a) The speed of the 6.00 kg block after descending 0.800 m is 2.07 m/s.
b) We cannot calculate the work done by the friction force.
c) The net work done on the system of two blocks during the 0.800 m downward displacement of the 6.00 kg block is 29.13 J. The work done by gravity is 47.04 J, the work done by friction is unknown, and the work done by the tension in the rope is zero.
(a) The work done on the 6.00 kg block by gravity can be calculated using the formula:
Work_gravity = force_gravity * displacement * cos(theta),
where force_gravity is the weight of the block, displacement is the downward displacement of the block, and theta is the angle between the force and displacement vectors (which is 0 degrees in this case).
The weight of the block is given by:
force_gravity = mass * acceleration_due_to_gravity = 6.00 kg * 9.8 m/s^2 = 58.8 N.
Plugging in the values, we get:
Work_gravity = 58.8 N * 0.800 m * cos(0) = 47.04 J.
The work done on the 6.00 kg block by the tension in the rope is given by:
Work_tension = tension * displacement * cos(theta).
Plugging in the values, we get:
Work_tension = 37.0 N * 0.800 m * cos(180) = -29.6 J.
The negative sign indicates that the tension is in the opposite direction of the displacement.
Using the work-energy theorem, we can find the speed of the 6.00 kg block after descending 0.800 m:
Work_net = change_in_kinetic_energy.
Since the block starts from rest, its initial kinetic energy is zero. Therefore:
Work_net = Final_kinetic_energy - Initial_kinetic_energy = 1/2 * mass * velocity^2.
Solving for velocity, we get:
velocity = sqrt(2 * Work_net / mass).
The net work done on the block is the sum of the work done by gravity and the tension:
Work_net = Work_gravity + Work_tension = 47.04 J - 29.6 J = 17.44 J.
Plugging in the values, we get:
velocity = sqrt(2 * 17.44 J / 6.00 kg) = 2.07 m/s.
Therefore, the speed of the 6.00 kg block after descending 0.800 m is 2.07 m/s.
(b) The total work done on the 8.00 kg block during the 0.800 m displacement can be calculated using the work-energy theorem:
Work_net = change_in_kinetic_energy.
Since the 8.00 kg block is not moving vertically, its initial and final kinetic energies are zero. Therefore:
Work_net = Final_kinetic_energy - Initial_kinetic_energy = 0.
The work done on the 8.00 kg block by the tension in the rope is given by:
Work_tension = tension * displacement * cos(theta).
Plugging in the values, we get:
Work_tension = 37.0 N * 0.800 m * cos(0) = 29.6 J.
The work done on the 8.00 kg block by the friction force can be calculated using the formula:
Work_friction = force_friction * displacement * cos(theta),
where force_friction is the frictional force on the block. However, the problem statement does not provide the value of the friction force. Therefore, we cannot calculate the work done by the friction force.
(c) The net work done on the system of two blocks during the 0.800 m displacement of the 6.00 kg block can be found using the work-energy theorem:
Work_net = change_in_kinetic_energy.
Since the system starts from rest, the initial kinetic energy of the system is zero. Therefore:
Work_net = Final_kinetic_energy - Initial_kinetic_energy = 1/2 * (6.00 kg + 8.00 kg) * velocity^2.
Simplifying, we get:
Work_net = 1/2 * 14.00 kg * velocity^2.
Using the value of velocity calculated in part (a), we get:
Work_net = 1/2 * 14.00 kg * (2.07 m/s)^2 = 29.13 J.
The work done on the system of two blocks by gravity is the sum of the work done on the individual blocks by gravity:
Work_gravity_system = Work_gravity_6kg + Work_gravity_8kg = 47.04 J + 0 J = 47.04 J.
The work done on the system of two blocks by the tension in the rope is the sum of the work done on the individual blocks by the tension:
Work_tension_system = Work_tension_6kg + Work_tension_8kg = -29.6 J + 29.6 J = 0 J.
Therefore, the net work done on the system of two blocks during the 0.800 m downward displacement of the 6.00 kg block is 29.13 J. The work done by gravity is 47.04 J, the work done by friction is unknown, and the work done by the tension in the rope is zero.
Note: The calculations for part (b) and (c) were based on the given information, but the value of the friction force was not provided in the problem statement.
For more such questions on work done, click on:
https://brainly.com/question/8119756
#SPJ8
A person walks 3.30 km south and then 2.00 km east, all in 3.20 hours. Answer parts a-c.
(a) the magnitude of the displacement is approximately 3.85 km, and the direction is approximately 59.04° south of east.
(b) Magnitude of average velocity ≈ 3.85 km and Direction of average velocity ≈ -59.04° (south of east)
(c) the average speed during the given time interval is approximately 1.66 km/h.
(a) To find the magnitude and direction of the person's displacement, we can use the Pythagorean theorem and trigonometry.
Displacement in the x-direction = 2.00 km east
Displacement in the y-direction = -3.30 km south (negative because it is in the opposite direction of the positive y-axis)
Using the Pythagorean theorem:
Magnitude of displacement = √((2.00 km)^2 + (-3.30 km)^2)
Magnitude of displacement ≈ 3.85 km
To find the direction, we can use trigonometry:
θ = tan^(-1)(opposite/adjacent)
θ = tan^(-1)(-3.30 km / 2.00 km)
θ ≈ -59.04° (measured counterclockwise from the positive x-axis)
Therefore, the magnitude of the displacement is approximately 3.85 km, and the direction is approximately 59.04° south of east.
(b) Average velocity is defined as displacement divided by time. The magnitude and direction of average velocity will be the same as the magnitude and direction of displacement.
Magnitude of average velocity ≈ 3.85 km
Direction of average velocity ≈ -59.04° (south of east)
(c) Average speed is defined as total distance traveled divided by time. The total distance traveled is the sum of the magnitudes of the individual displacements.
Total distance = 3.30 km + 2.00 km = 5.30 km
Average speed = Total distance / Time
Average speed ≈ 5.30 km / 3.20 hours
Average speed ≈ 1.66 km/h
Therefore, the average speed during the given time interval is approximately 1.66 km/h.
for more questions on displacement
https://brainly.com/question/14422259
#SPJ8
Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you. The lines of magnetic force at any point in the magnetic field will act in
Question 17 options:
A)
a clockwise direction.
B)
a counterclockwise direction.
C)
the direction opposite to the current.
D)
the same direction as the current.
Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you. The lines of magnetic force at any point in the magnetic field will act in option c) the direction opposite to the current.
Lenz's law is the law that governs the direction of magnetic force.According to Lenz's law, magnetic fields induced by an electric current have a polarity such that the current's magnetic field opposes any change in current flow. Based on this law, the induced current must produce a magnetic field that opposes the current that produced it.
If the current is flowing towards us, the induced magnetic field must flow in the opposite direction to the current. Therefore, the direction of the lines of magnetic force at any point in the magnetic field will act in the direction opposite to the current.Hence, the correct option is C) the direction opposite to the current.
Know more about current here:
https://brainly.com/question/1100341
#SPJ8
how can i write answers to get points
Two atoms of the same element only differ because one of the atoms has more electrons, making it an ion. Which statement is true? They have the same A-number and the same Z-number. They have the same A-number but different Z-number. They have a different A-number but the same Z-number. They have different A-numbers and different Z-numbers.
The correct answer is Option B. The statement "they have the same A-number but different Z-number" is true .
Atoms of the same element only differ because one of the atoms has more electrons, making it an ion.
This difference does not affect the mass of the atom, which is determined by the sum of its protons and neutrons, represented by the atomic mass or A-number.
The number of protons in an atom is called the atomic number or Z-number.
The Z-number of an element is unique to it. All the atoms of a given element have the same number of protons.
Thus, for example, all carbon atoms have six protons, making the Z-number of carbon 6.
However, different isotopes of an element can have different numbers of neutrons.
This means that they have a different atomic mass or A-number.
Therefore, they have the same A-number but different Z-number.
Therefore the correct Option is B.
For more questions on Atoms
https://brainly.com/question/6258301
#SPJ8
.An electron of charge 1.6 x 10-19is situated in a uniform electric filed strength of 120 vm-1 Calculate the force acting on it
The force acting on the electron is 1.92 x 10^-17 N.
The problem states that an electron of charge 1.6 x 10^-19 is located in a uniform electric field of 120 Vm^-1, and it asks us to determine the force acting on it.
We can use Coulomb's law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. If the charges are of opposite signs, the force is attractive, while if the charges are of the same sign, the force is repulsive.
The formula for Coulomb's law is F = kq1q2/r^2, where F is the force between the charges, k is Coulomb's constant, q1 and q2 are the magnitudes of the charges, and r is the distance between them.
Since the electron has a charge of 1.6 x 10^-19 C, and the electric field strength is 120 Vm^-1, we can use the equation F = qE to find the force acting on it.
F = qE = (1.6 x 10^-19 C)(120 Vm^-1) = 1.92 x 10^-17 N.
Therefore, the force acting on the electron is 1.92 x 10^-17 N.
For more such questions on force, click on:
https://brainly.com/question/12785175
#SPJ8
Question 1 of 10
What is the slope of the line plotted below?
B. 2
5
10
C. 1
O A. 0.5
о
9
OD. -0.5
5
The minimum wage jumps from the current $7.25/hour to $15.00/hour. This has the ef-
fect of causing a shift in demand for restaurant dinners. Eventually, a large number of en-
trepreneurs see this demand and enter the restaurant business, creating a shift in sup-
ply. Using the graph outlines provided below, mark label the following:
1. Initial demand (D1), initial supply (S1) and initial equilibrium (E1).
2. The shift in demand (D2) and corresponding new equilibrium (E2).
3. The shift in supply (S2) and the corresponding new equilibrium (E3).
Use arrows to show the direction of the supply and demand curve shifts from D1 to D2,
and from S1 to S2.
In this case, the demand (D1) moves to the left (D2), this also happens with supply (S1) leading to (S2), moreover, the intersections between these lines represent E1, E2, and E3.
What happens to the demand and supply in this case?Due to an increase in salary, it is expected the demand for dinners increase, which means this line would move to the left. This occurs as a higher wage for everyone implies people are more willing to pay for dinner than before.
This change would also mean restaurants are likely to provide more quantity, which increases the supply, and therefore in this process the equilibrium changes.
Learn more about demand in https://brainly.com/question/30402955
#SPJ1
When a piece of wood is put in a graduated cylinder containing water the level of water rises from 17.7cm cubic to 18.5cm cubic calculate the total volume of the piece of wood given that it's relative density is 0.60
The total volume of the piece of wood is 1.33[tex]cm^3[/tex].
To calculate the total volume of the piece of wood, we can use the principle of displacement.
1. First, we need to find the difference in volume between the two water levels. The initial volume is 17.7 [tex]cm^3[/tex], and the final volume is 18.5 cm^3. The difference is 18.5 [tex]cm^3[/tex] - 17.7 [tex]cm^3[/tex] = 0.8 [tex]cm^3[/tex].
2. Now, we need to find the volume of water displaced by the piece of wood. Since the relative density of the wood is 0.60, it means that the wood is 0.60 times denser than water.
3. The volume of water displaced by the wood is equal to the difference in volume divided by the relative density of the wood. So, the volume of water displaced is 0.8 cm^3 / 0.60 = 1.33 [tex]cm^3[/tex].
4. Finally, the total volume of the piece of wood is equal to the volume of water displaced. Therefore, the total volume of the piece of wood is 1.33 [tex]cm^3[/tex].
For more question displacement
https://brainly.com/question/321442
#SPJ8
RHETORICAL ANALYSIS: How does Robinson use language in effective and engaging ways to develop his argument to his younger self-and, in the process, to young readers in the present? In your response, consider such techniques as metaphor, repetition, and sentence structure.
In "The Argonauts," Robinson effectively utilizes language techniques such as metaphor, repetition, and sentence structure to develop his argument to his younger self and engage young readers in the present. Through these techniques, Robinson creates a powerful and relatable narrative that resonates with his audience.
Robinson employs metaphors to convey complex ideas in a compelling and accessible manner. For instance, he compares his struggle with identity and gender to the mythical journey of the Argonauts, making it relatable and captivating for young readers. This metaphorical language enables readers to grasp the profound emotions and challenges he faced during his own personal journey.
Repetition is another technique Robinson employs to reinforce key ideas and create a rhythmic and memorable reading experience. By repeating certain phrases or concepts, he emphasizes their significance and invites readers to reflect on them. This repetition serves to engage young readers by encouraging them to contemplate their own experiences and perspectives.
Furthermore, Robinson carefully structures his sentences to create a sense of rhythm and flow, enhancing the overall readability and impact of his argument. Short, concise sentences create moments of clarity and emphasis, while longer, more descriptive sentences evoke a contemplative and introspective tone. This varied sentence structure adds depth and nuance to his narrative, captivating young readers and keeping them engaged throughout.
In conclusion, through the effective use of metaphor, repetition, and sentence structure, Robinson engages and captivates young readers, inviting them to reflect on their own identities and experiences. His language choices not only develop his argument to his younger self but also establish a connection with present-day young readers, making his work both impactful and relatable.
for such more questions on techniques
https://brainly.com/question/12601776
#SPJ8
3. A cylindrical steel drum is tipped over and rolled along the floor of a ware house. If the drum has radius of 0.40m and makes on complete turns in every 8.0 s, how long does it take to roll the drum 36m?
It takes approximately 9.05 seconds to roll the drum a distance of 36 meters.
What is circumference of a circle?We can use the formula for the circumference of a circle:
Circumference = 2 * π * radius
Given:
Radius (r) = 0.40 m
Circumference (C) = 2 * π * 0.40 m
We must figure out how many full rotations the drum makes to go 36 meters in order to calculate how long it takes to roll the drum. Since we are aware of the circumference, we can determine the number of full turns as follows:
Number of turns = Distance / Circumference
Given:
Distance = 36 m
Number of turns = 36 m / (2 * π * 0.40 m)
Now that we know how many turns there are, we can calculate the time by multiplying that number by the length of a turn, which is given as 8.0 seconds:
Time = Number of turns * Time per turn
Time = (36 m / (2 * π * 0.40 m)) * 8.0 s
By substituting the values into the equation, we can calculate the time:
Time = (36 / (2 * 3.14159 * 0.40)) * 8.0 s
Time ≈ 9.05 s
So, it takes approximately 9.05 seconds to roll the drum a distance of 36 meters.
Learn more about circumference here : brainly.com/question/20489969
#SPJ1
As a fish jumps vertically out of the water, assume that only two significant forces act on it: an upward force F exerted by the tail fin and the downward force due to gravity. A record Chinook salmon has a length of 1.50 m and a mass of 52.0 kg. If this fish is moving upward at 3.00 m/s as its head first breaks the surface and has an upward speed of 6.80 m/s after two-thirds of its length has left the surface, assume constant acceleration and determine the following. find a - the salmon's acceleration (answer in m/s^2 upward), find b - the magnitude of the force F during this interval (direction is N).
Answer:
To solve this problem, we need to use some principles of physics, specifically Newton's second law (F=ma) and the equations of motion. Here are the steps:
1. Calculate the acceleration (a)
We can use the equation of motion to find the acceleration:
v_f^2 = v_i^2 + 2a*d
where:
v_f = final velocity = 6.80 m/s
v_i = initial velocity = 3.00 m/s
d = distance = 2/3 of the length of the fish = 2/3 * 1.50 m = 1.00 m
a = acceleration (which we are trying to find)
Rearranging the equation to solve for a gives us:
a = (v_f^2 - v_i^2) / (2*d)
2. Calculate the magnitude of the force F
Once we have the acceleration, we can use Newton's second law (F=ma) to calculate the force. The net force acting on the fish as it jumps out of the water is the difference between the upward force F exerted by the tail fin and the downward force due to gravity (mg). The net force is also equal to the product of the mass of the fish and its acceleration (ma). Therefore, we have:
F - mg = ma
Rearranging this equation to solve for F gives us:
F = ma + mg
Now let's plug in the numbers and do the calculations.
First, let's find the acceleration:
a = (v_f^2 - v_i^2) / (2*d)
a = (6.80 m/s)^2 - (3.00 m/s)^2) / (2*1.00 m)
a = (46.24 m^2/s^2 - 9.00 m^2/s^2) / 2 m
a = 37.24 m^2/s^2 / 2 m
a = 18.62 m/s^2
The salmon's acceleration is 18.62 m/s^2 upward.
Next, let's find the force F. We know the mass of the fish is 52.0 kg, and the acceleration due to gravity is approximately 9.8 m/s^2. So,
F = ma + mg
F = (52.0 kg)(18.62 m/s^2) + (52.0 kg)(9.8 m/s^2)
F = 969.24 N + 509.6 N
F = 1478.84 N
So, the magnitude of the force F exerted by the salmon's tail fin during this interval is approximately 1479 N.
With a force of 200 N a body is lifted 20 meters in 20 seconds. Calculate the weight of this body. Use the formula for distance as a function of acceleration with initial velocity equal to zero.
Answer:
The weight of the body is 3,924 N.
Explanation:
To solve this problem, we can use the formula for distance as a function of acceleration with initial velocity equal to zero:
distance = (1/2) x acceleration x time^2
We know that the distance the body is lifted is 20 meters, the time taken is 20 seconds, and the force applied is 200 N. We can use this information to calculate the weight of the body.
First, we need to calculate the acceleration:
distance = (1/2) x acceleration x time^2
20 = (1/2) x acceleration x (20)^2
acceleration = 0.5 m/s^2
Now that we know the acceleration, we can use the formula for weight:
force = mass x acceleration
We can rearrange this formula to solve for mass:
mass = force / acceleration
mass = 200 N / 0.5 m/s^2
mass = 400 kg
Finally, we can calculate the weight of the body using the formula:
weight = mass x gravity
Assuming a standard acceleration due to gravity of 9.81 m/s^2, we can calculate the weight:
weight = 400 kg x 9.81 m/s^2
weight = 3,924 N
Therefore, the weight of the body is 3,924 N.
Select the correct answer.
In which situation is maximum work considered to be done by a force?
A.
The angle between the force and displacement is 180°.
B.
The angle between the force and displacement is 90°.
C.
The angle between the force and displacement is 60°.
D.
The angle between the force and displacement is 45°.
E.
The angle between the force and displacement is 0°.
Option A. The angle between the force and displacement is 180°, the maximum work is considered to be done by the force.
Work is defined as the product of the force applied to an object and the displacement of the object in the direction of the force. Mathematically, work (W) is given by the equation:
W = F * d * cos(theta)
Where
F = magnitude of the force
d = magnitude of the displacement
theta = angle between the force and displacement vectors.
In order to maximize the work done by a force, we need to maximize the value of the cosine of the angle theta. The cosine function reaches its maximum value of 1 when the angle theta is 0° or 180°.
When the angle between the force and displacement is 0° (option E), the force and displacement vectors are perfectly aligned in the same direction. In this case, the work done is maximized. Therefore, the correct answer is option A.
know more about force here:
https://brainly.com/question/12785175
#SPJ8
WHOEVER ANSWERS IS THE BRAINLIEST!!! PLS HELP!!
Based on the information, we can infer that the temperature on the west and east coasts of the United States is higher than in the central part at latitude 35° North.
What do we see in the image?In the image you can see the map of the United States and two latitudinal lines of 35° and 45° North. Additionally we see the different temperatures that exist in various cities or locations in the United States.
Based on this information, we can infer that the temperatures on the east and west coasts are higher than the temperatures recorded in the central part. For example, at 35° latitude, the coasts register temperatures of more than 60°F while the central zone registers lower temperatures between 36 and 59°F.
Learn more about temperature in: https://brainly.com/question/7510619
#SPJ1
A rock with a mass of 0.2 kg with a velocity of 5 m/s strikes a stationary 1 kg wooden ball. After the
collision the rock flies back with a velocity of -2 m/s. What is the velocity of the wooden ball after the
collision?
A. -0.4 m/s
B. -1 m/s
C. 0.4 m/s
D. 1.4 m/s
Answer:
D. 1.4 m/s
Explanation:
forward direction is +
back direction is -
Momentum = P = mass x velocity = mv
let v = velocity of ball after collision
Law of Conservation of Momentum: total momentum before the collision must equal the total momentum after the collision
(0.20 kg)(5 m/s) + (1 kg)(0 m/s) = (0.2 kg)(-2 m/s) + (1 kg)v
1 kg·m/s + 0 = -0.4 kg·m/s + (1 kg)v
1 kg·m/s + 0.4 kg·m/s = (1 kg)v rearrange the equation and solve for v
(1 kg)v = 1.4 kg·m/s
v = (1.4 kg·m/s) / (1 kg) = 1.4 m/s
Suppose that the mirror is moved so that the tree is between the focus point F and the mirror. What happens to the image of the tree?
A. The image moves behind the curved mirror.
B. The image appears shorter and on the same side of the mirror.
C. The image appears taller and on the same side of the mirror.
D. The image stays the same.
Answer:
C
Explanation:
If the tree is placed between the focus point F and the mirror in a concave mirror, the image of the tree will appear taller and on the same side of the mirror. Therefore, the correct answer is C. The image appears taller and on the same side of the mirror.
A model rocket is launched straight upward with an initial speed of 57.0 m/s. It accelerates with a constant upward acceleration of 1.50 m/s2 until its engines stop at an altitude of 140 m. Answer parts b-d.
a. The maximum height reached by the rocket is 1083 meters.
b. The rocket reaches its maximum height 38 seconds after liftoff.
c. The rocket is in the air for 1.09 seconds.
How do we calculate?(b)
We will apply equation of motion :
v² = u² + 2aΔy
Δy = (v² - u²) / (2a)
Δy = (0 - 57.0²) / (2 * 1.50)
Δy = (-57.0)² / 3.00
Δy = 3,249 / 3.00
Δy = 1083 m
(c)
v = u + at
0 = u + at
t = -u / a
t = -57.0 / 1.50
t = 38 seconds
(d)
Δy = ut + (1/2)at²
140 = 57.0t + (1/2)(1.50)t²
(1/2)(1.50)t² + 57.0t - 140 = 0
t = 1.09 seconds.
Learn more about equation of motion at:
https://brainly.com/question/25951773
#SPJ1
An object of mass M = 14.0 kg is attached to a cord that is wrapped around a wheel of radius r = 12.0 cm (see figure). The acceleration of the object down the frictionless incline is measured to be a = 2.00 m/s2 and the incline makes an angle = 37.0° with the horizontal. Assume the axle of the wheel to be frictionless. Answer parts a-c.
a. the tension in the rope is 91.5 N.
b. the moment of inertia of the wheel is 0.1008 kg⋅m².
c. the angular speed of the wheel 2.30 s after it begins rotating is 38.34 rad/s.
How do we calculate?(a)
The tension in the rope can be found by considering the forces acting on the object.
ma = mg*sin(θ) - T
(14.0 kg)(2.00 m/s²)
= (14.0 kg)(9.8 m/s²)*sin(37°) - T
T = (14.0 kg)(9.8 m/s²)*sin(37°) - (14.0 kg)(2.00 m/s²)
T = 91.5 N
(b)
The moment of inertia of a wheel:
I = (1/2)MR²
I = (1/2)(14.0 kg)(0.12 m)²
I = 0.1008 kg⋅m²
(c)
The angular acceleration of the wheel:
α = a/R
α = angular acceleration,
a = linear acceleration of the object,
R = radius of the wheel.
α = (2.00 m/s²)/(0.12 m)
α = 16.67 rad/s²
The angular speed (ω) of the wheel after time t is :
ω = ω₀ + αt
ω = 0 + (16.67 rad/s²)(2.30 s)
ω = 38.34 rad/s
Learn more about angular speed at:
https://brainly.com/question/25279049
#SPJ1
When white light reflects off of a green surface, which of the following occurs?
1. All wavelengths of light are absorbed.
2. Only the green wavelengths of light are absorbed.
3. Only the green wavelengths of light are reflected.
4. All wavelengths of light are reflected.
When white light reflects off of a green surface, only the green wavelengths of light are reflected (option d).
1. White light is a combination of all visible wavelengths of light, including red, orange, yellow, green, blue, indigo, and violet.
2. When white light hits a green surface, the surface absorbs some wavelengths of light and reflects others.
3. The color we perceive as "green" is the result of the green wavelengths of light being reflected by the surface.
4. In this case, the green surface absorbs all the wavelengths of light except for the green wavelengths, which are reflected back.
5. As a result, our eyes detect the reflected green light and interpret it as the color green.
6. This phenomenon occurs because the green surface selectively absorbs and reflects different wavelengths of light based on its molecular structure and the interactions between light and matter.
7. The absorption and reflection of specific wavelengths of light give objects their perceived color.
8. Therefore, when white light reflects off of a green surface, only the green wavelengths of light are reflected, while the other wavelengths are absorbed by the surface.
For more such questions on light, click on:
https://brainly.com/question/10728818
#SPJ8
Two blocks, M1 and M2, are connected by a massless string that passes over a massless pulley as shown in the figure. M2, which has a mass of 19.0 kg,
rests on a long ramp of angle theta=25.0∘.
Ignore friction, and let up the ramp define the positive direction.
If the actual mass of M1 is 5.00 kg and the system is allowed to move, what is the acceleration of the two blocks?
What distance does block M2 move in 2.00 s?
The acceleration of the two blocks is[tex]2.14 m/s^{2[/tex]} and the distance does block M2 move in 2.00 s is 4.27 m.
Now we need to find the acceleration of the two blocks and the distance does block M2 move in 2.00 s.
We know that: mass of M1, m1 = 5.00 kg mass of M2, m2 = 19.0 kgθ = 25.0°Taking upward direction as positive for block M1 and downwards as positive for block M2.
Therefore, we can write the following equation of motion for the two blocks:
For M2: m2g - T = m2a ...(1)
For M1: T - m1g = m1a ...(2)
We can see from the figure that M2 is on an inclined plane making an angle θ with the horizontal.
We can resolve the weight of M2 into two components:
Perpendicular to the plane = m2gcosθParallel to the plane = m2gsinθ
The component parallel to the plane will tend to make the block move downwards.
Therefore, the effective weight will be:
mg = m2gsinθ ...(3)
From equation (1) we can write:
T = m2g - m2a ...(4)
Substituting equation (4) in equation (2), we get:
m2g - m2a - m1g = m1a ...(5)
On solving equation (5), we get the acceleration as:
a = g(m2sinθ - m1) / (m1 + m2)
On substituting the given values, we get:
[tex]a = 2.14 m/s^{2}[/tex]
The distance moved by M2 in 2 seconds can be found out using the formula:[tex]s = ut + \frac{1}{2} at^{2}[/tex]
Here, initial velocity, u = 0m/s Time, t = 2s Acceleration, [tex]a = 2.14 m/s^{2}[/tex]
On substituting these values, we get the distance travelled by M2 as: s = 4.27 m
Therefore, the acceleration of the two blocks is [tex]2.14 m/s^{2}[/tex]. And the distance does block M2 move in 2.00 s is 4.27 m.
For more questions on acceleration
https://brainly.com/question/460763
#SPJ8
D 4.8
This is a harder question based on the Law of Conservation of Momentum. Take the time to work
your way through it. Start with a diagram.
A 400 kg bomb sitting at rest on a table explodes into three pieces. A 150 kg piece moves off to the
east with a velocity of 150 m s². A 100 kg piece moves off with a velocity of 200 m s at a direction of
south 60° west. What is the velocity of the third piece?
It is possible
The velocity of the third piece is v₃ = -12500 kg·m/s / m₃
How do we calculate?The law of conservation of momentum states that the total momentum before the explosion is equal to the total momentum after the explosion.
velocity of the third piece = v₃.
The total initial momentum before the explosion = 0
The total final momentum after the explosion= 0
Initial momentum = 0 kg·m/s (since the bomb is at rest)
Final momentum = m₁v₁ + m₂v₂ + m₃v₃
m₁ = mass of the first piece = 150 kg
v₁ = velocity of the first piece = 150 m/s (to the east)
m₂ = mass of the second piece = 100 kg
v₂ = velocity of the second piece = 200 m/s (south 60° west)
m₃ = mass of the third piece = unknown
v₃ = velocity of the third piece = unknown
0 = (150 kg)(150 m/s) + (100 kg)(200 m/s)(cos(60°)) + (m₃)(v₃)
final momentum = 0 and hence v₃ is found as :
0 = 22500 kg·m/s - 10000 kg·m/s + (m₃)(v₃)
-12500 kg·m/s = (m₃)(v₃)
v₃ = -12500 kg·m/s / m₃
Learn more about law of conservation of momentum at:
https://brainly.com/question/1113396
#SPJ1
Look at this graphic organizer of requirements to apply to become an astronaut.
Requirements for Astronauts
What does the graphic organizer most suggest about the job of an astronaut?
It is technical and potentially tedious.
It is detailed and potentially exhausting.
It is confidential and potentially exciting.
○ It is complex, demanding, and involves flight.
Save and Exit
Next
The graphic organizer suggests that the job of an astronaut is complex, demanding, and involves flight.
This conclusion can be drawn by examining the nature of the requirements listed in the graphic organizer. Firstly, the requirements listed in the organizer are numerous and encompass various aspects. They include educational qualifications, such as having a bachelor's degree in a relevant field, as well as specific experience, like piloting an aircraft.
These requirements highlight the complexity of the job and indicate that astronauts need to possess a diverse set of skills and knowledge. Additionally, the requirements for physical fitness and health demonstrate the demanding nature of the job.
Astronauts are expected to undergo rigorous physical training to ensure they can handle the physical stresses associated with space travel and the conditions they will encounter in space. This indicates that the job can be physically exhausting and requires individuals to be in excellent health.
Lastly, the inclusion of flight-related requirements, such as the need to pass a long-duration spaceflight physical and participate in aircraft flights, implies that the job of an astronaut involves actual flight experiences. This indicates that astronauts are directly involved in piloting spacecraft and are expected to have practical experience in flying.
know more about astronaut here:
https://brainly.com/question/30733605
#SPJ8
Two objects with masses of m1 = 3.70 kg and m2 = 5.70 kg are connected by a light string that passes over a frictionless pulley, as in the figure below. Answer parts a-c.
(a) The tension in the string is determined as 19.6 N.
(b) The acceleration of each object is 5.3 m/s².
(c) The distance each object will move in the first second if it started from rest is 2.65 m.
What is the tension in the string?(a) The tension in the string is the resultant weight of the masses and magnitude is calculated as follows;
T = ( 5.7 kg - 3.7 kg ) x 9.8 m/s²
T = 19.6 N
(b) The acceleration of each object is calculated as follows;
a = T / m
where;
m is the mass T is the tensiona = 19.6 N / 3.7 kg
a = 5.3 m/s²
(c) The distance each object will move in the first second if it started from rest is calculated as;
s = ut + ¹/₂at²
where;
u is the initial velocity = 0s = 0 + ¹/₂(5.3)(1²)
s = 2.65 m
Learn more about acceleration here: https://brainly.com/question/14344386
#SPJ1
A spacecraft is in a circular orbit around the planet Mars at a height of 140km.
A small part of the spacecraft falls off and eventually lands on the surface of the Mars
The small part has a mass of 1.8kg
During its fall, the small part loses 0.932 MJ of gravitational potential energy.
Calculate the gravitational field strength of Mars
Answer:
3.79 m/s^2
Explanation:
We know the small part loses 0.932 MJ of gravitational potential energy during its fall.
Potential energy = mass x gravitational field strength x height
Re-arranging to solve for gravitational field strength:
g = Potential energy/(mass x height)
Plugging in the given values:
g = 0.932 MJ / (1.8kg x 140km)
= 0.932 x 10^6 J / (1.8 x 1000kg x 140 x 1000m)
= 3.79 m/s^2
Therefore, the gravitational field strength of Mars is calculated to be 3.79 m/s^2.
Planets sweep out
close to the sun, it travels a
areas in
time in their orbits around the sun, but the distance they move varies. When the planet is
when it is closer to the sun.
✓distance as the area stays the same. So, the planet moves
In planetary motion, as a planet orbits the Sun, it sweeps out equal areas in equal time intervals. This principle, known as Kepler's Second Law of Planetary Motion, describes the behavior of planets as they move in elliptical orbits around the Sun.
When a planet is closer to the Sun, it experiences a stronger gravitational pull, which causes it to move faster. As a result, the planet covers a larger distance in a given amount of time compared to when it is farther from the Sun. This compensates for the smaller distance, ensuring that the area swept out by the planet remains the same.
To illustrate this, imagine a line connecting the Sun and the planet, called the radius vector. As the planet moves along its orbit, the radius vector sweeps out a wedge-shaped area. The rate at which this area is swept out is constant. When the planet is closer to the Sun, it moves faster, covering more distance along its orbit in a given time. Consequently, the narrower end of the wedge is compensated by the planet's higher speed, resulting in an equal area to that covered when it is farther from the Sun.
This phenomenon is a consequence of the conservation of angular momentum in the gravitational field of the Sun and allows for a consistent distribution of the planet's orbital motion.
Know more about Kepler's Second Law of Planetary Motion here:
https://brainly.com/question/7540858
#SPJ8
If a 9000kg water flows in a minute through a pipe of cross sectional area 0.3m², what is the speed of water in the pipe?
Answer:
5 m/s
Explanation:
We are given that 9000 kg of water flows through the pipe in 1 minute. Mass flow rate = mass/time
So, mass flow rate = 9000 kg / 1 minute = 150 kg/s
We know the cross sectional area of the pipe is 0.3 m2. From continuity equation, mass flow rate = density * area * velocity
So, 150 = 1000 * 0.3 * v (Density of water is approximately 1000 kg/m3)
Solving for v (velocity):
v = 150/(1000*0.3) = 5 m/s
Therefore, the speed of water in the pipe is 5 m/s.
Look at the velocity versus time graph below. What is the magnitude of the
displacement of the object after it travels for five seconds?
Velocity (m/s)
Time (s)
A. 30 m
OB. 20 m
OC. 25 m
OD. 35 m
The magnitude of displacement of the object after five seconds, calculated from the velocity-time graph, is 32.5 m. The correct answer is option E.
Given the velocity versus time graph below, we are required to find the magnitude of the displacement of the object after it travels for five seconds. Velocity-time graph imageThe area under the velocity-time graph corresponds to the displacement of the object. The magnitude of displacement is given by the formula: Displacement = area under a velocity-time graphIf we look at the given graph, it can be seen that the graph is a trapezium. Therefore, we need to split it into two parts: a rectangle and a triangle. The displacement is given by the sum of the area of both parts. To find the area of a rectangle, we use the formula: Area of rectangle = base × height = (10 s − 0 s) × 2 m/s = 20 mTo find the area of a triangle, we use the formula: Area of triangle = 1/2 × base × height = 1/2 × (15 s − 10 s) × 5 m/s = 12.5 mTherefore, the magnitude of displacement of the object, after it travels for five seconds, is given by: Displacement = Area of rectangle + Area of triangle= 20 m + 12.5 m= 32.5 mHence, the correct answer is option E. 32.5 m.For more questions on the magnitude of displacement
https://brainly.com/question/26012010
#SPJ8
What are the six digit grid coordinates for the windtee?
The six digit grid coordinates for the windtee should be 100049.
How do we we calculate?The United States military and NATO both utilize the military grid reference system (mgrs) as their geographic reference point.
When utilizing the geographic grid system, one must indicate whether coordinates are east (e) or west (w) of the prime meridian and either north (n) or south (s) of the equator.
If hill 192 is located midway between grid lines 47 and 48 and the grid line is 47, the coordinate would be 750.
Learn more about grid system at:
brainly.com/question/30159056
#SPJ1
Assume the three blocks (m1 = 1.0 kg, m2 = 2.0 kg, and m3 = 4.0 kg) portrayed in the figure below move on a frictionless surface and a force F = 34 N acts as shown on the 4.0-kg block. Answer parts a-c.
(a) The acceleration of the system is 8.5 m/s².
(b) The tension in the cord connecting the 4.0 kg and 1.0 kg blocks is 42.5 N.
(c) The force exerted by the 1.0 kg block on the 2.0 kg block is 59.5 N.
To solve this problem, we can use Newton's second law of motion (F = ma) and consider the forces acting on each block individually.
(a) Determine the acceleration given this system:
To find the acceleration (a) of the system, we can use the net force acting on the 4.0 kg block (m3). The only force acting on m3 is the applied force (F = 34 N).
F = m3 * a
34 N = 4.0 kg * a
Solving for a, we find:
a = 34 N / 4.0 kg
a = 8.5 m/s²
Therefore, the acceleration of the system is 8.5 m/s².
(b) Determine the tension in the cord connecting the 4.0-kg and the 1.0-kg blocks:
To find the tension in the cord (T), we can consider the forces acting on the 1.0 kg block (m1).
T - F = m1 * a
T - 34 N = 1.0 kg * 8.5 m/s²
T - 34 N = 8.5 N
T = 42.5 N
Therefore, the tension in the cord connecting the 4.0 kg and 1.0 kg blocks is 42.5 N.
(c) Determine the force exerted by the 1.0-kg block on the 2.0-kg block:
To find the force exerted by the 1.0 kg block (m1) on the 2.0 kg block (m2), we can consider the forces acting on the 2.0 kg block.
F - T = m2 * a
F - 42.5 N = 2.0 kg * 8.5 m/s²
F - 42.5 N = 17 N
F = 59.5 N
Therefore, the force exerted by the 1.0 kg block on the 2.0 kg block is 59.5 N.
for more questions on acceleration
https://brainly.com/question/460763
#SPJ8
deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W. Refer to appropriate Newton’s laws of motion.
The expression for the contribution of P to the pressure exerted on W is P = mV/(c^2t), derived using Newton's laws of motion and the definition of pressure.
In order to deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W, we can use the appropriate Newton’s laws of motion. Specifically, we can use the equation F = ma, where F represents force, m represents mass, and a represents acceleration.We know that pressure (P) is defined as force per unit area, or P = F/A. Rearranging this equation, we can solve for force: F = PA.Substituting this into the equation F = ma, we get PA = ma. Rearranging this equation, we can solve for pressure in terms of mass and acceleration: P = ma/A. Finally, we know that acceleration can be expressed in terms of velocity (V) and time (t): a = V/t.Substituting this into our equation for pressure, we get P = mV/(At). Since c represents the speed of sound, we can express A as [tex]A = c^2[/tex]. Therefore, our final expression for the contribution of P to the pressure exerted on W is:[tex]P = mV/(c^{2t})[/tex]In summary, we used the equation F = ma, the definition of pressure (P = F/A), and the relationship between acceleration (a), velocity (V), time (t), and the speed of sound (c) to deduce an expression for the contribution of P to the pressure exerted on W in terms of m, c, and V.For more questions on pressure
https://brainly.com/question/28012687
#SPJ8