n / (n+1)|

Since the limit of the absolute value of the ratio of consecutive terms is a constant, the series converges absolutely if |(x-6)/3| < 1, and diverges if |(x-6)/3| > 1. Therefore, the radius of convergence is R = 3.

To find the interval of convergence, we need to check the endpoints x = 3 and x = 9. When x = 3, the series becomes:

∑ (-1)^n (3-6)^n 3^n = ∑ (-3)^n 3^n

which is an alternating series that converges by the alternating series test. When x = 9, the series becomes:

∑ (-1)^n (9-6)^n 3^n = ∑ 3^n

which is a divergent geometric series. Therefore, the interval of convergence is [3, 9), since the series converges at x = 3 and diverges at x = 9.

To know more about radius of convergence, refer here:

https://brainly.com/question/28158009#

#SPJ11

A certain sports car comes equipped with either an automatic or a manual transmission, and the car is available in one of four colors. Relevant probabilities for various combinations of transmission type and color are given in the table below.COLORTRANSM?SS?ON TYPE white blue black redA 13 10 11 11M 15 07 15 18Let A = {automatic transmission}, B = { black } , and C = { white }. a) Calculate P(A), P(B), and P(A ? B). b) Calculate both P(A | B) and P(B | A), and explain in context what each of these probabilities represent. c) Calculate and interpret P(A | C) and P(A | C').

Answers

P(B) = P(black and A) + P(black and M) = (11+15+15)/80 = 41/80

P(A ? B) = P(black and A) = 41/80

we have P(A) = 1, P(B) = 41/80, and P(A ? B) = 41/80.

P(B | A) = P(A and B) / P(A) = (11+15+15) / (13+10+11+11+15+7+15+18) = 41/80. This represents the probability of a randomly selected black car having an automatic transmission.

P(A | C') = P(A and C') / P(C') = (10+11+15+18) / (10+11+15+18+7+11+11+15) = 54/73. This represents the probability of a randomly selected non-white car having an automatic transmission.

a) From the table, we can calculate the following probabilities:

P(A) = P(A and white) + P(A and blue) + P(A and black) + P(A and red) = (13+10+11+11+15+7+15+18)/80 = 80/80 = 1

P(B) = P(black and A) + P(black and M) = (11+15+15)/80 = 41/80

P(A ? B) = P(black and A) = 41/80

So, we have P(A) = 1, P(B) = 41/80, and P(A ? B) = 41/80.

b) We can calculate the following conditional probabilities:

P(A | B) = P(A and B) / P(B) = (11+15+15) / (11+10+11+15+7+15+18) = 41/77. This represents the probability of a randomly selected car having an automatic transmission, given that it is black.

P(B | A) = P(A and B) / P(A) = (11+15+15) / (13+10+11+11+15+7+15+18) = 41/80. This represents the probability of a randomly selected black car having an automatic transmission.

c) We can calculate the following conditional probabilities:

P(A | C) = P(A and C) / P(C) = (13+15) / (13+10+11+15) = 28/49. This represents the probability of a randomly selected white car having an automatic transmission.

P(A | C') = P(A and C') / P(C') = (10+11+15+18) / (10+11+15+18+7+11+11+15) = 54/73. This represents the probability of a randomly selected non-white car having an automatic transmission.

For such more questions on probabilities

https://brainly.com/question/13604758

#SPJ11

The probability values are

(a) P(A) = 9/20, P(B) = 13/50, P(A and B) = 11/100(b) P(A | B) = 11/26, P(B | A) = 11/45(c) P(A | C) = 13/28, P(A | C') = 4/9

How to calculate the probabilities

Given that

COLOR

TRANSMISSION TYPE white blue black red

A                                         13     10     11     11

M                                         15     07    15    18

Also, we have

A = Automatic transmissionB = BlackC = White

For the probabilities, we have

(a) P(A) = (13 + 10 + 11 + 11)/(13 + 10 + 11 + 11 + 15 + 07 + 15 + 18)

P(A) = 9/20

P(B) = (11 + 15)/100

P(B) = 13/50

P(A and B) = 11/100

(b) P(A | B) = P(A and B)/P(B)

P(A | B) = (11/100)/(13/50)

P(A | B) = 11/26

This means that the probability that a car is automatic given that it is black is 11/26

P(B | A) = P(A and B)/P(A)

P(B | A) = (11/100)/(9/20)

P(B | A) = 11/45

This means that the probability that a car is black given that it is automatic is 11/45

(c) P(A | C) = P(A and C)/P(C)

Where P(A and C) = 13/100 and P(C) = 28/100

So, we have

P(A | C) = (13/100)/(28/100)

P(A | C) = 13/28

This means that the probability that a car is automatic given that it is white is 13/28

P(A | C') = P(A and C')/P(C')

Where P(A and C') = 32/100 and P(C') = 72/100

So, we have

P(A | C') = (32/100)/(72/100)

P(A | C') = 4/9

This means that the probability that a car is automatic given that it is not white is 4/9

Read more about probability at

https://brainly.com/question/31649379

#SPJ4

Use cylindrical coordinates to find the volume of the region E that lies between the paraboloid x² + y² - z=24 and the cone z = 2 = 2.1x + y.

Answers

Evaluating this integral yields the volume of the region E.

To find the volume of the region E that lies between the paraboloid x² + y² - z=24 and the cone z = 2 = 2.1x + y, we can use cylindrical coordinates.

The first step is to rewrite the equations in cylindrical coordinates. We can use the following conversions:

x = r cos θ

y = r sin θ

z = z

Substituting these into the equations of the paraboloid and cone, we get:

r² - z = 24

z = 2.1r cos θ + r sin θ

We can now set up the integral to find the volume of the region E. We need to integrate over the range of r, θ, and z that covers the region E. Since the cone and paraboloid intersect at z = 0, we can integrate over the range 0 ≤ z ≤ 24. For a given value of z, the cone intersects the paraboloid when:

r² - z = 2.1r cos θ + r sin θ

Solving for r, we get:

r = (z + 2.1 cos θ + sin θ)/2

Since the cone intersects the paraboloid at r = 0 when z = 0, we can integrate over the range:

0 ≤ θ ≤ 2π

0 ≤ z ≤ 24

0 ≤ r ≤ (z + 2.1 cos θ + sin θ)/2

The volume of the region E is then given by the triple integral:

∭E dV = ∫₀²⁴ ∫₀²π ∫₀^(z+2.1cosθ+sinθ)/2 r dr dθ dz

Evaluating this integral yields the volume of the region E.

Learn more about paraboloid here:

https://brainly.com/question/30925041

#SPJ11

Can someone PLEASE help me ASAP?? It’s due tomorrow!! i will give brainliest if it’s correct!!

please part a, b, and c!!

Answers

To find the slope-intercept form of the equation of the line passing through the point (4, 7) and parallel to the line 2x + 3y = 11, we need to first find the slope of the given line.

Rearranging the equation 2x + 3y = 11 into slope-intercept form gives:

3y = -2x + 11

y = (-2/3)x + 11/3

So the slope of the given line is -2/3.

Since the line we want to find is parallel to this line, it will have the same slope. Using the point-slope form of the equation of a line:

y - y1 = m(x - x1)

where m is the slope and (x1, y1) is a point on the line, we can substitute in the given point (4, 7) and the slope -2/3:

y - 7 = (-2/3)(x - 4)

Expanding the right-hand side gives:

y - 7 = (-2/3)x + 8/3

Adding 7 to both sides gives:

y = (-2/3)x + 29/3

So the equation of the line passing through the point (4, 7) and parallel to the line 2x + 3y = 11 in slope-intercept form is y = (-2/3)x + 29/3.

Other Questions
if you choose a single nucleotide at random from each of the two regions, what is the probability that they are the same nucleotide Find the limit. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it. lim x0 x/ (tan^(1) (9x)). What is the authors argument in the essay, "Forensic Psychology and Ethics"?I will mark brainless! Eva volunteers at the community center. Today, she is helping them get ready for the Fire Safety Festival by blowing up balloons from a big box of uninflated balloons in a variety of colors. Eva randomly selects balloons from the box. So far, she has inflated 2 purple, 6 yellow, 3 green, 1 blue, and 4 red balloons. Based on the data, what is the probability that the next balloon Eva inflates will be yellow? Write your answer as a fraction or whole number show that if r is a primitive root modulo the positive integer m, then r is also a primitive root modulo n if r is an inverse of r modulo m. Michael has a credit card with an APR of 15. 33%. It computes finance charges using the daily balance method and a 30-day billing cycle. On April 1st, Michael had a balance of $822. 5. Sometime in April, he made a purchase of $77. 19. This was the only purchase he made on this card in April, and he made no payments. If Michaels finance charge for April was $10. 71, on which day did he make the purchase? a. April 5th b. April 10th c. April 15th d. April 20th. today your goal should be to finish mp1 by enabling the search bar. Hand jive dances may use different parts of the body? (knees, arms, chest)Question 4 options:TrueFalse Telephone call can be classified as voice (V) if someone is speaking, or data (D) if there is a modem or fax transmission.Based on extension observation by the telephone company, we have the following probability model:P[V] 0.75 and P[D] = 0.25.Assume that data calls and voice calls occur independently of one another, and define the random variable K to be the number of voice calls in a collection of n phone calls.Compute the following.(a) EK100]= 75(b) K100 4.330Now use the central limit theorem to estimate the following probabilities. Since this is a discrete random variable, don't forget to use "continuity correction".(c) PK10082] 0.0668(d) P[68 K10090] In any one-minute interval, the number of requests for a popular Web page is a Poisson random variable with expected value 300 requests.(a) A Web server has a capacity of C requests per minute. If the number of requests in a one-minute interval is greater than C, the server is overloaded. Use the central limit theorem to estimate the smallest value of C for which the probability of overload is less than 0.06.Note that your answer must be an integer. Also, since this is a discrete random variable, don't forget to use "continuity correction".C = 327(b) Now assume that the server's capacity in any one-second interval is [C/60], where [x] is the largest integer < x. (This is called the floor function.)For the value of C derived in part (a), what is the probability of overload in a one-second interval? This time, don't approximate via the CLT, but compute the probability exactly.P[Overload] =0 The Jenkins Corporation has purchased an executive jet. The company has agreed to pay $202,000 per year for the next 10 years and an additional $2,020,000 at the end of the 10th year. The seller of the jet is charging 8% annual interest. (FV of $1, PV of $1, FVA of $1, and PVA of $1) (Use the appropriate factor(s) from the tables provided.) Determine the liability that would be recorded by Jenkins. (Round your answer to the nearest whole dollar.) Present value How did the constitution ensure and extend the right to vote including amendments? microsoft software is considered a network good because it is: The run-of-river approach to hydropower describes ________.A) impounding water in reservoirs behind concrete damsB) the purchase of state-run dams by major corporationsC) dams that are reliable but unsustainableD) the most expensive type of dams to build and maintainE) diversion of a portion of a river's flow through pipes 1. what is the ksp expression for the dissolution of ca(oh)2? ksp = [ca2 ] [oh] ksp = [ca2 ] 2[oh]2 ksp = [ca2 ][oh]2 ksp = [ca2 ][oh] how to remove deodorant stains from black shirts quickly The box plot shows the total amount of time, in minutes, the students of a class spend studying each day:A box plot is titled Daily Study Time and labeled Time (min). The left most point on the number line is 40 and the right most point is 120. The box is labeled 57 on the left edge and 112 on the right edge. A vertical line is drawn inside the rectangle at the point 88. The whiskers are labeled as 43 and 116.What information is provided by the box plot? (3 points) aThe lower quartile for the data bThe number of students who provided information cThe mean for the data dThe number of students who studied for more than 112.5 minutes State which type of analogy is being used in the following example by typing in "synonym" or "antonym." Use exact spelling.boundless is to infinite as plausible is to reasonable(SMART PEOPLE ONLY) A stock with a current market price of $50 and a strike price of $45 has an associated call option priced at $6.50. This call has an intrinsic value of _ and a time value of Multiple Choice $5; $1.50 $1.50; $5 $0; $6.50 $6.50; $ A particle with a mass of 6.68 times 10^-27 kg has a de Broglie wavelength of 7.25 pm. What is the particle's speed? Express your answer to three significant figures. your skills of ________ will be challenged in an urban area.