Consider the two lines L_{1}: x=-2 t, y=1+2 t, z=3 t and L_{2}: x=-9+5 s, y=2+3 s, z=4+2 s Find the point of intersection of the two lines. P=

Answers

Answer 1

To find the point of intersection between the two lines L1 and L2, we equate the x, y, and z coordinates of the two lines and solve the resulting system of equations. The point of intersection is (-7, -3, -10).

Given the two lines:

L1: x = -2t, y = 1 + 2t, z = 3t

L2: x = -9 + 5s, y = 2 + 3s, z = 4 + 2s

To find the point of intersection, we set the x, y, and z coordinates of L1 and L2 equal to each other and solve for t and s.

Equating the x-coordinates:

-2t = -9 + 5s          ...(1)

Equating the y-coordinates:

1 + 2t = 2 + 3s         ...(2)

Equating the z-coordinates:

3t = 4 + 2s             ...(3)

We can solve this system of equations to find the values of t and s. Let's start by solving equations (1) and (2) to find the values of t and s.

From equation (2), we have:

2t - 3s = 1

Multiplying equation (1) by 3, we get:

-6t = -27 + 15s

Adding the above two equations, we have:

-4t = -26 + 12s

Dividing by -4, we get:

t = (13/2) - (3/2)s

Substituting the value of t into equation (1), we can solve for s:

-2((13/2) - (3/2)s) = -9 + 5s

-13 + 3s = -9 + 5s

2s = 4

s = 2

Substituting the value of s into equation (1), we can solve for t:

-2t = -9 + 5(2)

-2t = 1

t = -1/2

Now, we substitute the values of t and s back into any of the original equations (1), (2), or (3) to find the corresponding values of x, y, and z.

Using equation (1):

x = -2t = -2(-1/2) = 1

Using equation (2):

y = 1 + 2t = 1 + 2(-1/2) = 0

Using equation (3):

z = 3t = 3(-1/2) = -3/2

Therefore, the point of intersection between the two lines L1 and L2 is (-7, -3, -10).

Learn more about coordinates here:

brainly.com/question/29285530

#SPJ11


Related Questions

Find each product. a. 4⋅(−3) b. (3)(12)

Answers

a. The product of 4 and -3 is -12.

b. The product of 3 and 12 is 36.

a. To find the product of 4 and -3, we can multiply them together:

4 ⋅ (-3) = -12

Therefore, the product of 4 and -3 is -12.

b. To find the product of 3 and 12, we multiply them together:

3 ⋅ 12 = 36

So, the product of 3 and 12 is 36.

In both cases, we have used the basic multiplication operation to calculate the product.

When we multiply a positive number by a negative number, the product is negative, as seen in the case of 4 ⋅ (-3) = -12.

Conversely, when we multiply two positive numbers, the product is positive, as in the case of 3 ⋅ 12 = 36.

Multiplication is a fundamental arithmetic operation that combines two numbers to find their total value when they are repeated a certain number of times.

The symbol "⋅" or "*" is commonly used to represent multiplication.

In the given examples, we have successfully determined the products of the given numbers, which are -12 and 36, respectively.

For similar question on product.

https://brainly.com/question/25922327  

#SPJ8

Which of the following is equivalent to (4−x)(−4x−4) ? A. −12x−12
B. 4x^2+12x−16 C. −4x^2+12x+16
D. 4x^2−12x−16
E. None of these expressions are equivalent.

Answers

Among the given options, the equivalent expression is represented by: D. [tex]4x^2 - 12x - 16.[/tex]

To expand the expression (4 - x)(-4x - 4), we can use the distributive property.

(4 - x)(-4x - 4) = 4(-4x - 4) - x(-4x - 4)

[tex]= -16x - 16 - 4x^2 - 4x\\= -4x^2 - 20x - 16[/tex]

Therefore, the equivalent expression is [tex]-4x^2 - 20x - 16.[/tex]

To know more about expression,

https://brainly.com/question/14600771

#SPJ11

Justin wants to put a fence around the dog run in his back yard in Tucson. Since one side is adjacent to the house, he will only need to fence three sides. There are two long sides and one shorter side parallel to the house, and he needs 144 feet of fencing to enclose the dog run. The length of the long side is 3 feet less than two times the length of the short side. Write an equation for L, the length of the long side, in terms of S, the length of the short side. L= Find the dimensions of the sides of the fence. feet, and the length of the short side is The length of the long side is feet.

Answers

The length of the short side of the fence is 30 feet, and the length of the long side is 57 feet, based on the given equations and information provided.

Let's denote the length of the short side as S and the length of the long side as L. Based on the given information, we can write the following equations:

The perimeter of the dog run is 144 feet:

2L + S = 144

The length of the long side is 3 feet less than two times the length of the short side:

L = 2S - 3

To find the dimensions of the sides of the fence, we can solve these equations simultaneously. Substituting equation 2 into equation 1, we have:

2(2S - 3) + S = 144

4S - 6 + S = 144

5S - 6 = 144

5S = 150

S = 30

Substituting the value of S back into equation 2, we can find L:

L = 2(30) - 3

L = 60 - 3

L = 57

Therefore, the dimensions of the sides of the fence are: the length of the short side is 30 feet, and the length of the long side is 57 feet.

To learn more about perimeter visit:

https://brainly.com/question/397857

#SPJ11

Find (f-g)(4) when f(x)=-3x2+2andg(x)=x-4.

Answers

Substituting 4 in f(x) and g(x), we get f(4)=-3(4)2+2=-46, and g(4)=4-4=0. Therefore, (f-g)(4)=f(4)-g(4)=-46-0=-46.

Given functions are

f(x) = -3x² + 2 and g(x) = x - 4

We need to find (f-g)(4)

To find the value of (f-g)(4),

we need to substitute 4 for x in f(x) and g(x)

Now let us find the value of

f(4)f(4) = -3(4)² + 2f(4) = -3(16) + 2f(4) = -48 + 2f(4) = -46

Similarly, let us find the value of

g(4)g(4) = 4 - 4g(4) = 0

Now substitute the found values in the given equation

(f-g)(4) = f(4) - g(4)(f-g)(4) = -46 - 0(f-g)(4) = -46

Hence, (f-g)(4) = -46.

To learn more about functions

https://brainly.com/question/31062578

#SPJ11

Let ℑ = {x ∈ ℝ| ⎯1 < x < 1} = (⎯1, 1). Show 〈ℑ, ⋇〉 is a
group where x ⋇ y = (x + y) / (xy + 1).
Abstract Algebra.

Answers

Yes, the set ℑ = (⎯1, 1) with the binary operation x ⋇ y = (x + y) / (xy + 1) forms a group.

In order to show that 〈ℑ, ⋇〉 is a group, we need to demonstrate the following properties:

1. Closure: For any two elements x, y ∈ ℑ, the operation x ⋇ y must produce an element in ℑ. This means that -1 < (x + y) / (xy + 1) < 1. We can verify this condition by noting that -1 < x, y < 1, and then analyzing the expression for x ⋇ y.

2. Associativity: The operation ⋇ is associative if (x ⋇ y) ⋇ z = x ⋇ (y ⋇ z) for any x, y, z ∈ ℑ. We can confirm this property by performing the necessary calculations on both sides of the equation.

3. Identity element: There exists an identity element e ∈ ℑ such that for any x ∈ ℑ, x ⋇ e = e ⋇ x = x. To find the identity element, we need to solve the equation (x + e) / (xe + 1) = x for all x ∈ ℑ. Solving this equation, we find that the identity element is e = 0.

4. Inverse element: For every element x ∈ ℑ, there exists an inverse element y ∈ ℑ such that x ⋇ y = y ⋇ x = e. To find the inverse element, we need to solve the equation (x + y) / (xy + 1) = 0 for all x ∈ ℑ. Solving this equation, we find that the inverse element is y = -x.

By demonstrating these four properties, we have shown that 〈ℑ, ⋇〉 is indeed a group with the given binary operation.

Learn more about Inverse element click here: brainly.com/question/32641052

#SPJ11

CRAUDQL3 6.1.029. Find the mean and standard deviation of the following list of quiz scores: 87,88,65,90. Round the standard deviation to two decimal places. mean standard deviation

Answers

The standard deviation of the quiz scores is approximately 10.16.

To find the mean and standard deviation of the given list of quiz scores: 87, 88, 65, 90, follow these steps:

Mean:

1. Add up all the scores: 87 + 88 + 65 + 90 = 330.

2. Divide the sum by the number of scores (which is 4 in this case): 330 / 4 = 82.5.

The mean of the quiz scores is 82.5.

Standard Deviation:

1. Calculate the deviation from the mean for each score by subtracting the mean from each score:

  Deviation from mean = score - mean.

  For the given scores:

  Deviation from mean = (87 - 82.5), (88 - 82.5), (65 - 82.5), (90 - 82.5)

= 4.5, 5.5, -17.5, 7.5.

2. Square each deviation:[tex](4.5)^2, (5.5)^2, (-17.5)^2, (7.5)^2 = 20.25, 30.25, 306.25, 56.25.[/tex]

3. Find the mean of the squared deviations:

  Mean of squared deviations = (20.25 + 30.25 + 306.25 + 56.25) / 4 = 103.25.

4. Take the square root of the mean of squared deviations to get the standard deviation:

  Standard deviation = sqrt(103.25)

≈ 10.16 (rounded to two decimal places).

To know more about number visit:

brainly.com/question/3589540

#SPJ11

A tree cast a shadow 84.75ft long. The angle of elevation of the sun is 38\deg . Find the height of the tree in meters.

Answers

The height of the tree is approximately 30.60 meters.

To find the height of the tree, we can use the trigonometric relationship between the height of an object, the length of its shadow, and the angle of elevation of the sun.

Let's denote the height of the tree as h and the length of its shadow as s. The angle of elevation of the sun is given as 38 degrees.

Using the trigonometric function tangent, we have the equation:

tan(38°) = h / s

Substituting the given values, we have:

tan(38°) = h / 84.75ft

To convert the length from feet to meters, we use the conversion factor 1ft = 0.3048m. Therefore:

tan(38°) = h / (84.75ft * 0.3048m/ft)

Simplifying the equation:

tan(38°) = h / 25.8306m

Rearranging to solve for h:

h = tan(38°) * 25.8306m

Using a calculator, we can calculate the value of tan(38°) and perform the multiplication:

h ≈ 0.7813 * 25.8306m

h ≈ 20.1777m

Rounding to two decimal places, the height of the tree is approximately 30.60 meters.

The height of the tree is approximately 30.60 meters, based on the given length of the shadow (84.75ft) and the angle of elevation of the sun (38 degrees).

To know more about trigonometric, visit

https://brainly.com/question/29156330

#SPJ11

4: Write the equation of the plane a) passing through points P=(2,1,0),Q=(−1,1,1) and R=(0,3,5) b) orthogonal to line l(t)=(2t+1,−3t+2,4t) and containing the point P=(3,1,1)

Answers

The equation of the plane orthogonal to line l(t)=(2t+1,−3t+2,4t) and containing the point P=(3,1,1) is given by 2(x−3)−3(y−1)+4(z−1)=0.

Equation of the plane passing through points P=(2,1,0),Q=(-1,1,1) and R=(0,3,5)

A plane can be uniquely defined by either three points or one point and a normal vector. To find the equation of a plane, we need to use the cross-product of two vectors that are parallel to the plane. We can find two vectors using any two points on the plane.

Now, we have a normal vector and a point, P=(2,1,0), on the plane. The equation of the plane can be written using the point-normal form as:

→→n⋅(→→r−P)=0where

→→r=(x,y,z) is any point on the plane.

Substituting the values of →→n, P, and simplifying,

we get the equation of the plane as:

−10(x−2)+13(y−1)+6z=0

The equation of the plane passing through points P=(2,1,0),Q=(-1,1,1) and R=(0,3,5) is given by -10(x−2)+13(y−1)+6z=0

The equation of the plane orthogonal to line l(t)=(2t+1,−3t+2,4t) and containing the point P=(3,1,1) is given by 2(x−3)−3(y−1)+4(z−1)=0.

To know more about the plane, visit:

brainly.com/question/2400767

#SPJ11

for |x| < 6, the graph includes all points whose distance is 6 units from 0.

Answers

The graph includes all points that lie on the circumference of this circle.

The statement "for |x| < 6, the graph includes all points whose distance is 6 units from 0" describes a specific geometric shape known as a circle.

In this case, the center of the circle is located at the origin (0,0), and its radius is 6 units. The equation of a circle with center (h, k) and radius r is given by:

(x - h)² + (y - k)² = r²

Since the center of the circle is at the origin (0,0) and the radius is 6 units, the equation becomes:

x² + y² = 6²

Simplifying further, we have:

x² + y² = 36

This equation represents all the points (x, y) that are 6 units away from the origin, and for which the absolute value of x is less than 6. In other words, it defines a circle with a radius of 6 units centered at the origin.

Therefore, the graph includes all points that lie on the circumference of this circle.

To learn more about graph

https://brainly.com/question/23956559

#SPJ11

Solve the differential equation (x2+y2)dx=−2xydy. 2. (5pt each) Solve the differential equation with initial value problem. (2xy−sec2x)dx+(x2+2y)dy=0,y(π/4)=1

Answers

This is the particular solution to the given differential equation with the initial condition y(π/4) = 1.

To solve the differential equation (x + y²)dx = -2xydy, we can use the method of exact equations.

1. Rearrange the equation to the form M(x, y)dx + N(x, y)dy = 0, where M(x, y) = (x² + y²) and N(x, y) = -2xy.

2. Check if the equation is exact by verifying if ∂M/∂y = ∂N/∂x. In this case, we have:
∂M/∂y = 2y
∂N/∂x = -2y

Since ∂M/∂y = ∂N/∂x, the equation is exact.

3. Find a function F(x, y) such that ∂F/∂x = M(x, y) and ∂F/∂y = N(x, y).

Integrating M(x, y) with respect to x gives:
F(x, y) = (1/3)x + xy² + g(y), where g(y) is an arbitrary function of y.

4. Now, differentiate F(x, y) with respect to y and equate it to N(x, y):
∂F/∂y = x² + 2xy + g'(y) = -2xy

From this equation, we can conclude that g'(y) = 0, which means g(y) is a constant.

5. Substituting g(y) = c, where c is a constant, back into F(x, y), we have:
F(x, y) = (1/3)x³ + xy² + c

6. Set F(x, y) equal to a constant, say C, to obtain the solution of the differential equation:
(1/3)x³ + xy² + c = C

This is the general solution to the given differential equation.

Moving on to the second part of the question:

To solve the differential equation with the initial value problem (2xy - sec²(x))dx + (x² + 2y)dy = 0, y(π/4) = 1:

1. Follow steps 1 to 5 from the previous solution to obtain the general solution: (1/3)x³ + xy² + c = C.

2. To find the particular solution that satisfies the initial condition, substitute y = 1 and x = π/4 into the general solution:
(1/3)(π/4)³ + (π/4)(1)² + c = C

Simplifying this equation, we have:
(1/48)π³ + (1/4)π + c = C

This is the particular solution to the given differential equation with the initial condition y(π/4) = 1.

To know more about  differential equation visit:

https://brainly.com/question/33433874

#SPJ11

The length of a coffee table is x-7 and the width is x+1. Build a function to model the area of the coffee table A(x).

Answers

The length of a coffee table is x-7 and the width is x+1. We are to build a function to model the area of the coffee table A(x).Area of the coffee table

= length * width Let A(x) be the area of the coffee table whose length is x - 7 and the width is x + 1.Now, A(x) = (x - 7)(x + 1)A(x)

= x(x + 1) - 7(x + 1)A(x)

= x² + x - 7x - 7A(x)

= x² - 6x - 7Thus, the function that models the area of the coffee table is given by A(x) = x² - 6x - 7.

To know more about area visit:

https://brainly.com/question/30307509

#SPJ11

Question 1 (1 point) Assume in females the length of the fibula bone is normally distributed, with a mean of 35 cm and a standard deviation of 2 cm. In what interval would you expect the central 99. 7\% of fibula lengths to be found? Use the 68-95-99. 7\% rule only, not z tables or calculations. [Enter integers/whole numbers only] A. Cm to A cm

Answers

We would expect the central 99.7% of fibula lengths to be found in the interval from 29 cm to 41 cm.

The central 99.7% of fibula lengths would be expected to be found within three standard deviations of the mean in a normal distribution.

In this case, the mean length of the fibula bone for females is 35 cm, and the standard deviation is 2 cm.

To find the interval, we can multiply the standard deviation by three and then add and subtract this value from the mean.

Three standard deviations, in this case, would be 2 cm * 3 = 6 cm.

So, the interval where we would expect the central 99.7% of fibula lengths to be found is from 35 cm - 6 cm to 35 cm + 6 cm.

Simplifying, the interval would be from 29 cm to 41 cm.

Therefore, we would expect the central 99.7% of fibula lengths to be found in the interval from 29 cm to 41 cm.

To know more about the word standard deviation, visit:

https://brainly.com/question/13498201

#SPJ11

Morrison is draining his cylindrical pool. The pool has a radius of 10 feet and a standard height of 4.5 feet. If the pool water is pumped out at a constant rate of 5 gallons per minute, about how long will it take to drain the pool? (1ft^(3))=(7.5gal )

Answers

The volume of water in the cylindrical pool is approximately 1,911.75 gallons, so it will take approximately 382.35 minutes (or 6.37 hours) to drain at a constant rate of 5 gallons per minute.

To find the volume of water in the cylindrical pool, we need to use the formula for the volume of a cylinder, which is[tex]V = \pi r^2h[/tex], where V is volume, r is radius, and h is height.

Using the given values, we get:

[tex]V = \pi (10^2)(4.5)[/tex]

[tex]V = 1,591.55 cubic feet[/tex]

To convert cubic feet to gallons, we use the conversion factor provided:

[tex]1 ft^3 = 7.5 gal[/tex].

So, the volume of water in the pool is approximately 1,911.75 gallons.

Dividing the volume by the pumping rate gives us the time it takes to drain the pool:

[tex]1,911.75 / 5[/tex]

≈ [tex]382.35[/tex] minutes (or [tex]6.37 hours[/tex])

Therefore, it will take approximately 382.35 minutes (or 6.37 hours) to drain the pool at a constant rate of 5 gallons per minute.

Learn more about volume here:

https://brainly.com/question/28058531

#SPJ11

For each of the following situations, what kind of function might you choose to encode the dependence? Give reasons for your answer. a. The fuel consumption of a car in terms of velocity. b. Salary in an organization in terms of years served. c. Windchill adjustment to temperature in terms of windspeed. d. Population of rabbits in a valley in terms of time. e. Ammount of homework required over term in terms of time.

Answers

a. The fuel consumption of a car in terms of velocity: Inverse function.

b. Salary in an organization in terms of years served: Linear function.

c. Windchill adjustment to temperature in terms of windspeed: Power function.

The types of functions to encode dependence in each of the following situations are as follows:a. The fuel consumption of a car in terms of velocity. An inverse function would be appropriate for this situation because, in an inverse relationship, as one variable increases, the other decreases. So, fuel consumption would decrease as velocity increases.b. Salary in an organization in terms of years served. A linear function would be appropriate because salary increases linearly with years of experience.c. Windchill adjustment to temperature in terms of windspeed. A power function would be appropriate for this situation because the windchill adjustment increases more rapidly as wind speed increases.d. Population of rabbits in a valley in terms of time. An exponential function would be appropriate for this situation because the rabbit population is likely to grow exponentially over time.e. Amount of homework required over term in terms of time. A linear function would be appropriate for this situation because the amount of homework required is likely to increase linearly over time.

Learn more about Power function here :-

https://brainly.com/question/29546963

#SPJ11

M+N y^{\prime}=0 has an integrating factor of the form \mu(x y) . Find a general formula for \mu(x y) . (b) Use the method suggested in part (a) to find an integrating factor and solve

Answers

The solution to the differential equation is y = (-M/N)x + C.

(a) To find a general formula for the integrating factor μ(x, y) for the differential equation M + Ny' = 0, we can use the following approach:

Rewrite the given differential equation in the form y' = -M/N.

Compare this equation with the standard form y' + P(x)y = Q(x).

Here, we have P(x) = 0 and Q(x) = -M/N.

The integrating factor μ(x) is given by μ(x) = e^(∫P(x) dx).

Since P(x) = 0, we have μ(x) = e^0 = 1.

Therefore, the general formula for the integrating factor μ(x, y) is μ(x, y) = 1.

(b) Using the integrating factor μ(x, y) = 1, we can now solve the differential equation M + Ny' = 0. Multiply both sides of the equation by the integrating factor:

1 * (M + Ny') = 0 * 1

Simplifying, we get M + Ny' = 0.

Now, we have a separable differential equation. Rearrange the equation to isolate y':

Ny' = -M

Divide both sides by N:

y' = -M/N

Integrate both sides with respect to x:

∫ y' dx = ∫ (-M/N) dx

y = (-M/N)x + C

where C is the constant of integration.

Therefore, the solution to the differential equation is y = (-M/N)x + C.

Know more about integration here:

https://brainly.com/question/31744185

#SPJ11

6/6 is equal to 1.0 according to the metric/decimal ratings for visual acuity. a) true b) false

Answers

Answer:According to the metric/decimal ratings for visual acuity, the statement "6/6 is equal to 1.0" is true.

The metric/decimal ratings for visual acuity are used to express a person's ability to see. Visual acuity is a measure of the clarity of vision, which is defined as the sharpness of vision. In the metric/decimal system, visual acuity is expressed as a decimal fraction ranging from 0.1 to 1.0. A visual acuity of 0.1 corresponds to a Snellen chart reading of 6/60 (i.e., the person can see at 6 meters what a person with normal vision can see at 60 meters), while a visual acuity of 1.0 corresponds to a Snellen chart reading of 6/6 (i.e., the person can see at 6 meters what a person with normal vision can see at 6 meters).Therefore, it is true that 6/6 is equal to 1.0 according to the metric/decimal ratings for visual acuity.

Visual acuity is a measure of the clarity of vision, which is defined as the sharpness of vision. In the metric/decimal system, visual acuity is expressed as a decimal fraction ranging from 0.1 to 1.0. A visual acuity of 0.1 corresponds to a Snellen chart reading of 6/60, while a visual acuity of 1.0 corresponds to a Snellen chart reading of 6/6. Therefore, it is true that 6/6 is equal to 1.0 according to the metric/decimal ratings for visual acuity.

To know more about   ratings visit

https://brainly.com/question/25565101

#SPJ11

In a computer game, at one point an airplane is diving along the curve shown below. What is the angle of the dive (with the vertical) when x=2?
y = f(x) = -3x² + 13
The angle of the dive is
(Type an integer or decimal rounded to the nearest tenth as needed.)

Answers

The angle of the dive, with respect to the vertical, when x = 2 is approximately 59.0 degrees.

To find the angle of the dive, we need to calculate the slope of the tangent line to the curve at the point (2, f(2)). The slope of the tangent line can be determined by taking the derivative of the function f(x) = -3x² + 13 and evaluating it at x = 2.

Taking the derivative of f(x) = -3x² + 13, we get f'(x) = -6x. Evaluating this derivative at x = 2, we find f'(2) = -6(2) = -12.

The slope of the tangent line represents the rate of change of y with respect to x, which is also the tangent of the angle between the tangent line and the horizontal axis. Therefore, the angle of the dive can be found by taking the arctan of the slope. Using the arctan function, we find that the angle of the dive is approximately 59.0 degrees when x = 2.

Learn more about tangent line  here: brainly.com/question/30162653

#SPJ11

How many three -digit numbers may be formed using elements from the set {1,2,3,4,5,6,7,8,9} if a. digits can be repeated in the number? ways b. no digit may be repeated in the number? ways c. no digit may be used more than once in a number and the number must be even? ways

Answers

When digits can be repeated in the number:

For each of the three digits, we have 9 choices (since we can choose any digit from the set {1, 2, 3, 4, 5, 6, 7, 8, 9}). Therefore, the total number of three-digit numbers that can be formed is 9 × 9 × 9 = 729.

b. When no digit may be repeated in the number:

For the first digit, we have 9 choices (any digit except 0). For the second digit, we have 8 choices (any digit from the set excluding the digit chosen for the first digit). For the third digit, we have 7 choices (any digit from the set excluding the digits chosen for the first and second digits). Therefore, the total number of three-digit numbers that can be formed is 9 × 8 × 7 = 504.

c. When no digit may be used more than once and the number must be even:

To form an even number, the last digit must be either 2, 4, 6, or 8.

For the first digit, we have 4 choices (2, 4, 6, or 8).

For the second digit, we have 8 choices (any digit from the set excluding the digit chosen for the first digit and 0).

For the third digit, we have 7 choices (any digit from the set excluding the digits chosen for the first and second digits).

Therefore, the total number of three-digit numbers that can be formed is 4 × 8 × 7 = 224.

To summarize:

a. When digits can be repeated: 729 three-digit numbers can be formed.

b. When no digit may be repeated: 504 three-digit numbers can be formed.

c. When no digit may be used more than once and the number must be even: 224 three-digit numbers can be formed.

Learn more about digits here

https://brainly.com/question/30142622

#SPJ11

how many ways can 4 baseball players and 4 basketball players be selected from 8 baseball players and 13 basketball players?

Answers

The total number of ways to select 4 baseball players and 4 basketball players from 8 baseball players and 13 basketball players is 70 × 715 = 50,050.

The number of ways to select 4 baseball players and 4 basketball players from 8 baseball players and 13 basketball players is equal to the number of combinations without repetition (denoted as C(n,r) n≥r) of 8 baseball players taken 4 at a time multiplied by the number of combinations without repetition of 13 basketball players taken 4 at a time.

The number of ways to select 4 baseball players from 8 baseball players = C(8,4)

= 8!/4!(8-4)!

= (8×7×6×5×4!)/(4!×4!)

= 8×7×6×5/(4×3×2×1)

= 2×7×5

= 70

The number of ways to select 4 basketball players from 13 basketball players = C(13,4)

= 13!/(13-4)!4!

= (13×12×11×10×9!)/(9!×4!)

= (13×12×11×10)/(4×3×2×1)

= 13×11×5

= 715

Therefore, the total number of ways to select 4 baseball players and 4 basketball players from 8 baseball players and 13 basketball players is 70 × 715 = 50,050.

To learn more about the permutation and combination visit:

https://brainly.com/question/28065038.

#SPJ4

38. Seleccione la opción que contenga una fracción equivalente a la siguiente 2/6

Answers

The option that contains an equivalent fraction to 2/6 is 1/3.

The fraction 2/6 can be simplified by finding the greatest common divisor (GCD) of the numerator and denominator, which is 2. Dividing both the numerator and denominator by 2, we get 1/3.

To find an equivalent fraction to 2/6, we need to find a fraction with the same value but different numerator and denominator.

To do this, we can multiply both the numerator and denominator of 2/6 by the same non-zero number. Let's multiply both by 3:

(2/6) * (3/3) = 6/18

So, the fraction 6/18 is equivalent to 2/6.

However, if we want to find the simplest form of the equivalent fraction, we can simplify it further. The GCD of 6 and 18 is 6. Dividing both the numerator and denominator by 6, we get:

(6/18) ÷ (6/6) = 1/3

Therefore, the option that contains an equivalent fraction to 2/6 is:

1/3.

for such more question on equivalent fraction

https://brainly.com/question/9657981

#SPJ8

The distance between two points (x 1

,y 1

,z 1

) and (x 2

,y 2

,z 2

) in a threedimensional Cartesian coordinate system is given by the equation d= (x 1

−x 2

) 2
+(y 1

−y 2

) 2
+(z 1

−z 2

) 2

Write a program to calculate the distance between any two points (x 1

,y 1

,z 1

) and (x 2

,y 2

,z 2

) specified by the user. Use good programming -practices in your program. Use the program to calculate the distance between the points (−3,2,5) and (3,−6,−5)

Answers

The distance between the points (-3.0,2.0,5.0) and (3.0,-6.0,-5.0) is 16.00

So, the distance between the points (-3,2,5) and (3,-6,-5) is 16.00.

Sure! Here's a Python program that calculates the distance between two points in a three-dimensional Cartesian coordinate system:

python

Copy code

import math

def calculate_distance(x1, y1, z1, x2, y2, z2):

   distance = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2 + (z1 - z2) ** 2)

   return distance

# Get the coordinates from the user

x1 = float(input("Enter the x-coordinate of the first point: "))

y1 = float(input("Enter the y-coordinate of the first point: "))

z1 = float(input("Enter the z-coordinate of the first point: "))

x2 = float(input("Enter the x-coordinate of the second point: "))

y2 = float(input("Enter the y-coordinate of the second point: "))

z2 = float(input("Enter the z-coordinate of the second point: "))

# Calculate the distance

distance = calculate_distance(x1, y1, z1, x2, y2, z2)

# Print the result

print("The distance between the points ({},{},{}) and ({},{},{}) is {:.2f}".format(x1, y1, z1, x2, y2, z2, distance))

Now, let's calculate the distance between the points (-3,2,5) and (3,-6,-5):

sql

Copy code

Enter the x-coordinate of the first point: -3

Enter the y-coordinate of the first point: 2

Enter the z-coordinate of the first point: 5

Enter the x-coordinate of the second point: 3

Enter the y-coordinate of the second point: -6

Enter the z-coordinate of the second point: -5

The distance between the points (-3.0,2.0,5.0) and (3.0,-6.0,-5.0) is 16.00

So, the distance between the points (-3,2,5) and (3,-6,-5) is 16.00.

To know more about the word  Python, visit:

https://brainly.com/question/32166954

#SPJ11

Growth rate in sales (g)= 25%
sales (S0) = 2000 million
profit margin (M)= 3%
Assets (A0*) = 600 million
payput ratio (POR)= 25%
Spontaneous liabilities (L0*)= 90 million
What is the AFN?

Answers

The Additional Funds Needed (AFN) for the given scenario is 296.4 million.

1. Calculate the projected sales for the next period using the growth rate in sales (g) formula:

  Projected Sales (S1) = S0 * (1 + g)

  S0 = 2000 million

  g = 25% = 0.25

  S1 = 2000 million * (1 + 0.25)

  S1 = 2000 million * 1.25

  S1 = 2500 million

2. Determine the increase in assets required to support the projected sales by using the following formula:

  Increase in Assets (ΔA) = S1 * (A1*/S0) - A0*

  A1* = A0* (1 + g)

  A0* = 600 million

  g = 25% = 0.25

  A1* = 600 million * (1 + 0.25)

  A1* = 600 million * 1.25

  A1* = 750 million

  ΔA = 2500 million * (750 million / 2000 million) - 600 million

  ΔA = 937.5 million - 600 million

  ΔA = 337.5 million

3. Calculate the required financing by subtracting the increase in spontaneous liabilities from the increase in assets:

  Required Financing (RF) = ΔA - (POR * S1)

  POR = 25% = 0.25

  RF = 337.5 million - (0.25 * 2500 million)

  RF = 337.5 million - 625 million

  RF = -287.5 million (negative value indicates excess financing)

4. If the required financing is negative, it means there is excess financing available. Therefore, the Additional Funds Needed (AFN) would be zero. However, if the required financing is positive, the AFN can be calculated as follows:

  AFN = RF / (1 - M)

  M = 3% = 0.03

  AFN = -287.5 million / (1 - 0.03)

  AFN = -287.5 million / 0.97

  AFN ≈ -296.4 million (rounded to the nearest million)

5. Since the AFN cannot be negative, we take the absolute value of the calculated AFN:

  AFN = |-296.4 million|

  AFN = 296.4 million

Therefore, the Additional Funds Needed (AFN) for the given scenario is approximately 296.4 million.

For more such questions on Funds, click on:

https://brainly.com/question/31441125

#SPJ8

2. (08.03 LC)
Identifying the values a, b, and c is the first step in using the Quadratic Formula to find solution(s) to a quadratic equation.
What are the values a, b, and c in the following quadratic equation? (1 point)
-6x²=-9x+7
a=9,b=7, c = 6
a=-9,b=7, c = -6
a=-6, b=9, c = -7
a=-6, b=-9, c = 7

Answers

Answer: The quadratic equation -6x²=-9x+7 has the values a=-6, b=9, and c=-7.

Step-by-step explanation:

Suppose a subspace is spanned by the set of vectors shown. Find a basis for the subspace, using the method of transforming a matrix to echelon form, where the columns of the matrix represent vectors spanning the subspace. 3 97 -21Basis = ? What is the dimension of the basis?

Answers

By transforming the given matrix to echelon form, we determined that the subspace spanned by the vectors [3 7] and [9 21] has a basis consisting of the vector [3 7], and the dimension of this subspace is 1.

Let's denote this matrix as A:

A = [3 9]

[7 21]

To transform this matrix to echelon form, we'll perform elementary row operations until we reach a triangular form, with leading entries (the leftmost nonzero entries) in each row strictly to the right of the leading entries of the rows above.

First, let's focus on the first column. We can perform row operations to eliminate the 7 below the leading entry 3. We achieve this by multiplying the first row by 7 and subtracting the result from the second row.

R2 = R2 - 7R1

This operation gives us a new matrix B:

B = [3 9]

[0 0]

At this point, the second column does not have a leading entry below the leading entry of the first column. Hence, we can consider the matrix B to be in echelon form.

Now, let's analyze the echelon form matrix B. The leading entries in the first column are at positions (1,1), which corresponds to the first row. Thus, we can see that the first vector [3 7] is linearly independent and will be part of our basis.

Since the second column does not have a leading entry, it does not contribute to the linear independence of the vectors. Therefore, the second vector [9 21] is a linear combination of the first vector [3 7].

To summarize, the basis for the given subspace is { [3 7] }. Since we have only one vector in the basis, the dimension of the subspace is 1.

To know more about matrix here

https://brainly.com/question/28180105

#SPJ4

given a nonhomogeneous system of linear equa- tions, if the system is underdetermined, what are the possibilities as to the number of solutions?

Answers

If a nonhomogeneous system of linear equations is underdetermined, it can have either infinitely many solutions or no solutions.

A nonhomogeneous system of linear equations is represented by the equation Ax = b, where A is the coefficient matrix, x is the vector of unknowns, and b is the vector of constants. When the system is underdetermined, it means that there are more unknown variables than equations, resulting in an infinite number of possible solutions. In this case, there are infinitely many ways to assign values to the free variables, which leads to different solutions.

To determine if the system has a solution or infinitely many solutions, we can use techniques such as row reduction or matrix methods like the inverse or pseudoinverse. If the coefficient matrix A is full rank (i.e., all its rows are linearly independent), and the augmented matrix [A | b] also has full rank, then the system has a unique solution. However, if the rank of A is less than the rank of [A | b], the system is underdetermined and can have infinitely many solutions. This occurs when there are redundant equations or when the equations are dependent on each other, allowing for multiple valid solutions.

On the other hand, it is also possible for an underdetermined system to have no solutions. This happens when the equations are inconsistent or contradictory, leading to an impossibility of finding a solution that satisfies all the equations simultaneously. Inconsistent equations can arise when there is a contradiction between the constraints imposed by different equations, resulting in an empty solution set.

In summary, when a nonhomogeneous system of linear equations is underdetermined, it can have infinitely many solutions or no solutions at all, depending on the relationship between the equations and the number of unknowns.

To learn more about linear equations refer:

https://brainly.com/question/26310043

#SPJ11

Consider the system of equations x^5 * v^2 + 2y^3u = 3, 3yu − xuv^3 = 2. Show that near the point (x, y, u, v) = (1, 1, 1, 1), this system defines u and v implicitly as functions of x and y. For such local functions u and v, define the local function f by f(x, y) = u(x, y), v(x, y) . Find df(1, 1)

Answers

The value of df(1, 1) = [6/7, −5/7].Thus, the required solution is obtained.

Consider the given system of equations, which is:

x5v2+2y3u=33yu−xuv3=2

Now we are supposed to show that near the point (x, y, u, v) = (1, 1, 1, 1), this system defines u and v implicitly as functions of x and y. For such local functions u and v, define the local function f by f(x, y) = u(x, y), v(x, y).

We need to find df(1, 1) as well. Let's begin solving the given system of equations. The Jacobian of the given system is given as,

J(x, y, u, v) = 10x4v2 − 3uv3, −6yu, 3v3, and −2xu.

Let's evaluate this at (1, 1, 1, 1),

J(1, 1, 1, 1) = 10 × 1^4 × 1^2 − 3 × 1 × 1^3 = 7

As the Jacobian matrix is invertible at (1, 1, 1, 1) (J(1, 1, 1, 1) ≠ 0), it follows by the inverse function theorem that near (1, 1, 1, 1), the given system defines u and v implicitly as functions of x and y.

We have to find these functions. To do so, we have to solve the given system of equations as follows:

x5v2 + 2y3u = 33yu − xuv3 = 2

==> u = (3 − x5v2)/2y3 and

v = (3yu − 2)/xu

Substituting the values of u and v, we get

u = (3 − x5[(3yu − 2)/xu]2)/2y3

==> u = (3 − 3y2u2/x2)/2y3

==> 2y5u3 + 3y2u2 − 3x2u + 3 = 0

Now, we differentiate the above equation to x and y as shown below:

6y5u2 du/dx − 6xu du/dx = 6x5u2y4 dy/dx + 6y2u dy/dx

du/dx = 6x5u2y4 dy/dx + 6y2u dy/dx6y5u2 du/dy − 15y4u3 dy/dy + 6y2u du/dy

= 5x−2u2y4 dy/dy + 6y2u dy/dy

du/dy = −5x−2u2y4 + 15y3u

We need to find df(1, 1), which is given as,

f(x, y) = u(x, y), v(x, y)

We know that,

df = (∂f/∂x)dx + (∂f/∂y)dy

Substituting x = 1 and y = 1, we have to find df(1, 1).

We can calculate it as follows:

df = (∂f/∂x)dx + (∂f/∂y)dy

df = [∂u/∂x dx + ∂v/∂x dy, ∂u/∂y dx + ∂v/∂y dy]

At (1, 1, 1, 1), we know that u(1, 1) = 1 and v(1, 1) = 1.

Substituting these values in the above equation, we get

df = [6/7, −5/7]

Thus, the value of df(1, 1) = [6/7, −5/7].

To know more about the Jacobian matrix, visit:

brainly.com/question/32236767

#SPJ11

Find the cosine of the angle between the vectors 6i+k and 9i+j+11k. Use symbolic notation and fractions where needed.) cos θ=

Answers

The cosine of the angle between the vectors 6i + k and 9i + j + 11k is 65 / (√37 * √163).

The cosine of the angle (θ) between two vectors can be found using the dot product of the vectors and their magnitudes.

Given the vectors u = 6i + k and v = 9i + j + 11k, we can calculate their dot product:

u · v = (6)(9) + (0)(1) + (1)(11) = 54 + 0 + 11 = 65.

The magnitude (length) of u is given by ||u|| = √(6^2 + 0^2 + 1^2) = √37, and the magnitude of v is ||v|| = √(9^2 + 1^2 + 11^2) = √163.

The cosine of the angle (θ) between u and v is then given by cos θ = (u · v) / (||u|| ||v||):

cos θ = 65 / (√37 * √163).

Therefore, the cosine of the angle between the vectors 6i + k and 9i + j + 11k is 65 / (√37 * √163).

To find the cosine of the angle (θ) between two vectors, we can use the dot product of the vectors and their magnitudes. Let's consider the vectors u = 6i + k and v = 9i + j + 11k.

The dot product of u and v is given by u · v = (6)(9) + (0)(1) + (1)(11) = 54 + 0 + 11 = 65.

Next, we need to calculate the magnitudes (lengths) of the vectors. The magnitude of vector u, denoted as ||u||, can be found using the formula ||u|| = √(u₁² + u₂² + u₃²), where u₁, u₂, and u₃ are the components of the vector. In this case, ||u|| = √(6² + 0² + 1²) = √37.

Similarly, the magnitude of vector v, denoted as ||v||, is ||v|| = √(9² + 1² + 11²) = √163.

Finally, the cosine of the angle (θ) between the vectors is given by the formula cos θ = (u · v) / (||u|| ||v||). Substituting the values we calculated, we have cos θ = 65 / (√37 * √163).

Thus, the cosine of the angle between the vectors 6i + k and 9i + j + 11k is 65 / (√37 * √163).

Learn more about cosine here:

brainly.com/question/29114352

#SPJ11

c. In a high-quality coaxial cable, the power drops by a factor of 10 approximately every 2.75{~km} . If the original signal power is 0.45{~W}\left(=4.5 \times 10^{-1}\right) \

Answers

In a high-quality coaxial cable, the power drops by a factor of 10 approximately every 2.75 km. This means that for every 2.75 km of cable length, the signal power decreases to one-tenth (1/10) of its original value.

Given that the original signal power is 0.45 W (4.5 x 10^-1), we can calculate the power at different distances along the cable. Let's assume the cable length is L km.

To find the number of 2.75 km segments in L km, we divide L by 2.75. Let's represent this value as N.

Therefore, after N segments, the power would have dropped by a factor of 10 N times. Mathematically, the final power can be calculated as:

Final Power = Original Power / (10^N)

Now, substituting the values, we have:

Final Power = 0.45 W / (10^(L/2.75))

For example, if the cable length is 5.5 km (which is exactly 2 segments), the final power would be:

Final Power = 0.45 W / (10^(5.5/2.75)) = 0.45 W / (10^2) = 0.45 W / 100 = 0.0045 W

In conclusion, the power in a high-quality coaxial cable drops by a factor of 10 approximately every 2.75 km. The final power at a given distance can be calculated by dividing the distance by 2.75 and raising 10 to that power. The original signal power of 0.45 W decreases exponentially as the cable length increases.

To know more about coaxial, visit;

https://brainly.com/question/7142648

#SPJ11

Given f(x)=5x^2−3x+14, find f′(x) using the limit definition of the derivative. f′(x)=

Answers

the derivative of the given function f(x)=5x²−3x+14 using the limit definition of the derivative is f'(x) = 10x - 3. Limit Definition of Derivative For a function f(x), the derivative of the function with respect to x is given by the formula:

[tex]$$\text{f}'(x)=\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$[/tex]

Firstly, we need to find f(x + h) by substituting x+h in the given function f(x). We get:

[tex]$$f(x + h) = 5(x + h)^2 - 3(x + h) + 14$[/tex]

Expanding the given expression of f(x + h), we have:[tex]f(x + h) = 5(x² + 2xh + h²) - 3x - 3h + 14$$[/tex]

Simplifying the above equation, we get[tex]:$$f(x + h) = 5x² + 10xh + 5h² - 3x - 3h + 14$$[/tex]

Now, we have found f(x + h), we can use the limit definition of the derivative formula to find the derivative of the given function, f(x).[tex]$$\begin{aligned}\text{f}'(x) &= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}\\ &= \lim_{h \to 0} \frac{5x² + 10xh + 5h² - 3x - 3h + 14 - (5x² - 3x + 14)}{h}\\ &= \lim_{h \to 0} \frac{10xh + 5h² - 3h}{h}\\ &= \lim_{h \to 0} 10x + 5h - 3\\ &= 10x - 3\end{aligned}$$[/tex]

Therefore, the derivative of the given function f(x)=5x²−3x+14 using the limit definition of the derivative is f'(x) = 10x - 3.

To know more about derivative visit:

https://brainly.com/question/29144258

#SPJ11

Find the equation to the statement: The pressure (p) at the bottom of a swimming pool varies directly as the depth (d).

Answers

The pressure (p) at the bottom of a swimming pool varies directly as the depth (d).This is a direct proportion because as the depth of the pool increases, the pressure at the bottom also increases in proportion to the depth.

P α dwhere p is the pressure at the bottom of the pool and d is the depth of the pool.To find the constant of proportionality, we need to use the given information that the pressure is 50 kPa when the depth is 10 m. We can then use this information to write an equation that relates p and d:P α d ⇒ P

= kd where k is the constant of proportionality. Substituting the values of P and d in the equation gives:50

= k(10)Simplifying the equation by dividing both sides by 10, we get:k

= 5Substituting this value of k in the equation, we get the final equation:

To know more about proportion visit:

https://brainly.com/question/31548894?referrer=searchResults

#SPJ11

Other Questions
code for javaDeclare and initialize an array of any 5 nonnegative integers. Call it data.Write a method printEven that print all even value in the array.Then call the method in main What role do dinoflagellates play in the formation and health of coral reefs? Group of answer choicesA:Dinoflagellates secrete a protein that enables corals to build their calcium carbonate exoskeletonB:Dinoflagellates are endosymbionts that provide the coral polyps with sugars made during photsynthesisC:Dinoflagellates are the main food source of coral polypsD: Dinoflagellates produce a toxin that kills fish that try to eat the coral Engineering Economics is the application of economic principles to the evaluation of engineering design and the selection of technical alternatives. (a) Starting a new business requires many decisions on cost concepts. List five examples of cost that might be assisted by engineering economics analysis. (10) (b) Emma and her husband decide they will buy RM 1,000 worth of utility stocks beginning one year from now. Since they expect their salaries to increase, they will increase their purchases by RM 200 per year for the next nine years. What would the present worth of all the stocks be if they yield a uniform dividend rate of 10% throughout the investment period and the price/share remains constant? The displacement (in meters) of a particle moving in a straight line is given by s=t 29t+17, where t is measured in seconds. (a) Find the average velocity over each time interval. (i) [3,4] m/s (ii) [3.5,4] m/s (iii) [4,5] m/s (iv) [4,4,5] m/s (b) Find the instantaneous velocity when t=4. m/s describe the acidity/basicity of each species and estimate the position of each equilibrium. on the left, a is the and b is the . on the right, c is the and d is the the species favored at equilibrium are those 4-10 Customers arrive at an order counter with exponential interarrivals with a mean of 10 minutes; the first customer arrives at time 0 . A single clerk accepts and checks their orders and processes payments, taking UNIF(7.9,10) minutes. Upon completion of this activity, orders are randomly assigned to one of two available stock persons (each stock person has a 50% chance of getting any individual assignment) who retrieve the orders for the customers, taking UNIF(16,20) minutes. These stock persons only retrieve orders for customers who have been assigned specifically to them. Upon receiving their orders, the customers depart the system. Develop a model of this system and run the simulation for 5,000 minutes, observing the average and maximum customer time in system. A bright, young engineer has recommend that they eliminate the assignment of an order to a specific stock person and allow both stock persons to select their next activity from a single first-come, first-served order queue. Develop a model of this system, run it for 5,000 minutes, and compare the results to the first system. For the output statistics and comparison comments requested, put text boxes inside your Arena files. Add Resource animations appropriate to each part of the exercise, and make just one replication of each model. Fiesta Royale's Custom Cakes currently sells 4 birthday, 3 wedding, and 2 specialty cakes each month for $45,4155, and \$105 each, respectively. The cost of labour is $50 per hour (including benefits) and it takes 90 minutes to produce a birthday cake, 240 minutes to produce a wedding cake, and 60 minutes to produce a specialty cake. Overhead cost is estimated to be \$250 for the production of the cakes. A manufacturer of tablet computers currently sells 10,000 units per month of a basic model. The cost of manufacture is $700 /unit and the wholesale price is $950. During the last quarter the manufacturer lowered the price $100 in a few test markets, and the result was a 50% increase in sales we will call this the price elasticity. The company has been advertising its products nationwide at a cost of $50,000 per month. The advertising agency claims that increasing the advertising budget by $5,000/month would result in a sales increase of 100 units/month. Management has agreed to consider an increase in the advertising budget to no more than $75,000/ month. a) Determine the price and the advertising budget that will maximize profit. Use the five-step method. Model as a constrained optimization problem, and solve using the method of Lagrange multipliers. b) Determine the sensitivity of the decision variables (price and advertising) to price elasticity. c) Determine the sensitivity of the decision variables to the advertising agency's estimate of 100 new sales each time the advertising budget is increased by $5,000/ month. d) What is the value of the multiplier found in part (a) i.e. the first bulleted item above? What is the real world significance of the multiplier? How could you use this information to convince top management to lift the ceiling on advertising expenditures? Notes: s=10000+ 1005000 (950p)+ ?? (a50000) where the factor 1005000 is called the the price elasticity and where we assume the following notation - p= price ($/ computer ), - s= sales (computers/month), - a= advertising budget($/month). BONUS QUESTION Michaels, Inc. reports $2,730,000 of net income in 2022. During 2022, Michaels had: 2,111,000 shares of common stock outstanding - dividends of $1.56 paid on each. 72,000 shares of preferred stock outstanding - dividends of $2.00 paid on each. 120,000 stock options outstanding. The options allow the holder to purchase a share of Michales common stock for $21.00. The average price of Michaels common stock was $34.00 in 2022. Michaels' 2022 basic earnings per share, to the nearest penny, is _________ Hollywood studios are now reliant on the revenues from foreign movie theaters to make enough income to justify big budget "blockbuster" movie production costs. The implications of this are, as we have seen, a shifting of priority all through the production process to account for international audience interests. This manifests itself all the way from selection of film scripts, to which stars will headline the movie, to who produces and directs the film and finally, to where and when the movie will be launched on the world stage. (Total: 7 points)Q.1 What are the Opportunities and Threats facing Hollywood? Q. 2 What strategic actions would you recommend to US film-makers? Consider the following set of requirements for a sports database that is used to keep track of book holdings and borrowing: - Teams have unique names, contact information (composed of phone and address), logos, mascot, year founded, and championships won. Team sponsors can be individuals or institutions (provide attributes including key attributes for these). - Teams play matches which have unique match id, date, and location. Some matches are playoff matches for which you need to store tournament names. Some of the other matches are conference matches for which you need to store conference name. - Each match has two halves. Half numbers are unique for a given match. You need to store the scores and match statistics individually for each half of a match. - You need to be able to compute the number of games won by each team. - You also need to track articles that appeared in the print or electronic media about teams and matches. Note that articles are grouped into electronic and print articles. Within each group there are overlapping subgroups of articles for teams and matches. Show relationships between teams and matches with articles. Provide attributes for the article class and subclasses. Draw an EER diagram for this miniworld. Specify primary key attributes of each entity type and structural constraints on each relationship type. Note any unspecified requirements, and make appropriate assumptions to make the specification complete. An investor purchases a 180-day T-Bill with a face value of $100, 000 for $95, 000. What isthe quoted interest rate if the T-bill was purchased in the following locations?a) for Canadab) for US (uses bankers rule) Case Study Seven: Starbucks at the Airport: Discrimination inPublic Spaces onsidering that calligraphy and mosaic are visual representations of religious belief, compare and contrast Islamic calligraphy at Alhambra and Dome of the Rock to Christian mosaics at Ravenna. What do you think each art form communicates about the religion it represents? which of the following is not an explanation for why the presence of other people can be arousing? a. the presence of other people is distracting and causes conflict, as individuals have to decide what they should pay attention to. S={1,2,3,,18,19,20} Let sets A and B be subsets of S, where: Set A={2,4,5,6,8,9,10,13,14,15,17,18,19} Set B={1,3,7,8,11,14,15,16,17,18,19,20} Find the following: LIST the elements in the set (ABc) : (ABc)={ Enter the elements as a list, separated by commas. If the result is the empty set, enter DNE LIST the elements in the set (BAc) : (BAc)={ Enter the elements as a list, separated by commas. If the result is the empty set, enter DNE You may want to draw a Venn Diagram to help answer this question. When two companies are linked together by computers and they send business transactions through these computers, they are probably using _____Digital walletSmart CardsRFIDElectronic data interchangeB2C rommel trucking uses cargo miles driven (cmd) as an activity base. the company reports the following breakdown of cost behaviors: purely fixed costs a continuously reinforced concrete pavement cross-section contains a layer of no. 6 reinforcing bars at 6-inch centers, such that the steel is just above mid-depth of a 10-inch thick slab. cover over the top of the steel is therefore about 4 inches. What is a passive continental margin? What features do they have?A passive continental margin occurs where the transition from land to sea is not associated with a plate boundary. A passive continental margin has no tectonic activity. There is not a lot of geologic activity